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foreword
There are two kinds of pianists.

 There are some pianists who play, not because they enjoy it, but because their par-
ents force them to take lessons. Then there are those who play the piano because it
pleases them to create music. They don’t need to be forced; on the contrary, they
sometimes don’t know when to stop.

 Of the latter kind, there are some who play the piano as a hobby. Then there are
those who play for a living. That requires a higher level of dedication, skill, and talent.
They may have some degree of freedom about what genre of music they play and the
stylistic choices they make in playing it, but fundamentally those choices are driven by
the needs of the employer or the tastes of the audience.

 Of the latter kind, there are some who do it primarily for the money. Then there
are those professionals who would want to play the piano in public even if they weren’t
being paid. They enjoy using their skills and talents to make music for others. That
they can have fun and get paid for it is so much the better.

 Of the latter kind, there are some who are self-taught, who play by ear, who might
have great talent and ability, but can’t communicate that intuitive understanding to
others except through the music itself. Then there are those who have formal training
in both theory and practice. They can explain what techniques the composer used to
achieve the intended emotional effect, and use that knowledge to shape their inter-
pretation of the piece.

 Of the latter kind, there are some who have never looked inside their pianos. Then
there are those who are fascinated by the clever escapements that lift the damper felts
a fraction of a second before the hammers strike the strings. They own key levelers
xix



FOREWORDxx

and capstan wrenches. They take delight and pride in being able to understand the
mechanisms of an instrument that has 5–10,000 moving parts.

 Of the latter kind, there are some who are content to master their craft and exer-
cise their talents for the pleasure and profit it brings. Then there are those who are
not just artists, theorists, and technicians; somehow they find the time to pass that
knowledge on to others as mentors.

 I have no idea if Jon Skeet is a pianist or musician of any sort. But from my email
conversations with him as one of the C# team’s Most Valuable Professionals over the
years, from reading his blog, and from reading every word of each of his books at least
three times, it has become clear to me that Jon is that latter kind of software developer:
enthusiastic, knowledgeable, talented, curious, analytical—and a teacher of others.

 C# is a highly pragmatic and rapidly evolving language. Through the addition of
query comprehensions, richer type inference, a compact syntax for anonymous func-
tions, and so on, I hope that we have enabled a whole new style of programming while
still staying true to the statically typed, component-oriented approach that has made
C# a success.

 Many of these new stylistic elements have the paradoxical quality of feeling very
old (lambda expressions go back to the foundations of computer science in the first
half of the twentieth century) and yet at the same time feeling new and unfamiliar to
developers used to a more modern object-oriented approach.

 Jon gets all that. This book is ideal for professional developers who have a need to
understand the what and how of the latest revision to C#. But it is also for those devel-
opers whose understanding is enriched by exploring the why of the language’s design
principles.

 Being able to take advantage of all that new power requires new ways of thinking
about data, functions, and the relationship between them. It’s not unlike trying to
play jazz after years of classical training—or vice versa. Either way, I’m looking forward
to finding out what sorts of functional compositions the next generation of C# pro-
grammers come up with. Happy composing, and thanks for choosing the key of C# to
do it in.

ERIC LIPPERT

C# ANALYSIS ARCHITECT

COVERITY



preface
Oh boy. When writing this preface, I started off with the preface to the second edition,
which began by saying how long it felt since writing the preface to the first edition.
The second edition is now a distant memory, and the first edition seems like a whole
different life. I’m not sure whether that says more about the pace of modern life or my
memory, but it’s a sobering thought either way.

 The development landscape has changed enormously since the first edition, and
even since the second. This has been driven by many factors, with the rise of mobile
devices probably being the most obvious. But many challenges have remained the
same. It’s still hard to write properly internationalized applications. It’s still hard to
handle errors gracefully in all situations. It’s still fairly hard to write correct multi-
threaded applications, although this task has been made significantly simpler by both
language and library improvements over the years.

 Most importantly in the context of this preface, I believe developers still need to
know the language they’re using at a level where they’re confident in how it will
behave. They may not know the fine details of every API call they’re using, or even
some of the obscure corner cases of the language that they don’t happen to use,1 but
the core of the language should feel like a solid friend that the developer can rely on
to behave predictably.

 In addition to the letter of the language you’re developing in, I believe there’s great
benefit in understanding its spirit. While you may occasionally find you have a fight on
your hands however hard you try, if you attempt to make your code work in the way the
language designers intended, your experience will be a much more pleasant one.

1 I have a confession to make: I know very little about unsafe code and pointers in C#. I’ve simply never needed
xxi

to find out about them.
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about this book
This is a book about C# from version 2 onward—it’s as simple as that. I barely cover
C# 1 and only cover the .NET Framework libraries and Common Language Runtime
(CLR) when they’re related to the language. This is a deliberate decision, and the
result is a book quite different from most of the C# and .NET books I’ve seen.

 By assuming a reasonable amount of knowledge of C# 1, I avoid spending hun-
dreds of pages covering material that I think most people already understand. This
gives me room to expand on the details of later versions of C#, which is what I hope
you’re reading the book for. When I wrote the first edition of this book, even C# 2 was
relatively unknown to some readers. By now, almost all C# developers have some expe-
rience with the features introduced in C# 2, but I’ve still kept that material in this edi-
tion, as it’s so fundamental to what comes later.

Who should read this book?
This book is squarely aimed at developers who already know some C#. For absolute
maximum value, you’d know C# 1 well but know very little about later versions. There
aren’t many readers in that sweet spot any more, but I believe there are still lots of
developers who can benefit from digging deeper into C# 2 and 3, even if they’ve
already been using them for a while...and many developers haven’t yet used C# 4 or 5
to any extent.

 If you don’t know any C# at all, this probably isn’t the book for you. You could
struggle through, looking up aspects you’re not familiar with, but it wouldn’t be a very
efficient way of learning. You’d be better off starting with a different book, and then
gradually adding C# in Depth to the mix. There’s a wide variety of books that cover C#
xxiv
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from scratch, in many different styles. The C# in a Nutshell series (O’Reilly) has always
been good in this respect, and Essential C# 5.0 (Addison-Wesley Professional) is also a
good introduction.

 I’m not going to claim that reading this book will make you a fabulous coder.
There’s so much more to software engineering than knowing the syntax of the lan-
guage you happen to be using. I give some words of guidance, but ultimately there’s a
lot more gut instinct in development than most of us would like to admit. What I will
claim is that if you read and understand this book, you should feel comfortable with
C# and free to follow your instincts without too much apprehension. It’s not about
being able to write code that no one else will understand because it uses unknown cor-
ners of the language; it’s about being confident that you know the options available to
you, and know which path the C# idioms are encouraging you to follow.

Roadmap
The book’s structure is simple. There are five parts and three appendixes. The first
part serves as an introduction, including a refresher on topics in C# 1 that are impor-
tant for understanding later versions of the language, and that are often misunder-
stood. The second part covers the new features introduced in C# 2, the third part
covers C# 3, and so on.

 There are occasions when organizing the material this way means we'll come back
to a topic a couple of times—in particular, delegates are improved in C# 2 and then
again in C# 3—but there is method in my madness. I anticipate that a number of read-
ers will be using different versions for different projects; for example, you may be
using C# 4 at work, but experimenting with C# 5 at home. That means it’s useful to
clarify what is in which version. It also provides a feeling of context and evolution—it
shows how the language has developed over time.

 Chapter 1 sets the scene by taking a simple piece of C# 1 code and evolving it, see-
ing how later versions allow the source to become more readable and powerful. We'll
look at the historical context in which C# has grown, and the technical context in
which it operates as part of a complete platform; C# as a language builds on frame-
work libraries and a powerful runtime to turn abstraction into reality.

 Chapter 2 looks back at C# 1, and at three specific aspects: delegates, the type sys-
tem characteristics, and the differences between value types and reference types.
These topics are often understood “just well enough” by C# 1 developers, but as C#
has evolved and developed them significantly, a solid grounding is required in order
to make the most of the new features.

 Chapter 3 tackles the biggest feature of C# 2, and potentially the hardest to grasp:
generics. Methods and types can be written generically, with type parameters standing
in for real types that are specified in the calling code. Initially it’s as confusing as this
description makes it sound, but once you understand generics, you’ll wonder how you
survived without them.
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 If you’ve ever wanted to represent a null integer, chapter 4 is for you. It introduces
nullable types: a feature, built on generics, that takes advantage of support in the lan-
guage, runtime, and framework.

 Chapter 5 shows the improvements to delegates in C# 2. Until now, you may have
only used delegates for handling events such as button clicks. C# 2 makes it easier to
create delegates, and library support makes them more useful for situations other
than events.

 In chapter 6 we'll examine iterators, and the easy way to implement them in C# 2.
Few developers use iterator blocks, but as LINQ to Objects is built on iterators, they’ll
become more and more important. The lazy nature of their execution is also a key
part of LINQ.

 Chapter 7 shows a number of smaller features introduced in C# 2, each making life
a little more pleasant. The language designers have smoothed over a few rough places
in C# 1, allowing more flexible interaction with code generators, better support for
utility classes, more granular access to properties, and more.

 Chapter 8 once again looks at a few relatively simple features—but this time in C#
3. Almost all the new syntax is geared toward the common goal of LINQ, but the build-
ing blocks are also useful in their own right. With anonymous types, automatically
implemented properties, implicitly typed local variables, and greatly enhanced initial-
ization support, C# 3 gives a far richer language with which your code can express its
behavior.

 Chapter 9 looks at the first major topic of C# 3—lambda expressions. Not content
with the reasonably concise syntax discussed in chapter 5, the language designers have
made delegates even easier to create than in C# 2. Lambdas are capable of more—
they can be converted into expression trees, a powerful way of representing code as
data.

 In chapter 10 we’ll examine extension methods, which provide a way of fooling the
compiler into believing that methods declared in one type actually belong to another.
At first glance this appears to be a readability nightmare, but with careful consider-
ation it can be an extremely powerful feature—and one that’s vital to LINQ.

 Chapter 11 combines the previous three chapters in the form of query expres-
sions, a concise but powerful way of querying data. Initially we’ll concentrate on LINQ
to Objects, but you’ll see how the query expression pattern is applied in a way that
allows other data providers to plug in seamlessly.

 Chapter 12 is a quick tour of various different uses of LINQ. First we’ll look at the
benefits of query expressions combined with expression trees—how LINQ to SQL is
able to convert what appears to be normal C# into SQL statements. We’ll then move
on to see how libraries can be designed to mesh well with LINQ, taking LINQ to XML
as an example. Parallel LINQ and Reactive Extensions show two alternative
approaches to in-process querying, and the chapter closes with a discussion of how
you can extend LINQ to Objects with your own LINQ operators.
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 Coverage of C# 4 begins in chapter 13, where we’ll look at named arguments and
optional parameters, COM interop improvements, and generic variance. In some ways
these are very separate features, but named arguments and optional parameters con-
tribute to COM interop as well as the more specific abilities that are only available
when working with COM objects.

 Chapter 14 describes the single biggest feature in C# 4: dynamic typing. The ability
to bind members dynamically at execution time instead of statically at compile time is
a huge departure for C#, but it’s applied selectively—only code that involves a
dynamic value will be executed dynamically.

 Chapter 15 is all about asynchrony. C# 5 only contains one major feature—the abil-
ity to write asynchronous functions. This single feature is simultaneously brain-
bustingly complicated to understand thoroughly and awe-inspiringly elegant to use. At
long last, we can write asynchronous code that doesn’t read like spaghetti.

 We’ll wind down in chapter 16 with the remaining features of C# 5 (both of which
are tiny) and some thoughts about the future.

 The appendixes are all reference material. In appendix A, I cover the LINQ stan-
dard query operators, with some examples. Appendix B looks at the core generic col-
lection classes and interfaces. Appendix C provides a brief look at the different
versions of .NET, including the different flavors such as the Compact Framework and
Silverlight.

Terminology, typography, and downloads
Most of the terminology of the book is explained as it goes along, but there are a few
definitions that are worth highlighting here. I use C# 1, C# 2, C# 3, C# 4, and C# 5 in
a reasonably obvious manner—but you may see other books and websites referring to
C# 1.0, C# 2.0, C# 3.0, C# 4.0, and C# 5.0. The extra “.0” seems redundant to me,
which is why I’ve omitted it—I hope the meaning is clear.

 I’ve appropriated a pair of terms from a C# book by Mark Michaelis. To avoid the
confusion between runtime being an execution environment (as in “the Common Lan-
guage Runtime”) and a point in time (as in “overriding occurs at runtime”), Mark
uses execution time for the latter concept, usually in comparison with compile time. This
seems to me to be a thoroughly sensible idea, and one that I hope catches on in the
wider community. I’m doing my bit by following his example in this book.

 I frequently refer to “the language specification” or just “the specification”—unless
I indicate otherwise, this means the C# language specification. However, multiple ver-
sions of the specification are available, partly due to different versions of the language
itself and partly due to the standardization process. Any section numbers provided are
from the C# 5.0 language specification from Microsoft.

 This book contains numerous pieces of code, which appear in a fixed-width
font like this; output from the listings appears in the same way. Code annotations
accompany some listings, and at other times particular sections of the code are shown

in bold to highlight a change, improvement, or addition. Almost all of the code
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appears in snippet form, allowing it to stay compact but still runnable—within the
right environment. That environment is Snippy, a custom tool that is introduced in
section 1.8. Snippy is available for download, along with all of the code from the book
(in the form of snippets, full Visual Studio solutions, or more often both) from the
book’s website at csharpindepth.com, as well as from the publisher's website at man-
ning.com/CSharpinDepthThirdEdition.

Author Online and the C# in Depth website
Purchase of C# in Depth, Third Edition includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/CSharpinDepth-
ThirdEdition. This page provides information on how to get on the forum once you
are registered, what kind of help is available, and the rules of conduct on the forum.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

 In addition to Manning’s own website, I have set up a companion website for the
book at csharpindepth.com, containing information that didn’t quite fit into the
book, downloadable source code for all the listings in the book, and links to other
resources.

manning.com/CSharpinDepthThirdEdition
manning.com/CSharpinDepthThirdEdition
www.manning.com/CSharpinDepthThirdEdition
www.manning.com/CSharpinDepthThirdEdition


about the author
I’m not a typical C# developer, I think it’s fair to say. For the last five years, almost all
of my time working with C# has been for fun—effectively as a somewhat obsessive
hobby. At work, I’ve been writing server-side Java in Google London, and I can safely
claim that few things help you to appreciate new language features more than having
to code in a language that doesn’t have them, but is similar enough to remind you of
their absence.

 I’ve tried to keep in touch with what other developers find hard about C# by keep-
ing a careful eye on Stack Overflow, posting oddities to my blog, and occasionally talk-
ing about C# and related topics just about anywhere that will provide people to listen
to me. Additionally, I’m actively developing an open source .NET date and time API
called Noda Time (see  http://nodatime.org). In short, C# is still coursing through
my veins as strongly as ever.

 For all these oddities—and despite my ever-surprising micro-celebrity status due to
Stack Overflow—I’m a very ordinary developer in many other ways. I write plenty of
code that makes me grimace when I come back to it. My unit tests don’t always come
first...and sometimes they don’t even exist. I make off-by-one errors every so often.
The type inference section of the C# specification still confuses me, and there are
some uses of Java wildcards that make me want to have a little lie-down. I’m a deeply
flawed programmer.

 That’s the way it should be. For the next few hundred pages, I’ll try to pretend oth-
erwise: I’ll espouse best practices as if I always followed them myself, and frown on
dirty shortcuts as if I’d never dream of taking them. Don’t believe a word of it. The
truth of the matter is, I’m probably just like you. I happen to know a bit more about
how C# works, that’s all...and even that state of affairs will only last until you’ve fin-
xxix

ished the book.

http://nodatime.org
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The caption for the illustration on the cover of C# in Depth, Third Edition is “Musician.”
The illustration is taken from a collection of costumes of the Ottoman Empire pub-
lished on January 1, 1802, by William Miller of Old Bond Street, London. The title
page is missing from the collection and we have been unable to track it down to date.
The book’s table of contents identifies the figures in both English and French, and
each illustration bears the names of two artists who worked on it, both of whom would
no doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor didn't have on his person the substantial amount of cash
that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
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centuries ago‚ brought back to life by the pictures from this collection.



Part 1

Preparing for the journey

Every reader will come to this book with a different set of expectations and
a different level of experience. Are you an expert looking to fill some holes, how-
ever small, in your present knowledge? Perhaps you consider yourself an average
developer, with a bit of experience in using generics and lambda expressions,
but a desire to better understand how they work. Maybe you’re reasonably confi-
dent with C# 2 and 3 but have no experience with C# 4 or 5.

 As an author, I can’t make every reader the same—and I wouldn’t want to,
even if I could. But I hope that all readers have two things in common: the
desire for a deeper relationship with C# as a language, and at least a basic knowl-
edge of C# 1. If you can bring those elements to the party, I’ll provide the rest.

 The potentially huge range of skill levels is the main reason why this part of
the book exists. You may already know what to expect from later versions of C#—
or it could all be brand new to you. You could have a rock-solid understanding of
C# 1, or you might be rusty on some of the details—some of which will become
increasingly important as you learn about the later versions. By the end of part 1,
I won’t have leveled the playing field entirely, but you should be able to approach
the rest of the book with confidence and an idea of what’s coming later.

 In the first two chapters, we’ll look both forward and back. One of the key
themes of the book is evolution. Before introducing any feature into the lan-
guage, the C# design team carefully considers that feature in the context of
what’s already present and the general goals for the future. This brings a feeling
of consistency to the language even in the midst of change. To understand how
and why the language is evolving, you need to see where it’s come from and
where it’s going.



 Chapter 1 presents a bird’s-eye view of the rest of the book, taking a brief look at
some of the biggest features of C# beyond version 1. I’ll show a progression of code
from C# 1 onward, applying new features one by one until the code is almost unrecog-
nizable from its humble beginnings. We’ll also look at some of the terminology I’ll use
in the rest of the book, as well as the format for the sample code.

 Chapter 2 is heavily focused on C# 1. If you’re an expert in C# 1, you can skip this
chapter, but it does tackle some of the areas of C# 1 that tend to be misunderstood.
Rather than try to explain the whole of the language, the chapter concentrates on fea-
tures that are fundamental to the later versions of C#. From this solid base, you can
move on and look at C# 2 in part 2 of the book.



The changing face
of C# development
Do you know what I really like about dynamic languages such as Python, Ruby, and
Groovy? They suck away fluff from your code, leaving just the essence of it—the bits
that really do something. Tedious formality gives way to features such as generators,
lambda expressions, and list comprehensions.

 The interesting thing is that few of the features that tend to give dynamic lan-
guages their lightweight feel have anything to do with being dynamic. Some do, of
course—duck typing and some of the magic used in Active Record, for example—
but statically typed languages don’t have to be clumsy and heavyweight.

 Enter C#. In some ways, C# 1 could have been seen as a nicer version of the Java
language, circa 2001. The similarities were all too clear, but C# had a few extras:

This chapter covers
 An evolving example

 The composition of .NET

 Using the code in this book

 The C# language specification
3

properties as a first-class feature in the language, delegates and events, foreach
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loops, using statements, explicit method overriding, operator overloading, and cus-
tom value types, to name a few. Obviously, language preference is a personal issue, but
C# 1 definitely felt like a step up from Java when I first started using it.

 Since then, things have only gotten better. Each new version of C# has added sig-
nificant features to reduce developer angst, but always in a carefully considered way,
and with little backward incompatibility. Even before C# 4 gained the ability to use
dynamic typing where it’s genuinely useful, many features traditionally associated with
dynamic and functional languages had made it into C#, leading to code that’s easier
to write and maintain. Similarly, while the features around asynchrony in C# 5 aren’t
exactly the same as those in F#, it feels to me like there’s a definite influence.

 In this book, I’ll take you through those changes one by one, in enough detail to
make you feel comfortable with some of the miracles the C# compiler is now prepared
to perform on your behalf. All that comes later, though—in this chapter I’ll whiz
through as many features as I can, barely taking a breath. I’ll define what I mean when
I talk about C# as a language compared with .NET as a platform, and I’ll offer a few
important notes about the sample code for the rest of the book. Then we can dive into
the details.

 We won’t be looking at all the changes made to C# in this single chapter, but you’ll
see generics, properties with different access modifiers, nullable types, anonymous
methods, automatically implemented properties, enhanced collection initializers,
enhanced object initializers, lambda expressions, extension methods, implicit typing,
LINQ query expressions, named arguments, optional parameters, simpler COM
interop, dynamic typing, and asynchronous functions. These will carry us from C# 1
all the way up to the latest release, C# 5. Obviously that’s a lot to get through, so let’s
get started.

1.1 Starting with a simple data type
In this chapter I’ll let the C# compiler do amazing things without telling you how and
barely mentioning the what or the why. This is the only time that I won’t explain how
things work or try to go one step at a time. Quite the opposite, in fact—the plan is to
impress rather than educate. If you read this entire section without getting at least a
little excited about what C# can do, maybe this book isn’t for you. With any luck,
though, you’ll be eager to get to the details of how these magic tricks work, and that’s
what the rest of the book is for.

 The example I’ll use is contrived—it’s designed to pack as many new features into
as short a piece of code as possible. It’s also clichéd, but at least that makes it familiar.
Yes, it’s a product/name/price example, the e-commerce alternative to “hello, world.”
We’ll look at how various tasks can be achieved, and how, as we move forward in ver-
sions of C#, you can accomplish them more simply and elegantly than before. You
won’t see any of the benefits of C# 5 until right at the end, but don’t worry—that
doesn’t make it any less important.
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1.1.1 The Product type in C# 1

We’ll start off with a type representing a product, and then manipulate it. You won’t
see anything particularly impressive yet—just the encapsulation of a couple of proper-
ties. To make life simpler for demonstration purposes, this is also where we’ll create a
list of predefined products. 

 Listing 1.1 shows the type as it might be written in C# 1. We’ll then move on to see
how the code might be rewritten for each later version. This is the pattern we’ll follow
for each of the other pieces of code. Given that I’m writing this in 2013, it’s likely that
you’re already familiar with code that uses some of the features I’ll introduce, but it’s
worth looking back so you can see how far the language has come.

using System.Collections;
public class Product
{

string name;
public string Name { get { return name; } }

decimal price;
public decimal Price { get { return price; } }

public Product(string name, decimal price)
{

this.name = name;
this.price = price;

}

public static ArrayList GetSampleProducts()
{

ArrayList list = new ArrayList();
list.Add(new Product("West Side Story", 9.99m));
list.Add(new Product("Assassins", 14.99m));
list.Add(new Product("Frogs", 13.99m));
list.Add(new Product("Sweeney Todd", 10.99m));
return list;

}

public override string ToString()
{

return string.Format("{0}: {1}", name, price);
}

}

Nothing in listing 1.1 should be hard to understand—it’s just C# 1 code, after all.
There are three limitations that it demonstrates, though:

 An ArrayList has no compile-time information about what’s in it. You could
accidentally add a string to the list created in GetSampleProducts, and the com-
piler wouldn’t bat an eyelid.

 You’ve provided public getter properties, which means that if you wanted

Listing 1.1 The Product type (C# 1)
matching setters, they’d have to be public, too.
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 There’s a lot of fluff involved in creating the properties and variables—code
that complicates the simple task of encapsulating a string and a decimal.

Let’s see what C# 2 can do to improve matters. 

1.1.2 Strongly typed collections in C# 2

Our first set of changes (shown in the following listing) tackles the first two items
listed previously, including the most important change in C# 2: generics. The parts
that are new are in bold.

public class Product
{

string name;
public string Name
{

get { return name; }
private set { name = value; }

}

decimal price;
public decimal Price
{

get { return price; }
private set { price = value; }

}

public Product(string name, decimal price)
{

Name = name; 
      Price = price;

}

public static List<Product> GetSampleProducts()
{

List<Product> list = new List<Product>();
list.Add(new Product("West Side Story", 9.99m));
list.Add(new Product("Assassins", 14.99m));
list.Add(new Product("Frogs", 13.99m));
list.Add(new Product("Sweeney Todd", 10.99m));
return list;

}

public override string ToString()
{

return string.Format("{0}: {1}", name, price);
}

}

You now have properties with private setters (which you use in the constructor), and it
doesn’t take a genius to guess that List<Product> is telling the compiler that the list
contains products. Attempting to add a different type to the list would result in a com-

Listing 1.2 Strongly typed collections and private setters (C# 2)
piler error, and you also don’t need to cast the results when you fetch them from the list. 
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 The changes in C# 2 leave only one of the original three difficulties unanswered,
and C# 3 helps out there. 

1.1.3 Automatically implemented properties in C# 3

We’re starting off with some fairly tame features from C# 3. The automatically imple-
mented properties and simplified initialization shown in the following listing are rela-
tively trivial compared with lambda expressions and the like, but they can make code a
lot simpler.

using System.Collections.Generic;

class Product
{

public string Name { get; private set; }
public decimal Price { get; private set; }

public Product(string name, decimal price)
{

Name = name;
Price = price;

}

Product() {}

public static List<Product> GetSampleProducts()
{

return new List<Product> 
      {
   new Product { Name="West Side Story", Price = 9.99m },
   new Product { Name="Assassins", Price=14.99m },
   new Product { Name="Frogs", Price=13.99m },
   new Product { Name="Sweeney Todd", Price=10.99m}
      };

}

public override string ToString()
{

return string.Format("{0}: {1}", Name, Price);
}

}

Now the properties don’t have any code (or visible variables!) associated with them,
and you’re building the hardcoded list in a very different way. With no name and price
variables to access, you’re forced to use the properties everywhere in the class, improv-
ing consistency. You now have a private parameterless constructor for the sake of the
new property-based initialization. (This constructor is called for each item before the
properties are set.) 

 In this example, you could’ve removed the public constructor completely, but then
no outside code could’ve created other product instances. 

Listing 1.3 Automatically implemented properties and simpler initialization (C# 3)
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1.1.4 Named arguments in C# 4

For C# 4, we’ll go back to the original code when it comes to the properties and con-
structor, so that it’s fully immutable again. A type with only private setters can’t be pub-
licly mutated, but it can be clearer if it’s not privately mutable either.1 There’s no
shortcut for read-only properties, unfortunately, but C# 4 lets you specify argument
names for the constructor call, as shown in the following listing, which gives you the
clarity of C# 3 initializers without the mutability.

using System.Collections.Generic;
public class Product
{

readonly string name;
public string Name { get { return name; } }

readonly decimal price;
public decimal Price { get { return price; } }

public Product(string name, decimal price)
{

this.name = name;
this.price = price;

}

public static List<Product> GetSampleProducts()
{

return new List<Product>
{

new Product( name: "West Side Story", price: 9.99m),
new Product( name: "Assassins", price: 14.99m),
new Product( name: "Frogs", price: 13.99m),
new Product( name: "Sweeney Todd", price: 10.99m)

};
}

public override string ToString()
{

return string.Format("{0}: {1}", name, price);
}

}

The benefits of specifying the argument names explicitly are relatively minimal in this
particular example, but when a method or constructor has several parameters, it can
make the meaning of the code much clearer—particularly if they’re of the same type,
or if you’re passing in null for some arguments. You can choose when to use this
feature, of course, only specifying the names for arguments when it makes the code
easier to understand.

 Figure 1.1 summarizes how the Product type has evolved so far. I’ll include a simi-
lar diagram after each task, so you can see the pattern of how the evolution of C#

Listing 1.4 Named arguments for clear initialization code (C# 4)
1 The C# 1 code could’ve been immutable too—I only left it mutable to simplify the changes for C# 2 and 3.
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improves the code. You’ll notice that C# 5 is missing from all of the block diagrams;
that’s because the main feature of C# 5 (asynchronous functions) is aimed at an area
that really hasn’t evolved much in terms of language support. We’ll take a peek at it
before too long, though.

 So far, the changes are relatively minimal. In fact, the addition of generics (the
List<Product> syntax) is probably the most important part of C# 2, but you’ve only
seen part of its usefulness so far. There’s nothing to get the heart racing yet, but we’ve
only just started. Our next task is to print out the list of products in alphabetical order. 

1.2 Sorting and filtering
In this section, we won’t change the Product type at all—instead, we’ll take the sample
products and sort them by name, and then find the expensive ones. Neither of these
tasks is exactly difficult, but you’ll see how much simpler they become over time.

1.2.1 Sorting products by name

The easiest way to display a list in a particular order is to sort the list and then run
through it, displaying items. In .NET 1.1, this involved using ArrayList.Sort, and
optionally providing an IComparer implementation to specify a particular compari-
son. You could make the Product type implement IComparable, but that would only
allow you to define one sort order, and it’s not a stretch to imagine that you might
want to sort by price at some stage, as well as by name. 

 The following listing implements IComparer, and then sorts the list and displays it.

class ProductNameComparer : IComparer
{

public int Compare(object x, object y)
{

Product first = (Product)x;
Product second = (Product)y;

Listing 1.5 Sorting an ArrayList using IComparer (C# 1)

C# 1

Read-only properties
Weakly typed collections

C# 4
Named arguments for

clearer constructor
and method calls

C# 3
Automatically implemented

properties
Enhanced collection and

object initialization

C# 2

Private property setters
Strongly typed collections

Figure 1.1 Evolution of 
the Product type, 
showing greater 
encapsulation, stronger 
typing, and ease of 
initialization over time
return first.Name.CompareTo(second.Name);
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}
}
...
ArrayList products = Product.GetSampleProducts();
products.Sort(new ProductNameComparer());
foreach (Product product in products)
{

Console.WriteLine (product);
}

The first thing to spot in listing 1.5 is that you had to introduce an extra type to help
with the sorting. That’s not a disaster, but it’s a lot of code if you only want to sort by
name in one place. Next, look at the casts in the Compare method. Casts are a way of
telling the compiler that you know more information than it does, and that usually
means there’s a chance you’re wrong. If the ArrayList you returned from Get-
SampleProducts did contain a string, that’s where the code would go bang—where the
comparison tries to cast the string to a Product.

 You also have a cast in the code that displays the sorted list. It’s not obvious,
because the compiler puts it in automatically, but the foreach loop implicitly casts
each element of the list to Product. Again, that cast could fail at execution time, and
once more generics come to the rescue in C# 2. The following listing shows the previ-
ous code with the use of generics as the only change.

class ProductNameComparer : IComparer<Product>
{

public int Compare(Product x, Product y)
{

return x.Name.CompareTo(y.Name);
}

}
...
List<Product> products = Product.GetSampleProducts();
products.Sort(new ProductNameComparer());
foreach (Product product in products)
{

Console.WriteLine(product);
}

The code for the comparer in listing 1.6 is simpler because you’re given products to
start with. No casting is necessary. Similarly, the invisible cast in the foreach loop is
effectively gone now. The compiler still has to consider the conversion from the
source type of the sequence to the target type of the variable, but it knows that in this
case both types are Product, so it doesn’t need to emit any code for the conversion.

 That’s an improvement, but it’d be nice if you could sort the products by simply
specifying the comparison to make, without needing to implement an interface to do
so. The following listing shows how to do precisely this, telling the Sort method how
to compare two products using a delegate.

Listing 1.6 Sorting a List<Product> using IComparer<Product> (C# 2)
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List<Product> products = Product.GetSampleProducts();

products.Sort(delegate(Product x, Product y)
   { return x.Name.CompareTo(y.Name); }
);
foreach (Product product in products)
{

Console.WriteLine(product);
}

Behold the lack of the ProductNameComparer type. The statement in bold font creates
a delegate instance, which you provide to the Sort method in order to perform the
comparisons. You’ll learn more about this feature (anonymous methods) in chapter 5. 

 You’ve now fixed all the problems identified in the C# 1 version. That doesn’t
mean that C# 3 can’t do better, though. First, you’ll replace the anonymous method
with an even more compact way of creating a delegate instance, as shown in the fol-
lowing listing.

List<Product> products = Product.GetSampleProducts();
products.Sort((x, y) => x.Name.CompareTo(y.Name));
foreach (Product product in products)
{

Console.WriteLine(product);
}

You’ve gained even more strange syntax (a lambda expression), which still creates a
Comparison<Product> delegate, just as listing 1.7 did, but this time with less fuss. You
didn’t have to use the delegate keyword to introduce it, or even specify the types of
the parameters. 

 There’s more, though: with C# 3, you can easily print out the names in order with-
out modifying the original list of products. The next listing shows this using the
OrderBy method.

List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.OrderBy(p => p.Name) )
{

Console.WriteLine (product);
}

In this listing, you appear to be calling an OrderBy method on the list, but if you look
in MSDN, you’ll see that it doesn’t even exist in List<Product>. You’re able to call it
due to the presence of an extension method, which you’ll see in more detail in chapter
10. You’re not actually sorting the list “in place” anymore, just retrieving the contents

Listing 1.7 Sorting a List<Product> using Comparison<Product> (C# 2)

Listing 1.8 Sorting using Comparison<Product> from a lambda expression (C# 3)

Listing 1.9 Ordering a List<Product> using an extension method (C# 3)
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of the list in a particular order. Sometimes you’ll need to change the actual list; some-
times an ordering without any other side effects is better. 

 The important point is that this code is much more compact and readable (once
you understand the syntax, of course). We wanted the list ordered by name, and that’s
exactly what the code says. It doesn’t say to sort by comparing the name of one prod-
uct with the name of another, like the C# 2 code did, or to sort by using an instance of
another type that knows how to compare one product with another. It just says to
order by name. This simplicity of expression is one of the key benefits of C# 3. When
the individual pieces of data querying and manipulation are so simple, larger transfor-
mations can remain compact and readable in one piece of code. That, in turn,
encourages a more data-centric way of looking at the world.

 You’ve seen more of the power of C# 2 and 3 in this section, with a lot of (as yet)
unexplained syntax, but even without understanding the details you can see the prog-
ress toward clearer, simpler code. Figure 1.2 shows that evolution.

 That’s it for sorting.2 Let’s do a different form of data manipulation now—querying. 

1.2.2 Querying collections

Your next task is to find all the elements of the list that match a certain criterion—in
particular, those with a price greater than $10. The following listing shows how, in C# 1,
you need to loop around, testing each element and printing it out when appropriate.

ArrayList products = Product.GetSampleProducts();
foreach (Product product in products)
{

if (product.Price > 10m)
{

Console.WriteLine(product);
}

}

This code is not difficult to understand. But it’s worth bearing in mind how inter-
twined the three tasks are—looping with foreach, testing the criterion with if, and

2 C# 4 does provide one feature that can be relevant when sorting, called generic variance, but giving an example

Listing 1.10 Looping, testing, printing out (C# 1)

C# 2
Strongly typed comparator

Delegate comparisons
Anonymous methods

C# 3
Lambda expressions
Extension methods

Option of leaving list unsorted

C# 1
Weakly typed comparator
No delegate sorting option

Figure 1.2 Features involved in making sorting easier in C# 2 and 3
here would require too much explanation. You can find the details near the end of chapter 13.
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then displaying the product with Console.WriteLine. The dependency is obvious
because of the nesting. 

 The following listing demonstrates how C# 2 lets you flatten things out a bit.

List<Product> products = Product.GetSampleProducts(); 

Predicate<Product> test = delegate(Product p) { return p.Price > 10m; };
List<Product> matches = products.FindAll(test);

Action<Product> print = Console.WriteLine;
matches.ForEach(print);

The test variable is initialized using the anonymous method feature you saw in the
previous section. The print variable initialization uses another new C# 2 feature
called method group conversions that makes it easier to create delegates from existing
methods.

 I’m not going to claim that this code is simpler than the C# 1 code, but it is a lot
more powerful.3

 In particular, the technique of separating the two concerns like this makes it very
easy to change the condition you’re testing for and the action you take on each of the
matches independently. The delegate variables involved (test and print) could be
passed into a method, and that same method could end up testing radically different
conditions and taking radically different actions. Of course, you could put all the test-
ing and printing into one statement, as shown in the following listing.

List<Product> products = Product.GetSampleProducts();
products.FindAll(delegate(Product p) { return p.Price > 10;})
        .ForEach(Console.WriteLine);

In some ways, this version is better, but the delegate(Product p) is getting in the
way, as are the braces. They’re adding noise to the code, which hurts readability. I still
prefer the C# 1 version in cases where I only ever want to use the same test and per-
form the same action. (It may sound obvious, but it’s worth remembering that there’s
nothing stopping you from using the C# 1 code with a later compiler version. You
wouldn’t use a bulldozer to plant tulip bulbs, which is the kind of overkill used in the
last listing.) 

 The next listing shows how C# 3 improves matters dramatically by removing a lot
of the fluff surrounding the actual logic of the delegate.

Listing 1.11 Separating testing from printing (C# 2)

3 In some ways, this is cheating. You could’ve defined appropriate delegates in C# 1 and called them within the

Listing 1.12 Separating testing from printing redux (C# 2)
loop. The FindAll and ForEach methods in .NET 2.0 just encourage you to consider separation of concerns.
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List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.Where(p => p.Price > 10))
{

Console.WriteLine(product);
}

The combination of the lambda expression putting the test in just the right place and
a well-named method means you can almost read the code out loud and understand it
without thinking. You still have the flexibility of C# 2—the argument to Where could
come from a variable, and you could use an Action<Product> instead of the hard-
coded Console.WriteLine call if you wanted to.

 This task has emphasized what you already knew from sorting—anonymous meth-
ods make writing a delegate simple, and lambda expressions are even more concise.
In both cases, that brevity means that you can include the query or sort operation
inside the first part of the foreach loop without losing clarity. 

 Figure 1.3 summarizes the changes we’ve just looked at. C# 4 doesn’t offer any-
thing to simplify this task any further.

Now that you’ve displayed the filtered list, let’s consider a change to your initial
assumptions about the data. What happens if you don’t always know the price of a
product? How can you cope with that within the Product class?

1.3 Handling an absence of data
We’ll look at two different forms of missing data. First we’ll deal with the scenario
where you genuinely don’t have the information, and then see how you can actively
remove information from method calls, using default values.

1.3.1 Representing an unknown price

I won’t present much code this time, but I’m sure it’ll be a familiar problem to you,
especially if you’ve done a lot of work with databases. Imagine your list of products
contains not just products on sale right now, but ones that aren’t available yet. In some
cases, you may not know the price. If decimal were a reference type, you could just use
null to represent the unknown price, but since it’s a value type, you can’t. How would

Listing 1.13 Testing with a lambda expression (C# 3)

C# 2 
Separate condition from

action invoked.
Anonymous methods

make delegates simple.

C# 3  
Lambda expressions
make the condition
even easier to read.

C# 1
Strong coupling between

condition and action.
Both are hardcoded.

Figure 1.3 Anonymous methods and lambda expressions in C# 2 and 3 aid separation of 
concerns and readability.
you represent this in C# 1? 
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 There are three common alternatives:

 Create a reference type wrapper around decimal.
 Maintain a separate Boolean flag indicating whether the price is known.
 Use a “magic value” (decimal.MinValue, for example) to represent the

unknown price.

I hope you’ll agree that none of these holds much appeal. Time for a little magic: you
can solve the problem by adding a single character in the variable and property decla-
rations. .NET 2.0 makes matters a lot simpler by introducing the Nullable<T> struc-
ture, and C# 2 provides some additional syntactic sugar that lets you change the
property declaration to this block of code:

decimal? price;
public decimal? Price
{

get { return price; }
private set { price = value; }

}

The constructor parameter changes to decimal?, and then you can pass in null as the
argument, or say Price = null; within the class. The meaning of the null changes
from “a special reference that doesn’t refer to any object” to “a special value of any
nullable type representing the absence of other data,” where all reference types and
all Nullable<T>-based types count as nullable types. 

 That’s a lot more expressive than any of the other solutions. The rest of the code
works as is—a product with an unknown price will be considered to be less expensive
than $10, due to the way nullable values are handled in greater-than comparisons. To
check whether a price is known, you can compare it with null or use the HasValue
property, so to show all the products with unknown prices in C# 3, you’d write the fol-
lowing code.

List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.Where(p => p.Price == null))
{

Console.WriteLine(product.Name);
}

The C# 2 code would be similar to that in listing 1.12, but you’d need to check for
null in the anonymous method:

List<Product> products = Product.GetSampleProducts();
products.FindAll(delegate(Product p) { return p.Price == null; })

.ForEach(Console.WriteLine);

C# 3 doesn’t offer any changes here, but C# 4 has a feature that’s at least tangentially
related. 

Listing 1.14 Displaying products with an unknown price (C# 3)
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1.3.2 Optional parameters and default values

Sometimes you don’t want to tell a method everything it needs to know, such as when
you almost always use the same value for a particular parameter. Traditionally the
solution has been to overload the method in question, but C# 4 introduced optional
parameters to make this simpler. 

 In the C# 4 version of the Product type, you have a constructor that takes the name
and the price. You can make the price a nullable decimal, just as in C# 2 and 3, but
let’s suppose that most of the products don’t have prices. It would be nice to be able to
initialize a product like this:

Product p = new Product("Unreleased product");

Prior to C# 4, you would’ve had to introduce a new overload in the Product construc-
tor for this purpose. C# 4 allows you to declare a default value (in this case, null) for
the price parameter:

public Product(string name, decimal? price = null)
{

this.name = name;
this.price = price;

}

You always have to specify a constant value when you declare an optional parameter. It
doesn’t have to be null; that just happens to be the appropriate default in this situa-
tion. The requirement that the default value is a constant applies to any type of
parameter, although for reference types other than strings you are limited to null as
the only constant value available. 

 Figure 1.4 summarizes the evolution we’ve looked at across different versions of C#.

So far the features have been useful, but perhaps nothing to write home about. Next
we’ll look at something rather more exciting: LINQ. 

1.4 Introducing LINQ
LINQ (Language-Integrated Query) is at the heart of the changes in C# 3. As its name
suggests, LINQ is all about queries—the aim is to make it easy to write queries against
multiple data sources with consistent syntax and features, in a readable and compos-
able fashion.

C# 2 / 3
Nullable types make the

"extra work" option simple,
and syntactic sugar improves

matters even further.

C# 1
Choice between extra work
maintaining a flag, changing
to reference type semantics,
or the hack of a magic value.

C# 4  

Optional parameters 
allow simple defaulting.

Figure 1.4 Options for working with missing data
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 Whereas the features in C# 2 are arguably more about fixing annoyances in C# 1
than setting the world on fire, almost everything in C# 3 builds toward LINQ, and the
result is rather special. I’ve seen features in other languages that tackle some of the
same areas as LINQ, but nothing quite so well-rounded and flexible.

1.4.1 Query expressions and in-process queries

If you’ve seen any LINQ code before, you’ve probably seen query expressions that allow
you to use a declarative style to create queries on various data sources. The reason
none of this chapter’s examples have used query expressions so far is that the exam-
ples have all been simpler without using the extra syntax. That’s not to say you couldn’t
use it anyway—the following listing, for example, is equivalent to listing 1.13.

List<Product> products = Product.GetSampleProducts();
var filtered = from Product p in products

where p.Price > 10
select p;

foreach (Product product in filtered)
{

Console.WriteLine(product);
}

Personally, I find the earlier listing easier to read—the only benefit to this query
expression version is that the where clause is simpler. I’ve snuck in one extra feature
here—implicitly typed local variables, which are declared using the var contextual key-
word. These allow the compiler to infer the type of a variable from the value that it’s
initially assigned—in this case, the type of filtered is IEnumerable<Product>. I’ll use
var fairly extensively in the rest of the examples in this chapter; it’s particularly useful
in books, where space in listings is at a premium.

 But if query expressions are no good, why does everyone make such a fuss about
them, and about LINQ in general? The first answer is that although query expressions
aren’t particularly beneficial for simple tasks, they’re very good for more complicated
situations that would be hard to read if written out in the equivalent method calls
(and would be fiendish in C# 1 or 2). Let’s make things a little harder by introducing
another type—Supplier.

 Each supplier has a Name (string) and a SupplierID (int). I’ve also added
SupplierID as a property in Product and adapted the sample data appropriately.
Admittedly that’s not a very object-oriented way of giving each product a supplier—it’s
much closer to how the data would be represented in a database. It does make this
particular feature easier to demonstrate for now, but you’ll see in chapter 12 that
LINQ allows you to use a more natural model too.

 Now let’s look at the code (listing 1.16) that joins the sample products with the
sample suppliers (obviously based on the supplier ID), applies the same price filter as
before to the products, sorts by supplier name and then product name, and prints out

Listing 1.15 First steps with query expressions: filtering a collection
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the name of both the supplier and the product for each match. That was a mouthful,
and in earlier versions of C# it would’ve been a nightmare to implement. In LINQ, it’s
almost trivial.

List<Product> products = Product.GetSampleProducts();
List<Supplier> suppliers = Supplier.GetSampleSuppliers();
var filtered = from p in products

join s in suppliers
on p.SupplierID equals s.SupplierID

where p.Price > 10
orderby s.Name, p.Name

         select new { SupplierName = s.Name, ProductName = p.Name };
foreach (var v in filtered)
{

Console.WriteLine("Supplier={0}; Product={1}",
v.SupplierName, v.ProductName);

}

You might have noticed that this looks remarkably like SQL. Indeed, the reaction of
many people on first hearing about LINQ (but before examining it closely) is to reject
it as merely trying to put SQL into the language for the sake of talking to databases.
Fortunately, LINQ has borrowed the syntax and some ideas from SQL, but as you’ve
seen, you needn’t be anywhere near a database in order to use it. None of the code
you’ve seen so far has touched a database at all. Indeed, you could be getting data
from any number of sources: XML, for example. 

1.4.2 Querying XML

Suppose that instead of hardcoding your suppliers and products, you’d used the fol-
lowing XML file:

<?xml version="1.0"?>
<Data>

<Products>
<Product Name="West Side Story" Price="9.99" SupplierID="1" />
<Product Name="Assassins" Price="14.99" SupplierID="2" />
<Product Name="Frogs" Price="13.99" SupplierID="1" />
<Product Name="Sweeney Todd" Price="10.99" SupplierID="3" />

</Products>

<Suppliers>
<Supplier Name="Solely Sondheim" SupplierID="1" />
<Supplier Name="CD-by-CD-by-Sondheim" SupplierID="2" />
<Supplier Name="Barbershop CDs" SupplierID="3" />

</Suppliers>
</Data>

The file is simple enough, but what’s the best way of extracting the data from it? How
do you query it? Join on it? Surely it’s going to be somewhat harder than what you did
in listing 1.16, right? The following listing shows how much work you have to do in

Listing 1.16 Joining, filtering, ordering, and projecting (C# 3)
LINQ to XML.
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XDocument doc = XDocument.Load("data.xml");
var filtered = from p in doc.Descendants("Product")

join s in doc.Descendants("Supplier")
on (int)p.Attribute("SupplierID")
equals (int)s.Attribute("SupplierID")

where (decimal)p.Attribute("Price") > 10
orderby (string)s.Attribute("Name"),

(string)p.Attribute("Name")
select new

              {
                   SupplierName = (string)s.Attribute("Name"),

ProductName = (string)p.Attribute("Name")
              };
foreach (var v in filtered)
{

Console.WriteLine("Supplier={0}; Product={1}",
v.SupplierName, v.ProductName);

}

This approach isn’t quite as straightforward, because you need to tell the system how
it should understand the data (in terms of what attributes should be used as what
types), but it’s not far off. In particular, there’s an obvious relationship between each
part of the two listings. If it weren’t for the line-length limitations of books, you’d see
an exact line-by-line correspondence between the two queries.

 Impressed yet? Not quite convinced? Let’s put the data where it’s much more likely
to be—in a database. 

1.4.3 LINQ to SQL

There’s some work involved in letting LINQ to SQL know what to expect in what table,
but it’s all fairly straightforward and much of it can be automated. We’ll skip straight
to the querying code, which is shown in the following listing. If you want to see the
details of LinqDemoDataContext, they’re all in the downloadable source code.

using (LinqDemoDataContext db = new LinqDemoDataContext())
{
var filtered = from p in db.Products

join s in db.Suppliers
on p.SupplierID equals s.SupplierID

where p.Price > 10
orderby s.Name, p.Name
select new { SupplierName = s.Name, ProductName = p.Name };

foreach (var v in filtered)
{

Console.WriteLine("Supplier={0}; Product={1}",
v.SupplierName, v.ProductName);

}

Listing 1.17 Complex processing of an XML file with LINQ to XML (C# 3)

Listing 1.18 Applying a query expression to a SQL database (C# 3)
}
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By now, this should be looking incredibly familiar. Everything below the join line is
cut and pasted directly from listing 1.16 with no changes. 

 That’s impressive enough, but if you’re performance-conscious, you may be won-
dering why you’d want to pull down all the data from the database and then apply
these .NET queries and orderings. Why not get the database to do it? That’s what it’s
good at, isn’t it? Well, indeed—and that’s exactly what LINQ to SQL does. The code in
listing 1.18 issues a database request, which is basically the query translated into SQL.
Even though you’ve expressed the query in C# code, it’s been executed as SQL.

 You’ll see later that there’s a more relation-oriented way of approaching this kind
of join when the schema and the entities know about the relationship between suppli-
ers and products. The result is the same, though, and it shows just how similar LINQ to
Objects (the in-memory LINQ operating on collections) and LINQ to SQL can be.

LINQ is extremely flexible—you can write your own provider to talk to a web ser-
vice or translate a query into your own specific representation. In chapter 13, we’ll
look at how broad the term LINQ really is, and how it can go beyond what you might
expect in terms of querying collections. 

1.5 COM and dynamic typing
Next, I’d like to demonstrate some features that are specific to C# 4. Whereas LINQ
was the major focus of C# 3, interoperability was the biggest theme in C# 4. This
includes working with both the old technology of COM and also the brave new world
of dynamic languages executing on the Dynamic Language Runtime (DLR). We’ll start
by exporting the product list to an Excel spreadsheet.

1.5.1 Simplifying COM interoperability

There are various ways of making data available to Excel, but using COM to control it
gives you the most power and flexibility. Unfortunately, previous incarnations of C#
made it quite difficult to work with COM; VB had much better support. C# 4 largely
rectifies that situation. 

 The following listing shows some code to save your data to a new spreadsheet.

var app = new Application { Visible = false };
Workbook workbook = app.Workbooks.Add();
Worksheet worksheet = app.ActiveSheet;
int row = 1;
foreach (var product in Product.GetSampleProducts()

.Where(p => p.Price != null))
{

worksheet.Cells[row, 1].Value = product.Name;
worksheet.Cells[row, 2].Value = product.Price;
row++;

}
workbook.SaveAs(Filename: "demo.xls",

FileFormat: XlFileFormat.xlWorkbookNormal);

Listing 1.19 Saving data to Excel using COM (C# 4)
app.Application.Quit();
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This may not be quite as nice as you’d like, but it’s a lot better than it would’ve been
using earlier versions of C#. In fact, you already know about some of the C# 4 fea-
tures shown here—but there are a couple of others that aren’t so obvious. Here’s the
full list:

 The SaveAs call uses named arguments.
 Various calls omit arguments for optional parameters—in particular, SaveAs

would normally have an extra 10 arguments!
 C# 4 can embed the relevant parts of the primary interop assembly (PIA) into the

calling code, so you no longer need to deploy the PIA separately.
 In C# 3, the assignment to worksheet would fail without a cast, because the type

of the ActiveSheet property is represented as object. When using the embed-
ded PIA feature, the type of ActiveSheet becomes dynamic, which leads to an
entirely different feature.

Additionally, C# 4 supports named indexers when working with COM—a feature not
demonstrated in this example.

 I’ve already mentioned the final feature: dynamic typing in C# using the dynamic
type. 

1.5.2 Interoperating with a dynamic language

Dynamic typing is such a big topic that the entirety of chapter 14 is dedicated to it. I’ll
just show you one small example of what it can do here. 

 Suppose your products aren’t stored in a database, or in XML, or in memory.
They’re accessible via a web service of sorts, but you only have Python code to access
it, and that code uses the dynamic nature of Python to build results without declaring
a type containing all the properties you need to access on each result. Instead, the
results let you ask for any property, and try to work out what you mean at execution
time. In a language like Python, there’s nothing unusual about that. But how can you
access your results from C#?

 The answer comes in the form of dynamic—a new type4 that the C# compiler
allows you to use dynamically. If an expression is of type dynamic, you can call meth-
ods on it, access properties, pass it around as a method argument, and so on—and
most of the normal binding process happens at execution time instead of compile
time. You can implicitly convert a value from dynamic to any other type (which is why
the worksheet cast in listing 1.19 worked) and do all kinds of other fun stuff.

 This behavior can also be useful even within pure C# code, with no interop
involved, but it’s fun to see it working with other languages. The following listing
shows how you can get the list of products from IronPython and print it out. This
includes all the setup code to run the Python code in the same process.
4 Sort of, anyway. It’s a type as far as the C# compiler is concerned, but the CLR doesn’t know anything about it.
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ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.ExecuteFile("FindProducts.py");
dynamic products = scope.GetVariable("products");
foreach (dynamic product in products)
{

Console.WriteLine("{0}: {1}", product.ProductName, product.Price);
}

Both products and product are declared to be dynamic, so the compiler is happy to
let you iterate over the list of products and print out the properties, even though it
doesn’t know whether it’ll work. If you make a typo, using product.Name instead of
product.ProductName, for example, that would only show up at execution time.

 This is completely contrary to the rest of C#, which is statically typed. But dynamic
typing only comes into play when expressions with a type of dynamic are involved;
most C# code is likely to remain statically typed throughout. 

1.6 Writing asynchronous code without the heartache
Finally you get to see C# 5’s big feature: asynchronous functions, which allow you to
pause code execution without blocking a thread.

 This topic is big—really big—but I’ll give you just a snippet for now. As I’m sure
you’re aware, there are two golden rules when it comes to threading in Windows
Forms: you mustn’t block the UI thread, and you mustn’t access UI elements on any
other thread, except in a few well-specified ways. The following listing shows a single
method that handles a button click in a Windows Forms application and displays
information about a product, given its ID.

private async void CheckProduct(object sender, EventArgs e)
{

try
{

productCheckButton.Enabled = false;
string id = idInput.Text;

   Task<Product> productLookup = directory.LookupProductAsync(id);
  Task<int> stockLookup = warehouse.LookupStockLevelAsync(id);
  Product product = await productLookup;
  if (product == null)
  {
   return;
   }

nameValue.Text = product.Name;
  priceValue.Text = product.Price.ToString("c");

  int stock = await stockLookup;
  stockValue.Text = stock.ToString();

Listing 1.20 Running IronPython and extracting properties dynamically (C# 4)

Listing 1.21 Displaying products in Windows Forms using an asynchronous function
  }
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finally
  {

productCheckButton.Enabled = true;
}

}

The full method is a little longer than the one shown in listing 1.22, displaying status
messages and clearing the results at the start, but this listing contains all the important
parts. The new parts of syntax are in bold—the method has the new async modifier,
and there are two await expressions. 

 If you squint and ignore those for the moment, you can probably understand the
general flow of the code. It starts off performing lookups on both the product direc-
tory and warehouse to find out the product details and current stock. The method
then waits until it has the product information, and quits if the directory has no entry
for the given ID. Otherwise, it fills in the UI elements for the name and price, and
then waits to get the stock information, and displays that too.

 Both the product and stock lookups are asynchronous—they could be database
operations or web service calls. It doesn’t matter—when you await the results, you’re
not actually blocking the UI thread, even though all the code in the method runs on
that thread. When the results come back, the method continues from where it left off.
The example also demonstrates that normal flow control (try/finally) operates
exactly as you’d expect it to. The really surprising thing about this method is that it
has managed to achieve exactly the kind of asynchrony you want without any of the
normal messing around starting other threads or BackgroundWorkers, calling Control
.BeginInvoke, or attaching callbacks to asynchronous events. Of course you still need
to think—asynchrony doesn’t become easy using async/await, but it becomes less
tedious, with far less boilerplate code to distract you from the inherent complexity
you’re trying to control.

 Are you dizzy yet? Relax, I’ll slow down considerably for the rest of the book. In
particular, I’ll explain some of the corner cases, going into more detail about why vari-
ous features were introduced, and giving some guidance as to when it’s appropriate to
use them.

 So far I’ve been showing you features of C#. Some of these features require library
assistance, and some of them require runtime assistance. I’ll say this sort of thing a lot,
so let’s clear up what I mean. 

1.7 Dissecting the .NET platform
When it was originally introduced, .NET was used as a catchall term for a vast range of
technologies coming from Microsoft. For instance, Windows Live ID was called .NET
Passport, despite there being no clear relationship between that and what you cur-
rently know as .NET. Fortunately, things have calmed down somewhat since then. In
this section, we’ll look at the various parts of .NET.
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 In several places in this book, I’ll refer to three different kinds of features: features
of C# as a language, features of the runtime that provides the “engine,” if you will, and
features of the .NET framework libraries. This book is heavily focused on the language of
C#, and I’ll generally only discuss runtime and framework features when they relate to
features of C# itself. Often features will overlap, but it’s important to understand
where the boundaries lie.

1.7.1 C#, the language

The language of C# is defined by its specification, which describes the format of C#
source code, including both syntax and behavior. It doesn’t describe the platform that
the compiler output will run on, beyond a few key points where the two interact. For
instance, the C# language requires a type called System.IDisposable, which contains
a method called Dispose. These are required in order to define the using statement.
Likewise, the platform needs to be able to support (in one form or another) both
value types and reference types, along with garbage collection.

 In theory, any platform that supports the required features could have a C# compiler
targeting it. For example, a C# compiler could legitimately produce output in a form
other than the Intermediate Language (IL), which is the typical output at the time of this
writing. A runtime could interpret the output of a C# compiler, or convert it all to native
code in one step rather than JIT-compiling it. Though these options are relatively
uncommon, they do exist in the wild; for example, the Micro Framework uses an inter-
preter, as can Mono (http://mono-project.net). At the other end of the spectrum,
ahead-of-time compilation is used by NGen and by Xamarin.iOS (http://xamarin
.com/ios)—a platform for building applications for the iPhone and other iOS devices. 

1.7.2 Runtime

The runtime aspect of the .NET platform is the relatively small amount of code that’s
responsible for making sure that programs written in IL execute according to the Com-
mon Language Infrastructure (CLI) specification (ECMA-335 and ISO/IEC 23271), parti-
tions I to III. The runtime part of the CLI is called the Common Language Runtime (CLR).
When I refer to the CLR in the rest of the book, I mean Microsoft’s implementation.

 Some elements of the C# language never appear at the runtime level, but others
cross the divide. For instance, enumerators aren’t defined at a runtime level, and nei-
ther is any particular meaning attached to the IDisposable interface, but arrays and
delegates are important to the runtime. 

1.7.3 Framework libraries

Libraries provide code that’s available to your programs. The framework libraries in
.NET are largely built as IL themselves, with native code used only where necessary.
This is a mark of the strength of the runtime: your own code isn’t expected to be a
second-class citizen—it can provide the same kind of power and performance as the

http://mono-project.net
http://xamarin.com/ios
http://xamarin.com/ios
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libraries it utilizes. The amount of code in the libraries is much greater than that of
the runtime, in the same way that there’s much more to a car than the engine.

 The framework libraries are partially standardized. Partition IV of the CLI specifi-
cation provides a number of different profiles (compact and kernel) and libraries. Parti-
tion IV comes in two parts—a general textual description of the libraries identifying,
among other things, which libraries are required within which profiles, and another
part containing the details of the libraries themselves in XML format. This is the same
form of documentation produced when you use XML comments within C#.

 There’s much within .NET that’s not within the base libraries. If you write a pro-
gram that only uses libraries from the specification, and uses them correctly, you
should find that your code works flawlessly on any implementation—Mono, .NET, or
anything else. But in practice, almost any program of any size will use libraries that
aren’t standardized—Windows Forms or ASP.NET, for instance. The Mono project has
its own libraries that aren’t part of .NET, such as GTK#, and it implements many of the
nonstandardized libraries.

 The term .NET refers to the combination of the runtime and libraries provided by
Microsoft, and it also includes compilers for C# and VB.NET. It can be seen as a whole
development platform built on top of Windows. Each aspect of .NET is versioned sepa-
rately, which can be a source of confusion. Appendix C gives a quick rundown of
which version of what came out when and with what features.

 If that’s all clear, I have one last bit of housekeeping to go through before we really
start diving into C#. 

1.8 Making your code super awesome
I apologize for the misleading heading. This section (in itself) will not make your code
super awesome. It won’t even make it refreshingly minty. It will help you make the
most of this book, though—and that’s why I wanted to make sure you actually read it.
There’s more of this sort of thing in the front matter (the bit before page 1), but I
know that many readers skip over that, heading straight for the meat of the book. I
can understand that, so I’ll make this as quick as possible.

1.8.1 Presenting full programs as snippets

One of the challenges when writing a book about a computer language (other than
scripting languages) is that complete programs—ones that the reader can compile
and run with no source code other than what’s presented—get long pretty quickly. I
wanted to get around this, to provide you with code that you could easily type in and
experiment with. I believe that actually trying something is a much better way of learn-
ing than just reading about it.

 With the right assembly references and the right using directives, you can accom-
plish a lot with a fairly short amount of C# code, but the killer is the fluff involved in
writing those using directives, declaring a class, and declaring a Main method before

you’ve written the first line of useful code. My examples are mostly in the form of
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snippets, which ignore the fluff that gets in the way of simple programs, concentrat-
ing on the important parts. The snippets can be run directly in a small tool I’ve
built, called Snippy.

 If a snippet doesn’t contain an ellipsis (...), then all of the code should be consid-
ered to be the body of the Main method of a program. If there is an ellipsis, then
everything before it is treated as declarations of methods and nested types, and every-
thing after the ellipsis goes in the Main method. For example, consider this snippet:

static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}
...
Console.WriteLine(Reverse("dlrow olleH"));

This is expanded by Snippy into the following:

using System;
public class Snippet
{

static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}

[STAThread]
static void Main()
{

Console.WriteLine(Reverse("dlrow olleH"));
}

}

In reality, Snippy includes far more using directives, but the expanded version was
already getting long. Note that the containing class will always be called Snippet, and
any types declared within the snippet will be nested within that class.

 There are more details about how to use Snippy on the book’s website (http://
mng.bz/Lh82), along with all the examples as both snippets and expanded versions
in Visual Studio solutions. Additionally, there’s support for LINQPad (http://
www.linqpad.net)—a similar tool developed by Joe Albahari, with particularly helpful
features for exploring LINQ.

 Next, let’s look at what’s wrong with the code we’ve just seen. 

1.8.2 Didactic code isn’t production code

It’d be lovely if you could take all the examples from this book and use them directly
in your own applications with no further thought involved…but I strongly suggest you

don’t. Most examples are presented to demonstrate a specific point—and that’s usu-

http://mng.bz/Lh82
http://mng.bz/Lh82
http://www.linqpad.net
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ally the limit of the intent. Most snippets don’t include argument validation, access
modifiers, unit tests, or documentation. They may also fail when used outside their
intended context. 

 For example, let’s consider the body of the method previously shown for reversing
a string. I use this code several times in the course of the book:

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

Leaving aside argument validation, this succeeds in reversing the sequence of UTF-16
code points within a string, but in some cases that’s not good enough. For example, if
a single displayed glyph is composed of an e followed by a combining character repre-
senting an acute accent, you don’t want to switch the sequence of the code points; the
accent will end up on the wrong character. Or suppose your string contains a charac-
ter outside the basic multilingual plane, formed from a surrogate pair—reordering
the code points will lead to a string that’s effectively invalid UTF-16. Fixing these prob-
lems would lead to much more complicated code, distracting from the point it’s
meant to be demonstrating.

 You’re welcome to use the code from the book, but please bear this section in
mind if you do so—it’d be much better to take inspiration from it than to copy it ver-
batim and assume it’ll meet your particular requirements.

 Finally, there’s another book you should download in order to make the absolute
most of this one.

1.8.3 Your new best friend: the language specification

I’ve tried extremely hard to be accurate in this book, but I’d be amazed if there were
no errors at all—indeed, you’ll find a list of known errors on the book’s website
(http://mng.bz/m1Hh). If you think you’ve found a mistake, I’d be grateful if you
could email me (skeet@pobox.com) or add a note on the author forum (http://
mng.bz/TQmF). But you may not want to wait for me to get back to you, or you may
have a question that isn’t covered in the book. Ultimately, the definitive source for the
intended behavior of C# is the language specification.

 There are two important forms of the spec—the international standard from
ECMA, and the Microsoft specification. As I write this, the ECMA specification (ECMA-
334 and ISO/IEC 23270) only covers C# 2, despite being the fourth edition. It’s
unclear whether or when this will be updated, but the Microsoft version is complete
and freely available. This book’s website has links to all the available versions of both
specification flavors (http://mng.bz/8s38), and Visual Studio ships with a copy too.5

When I refer to sections of the specification within this book, I’ll use numbering from

5 The exact location of the specification will depend on your system, but on my Visual Studio 2012 Professional

installation, it’s in C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC#\Specifications\1033.

http://mng.bz/m1Hh
http://mng.bz/TQmF
http://mng.bz/TQmF
http://mng.bz/8s38
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the Microsoft C# 5 specification, even when I’m talking about earlier versions of the
language. I strongly recommend that you download this version and have it on hand
whenever you find yourself eager to check out a weird corner case.

 One of my aims is to make the spec mostly redundant for developers—to provide a
more developer-oriented form covering everything you’re likely to see in everyday
code, without the huge level of detail required by compiler authors. Having said that,
it’s extremely readable as specifications go, and you shouldn’t be daunted by it. If you
find the spec interesting, there are annotated versions available for C# 3 and C# 4.
Both contain fascinating comments from the C# team and other contributors. (Dis-
claimer: I’m one of the “other contributors” for the C# 4 edition…but all the other
comments are great!) 

1.9 Summary
In this chapter, I’ve shown (but not explained) some of the features that are tackled in
depth in the rest of the book. There are plenty more that I haven’t shown here, and
many of the features you’ve seen so far have further subfeatures associated with them.
Hopefully what you’ve seen here has whetted your appetite for the rest of the book.

 Although features have taken up most of the chapter, we’ve also looked at some
areas that should help you get the most out of the book. I’ve clarified what I mean
when I refer to the language, runtime, and libraries, and I’ve also explained how code
will be laid out in the book.

 There’s one more area we need to cover before we dive into the features of C# 2,
and that’s C# 1. Obviously, as an author I have no idea how knowledgeable you are
about C# 1, but I do have some understanding of which areas of C# often cause con-
ceptual problems. Some of these areas are critical to getting the most out of the later
versions of C#, so in the next chapter I’ll go over them in some detail.



Core foundations:
building on C# 1
This isn’t a refresher on the whole of C# 1. Let’s get that out of the way immediately.
I couldn’t do justice to any topic in C# if I had to cover the whole of the first version
in a single chapter. I’ve written this book assuming that you’re at least reasonably
competent in C# 1. What counts as “reasonably competent” is, of course, somewhat
subjective, but I’ll assume you’d at least be happy to walk into an interview for a
junior C# developer role and answer technical questions appropriate to that job.
You may well have more experience, but that’s the level of knowledge I’m assuming.

 In this chapter, we’ll focus on three areas of C# 1 that are particularly important
in order to understand the features of later versions. This should raise the lowest
common denominator a little, so that I can make slightly greater assumptions later
in the book. Given that it is a lowest common denominator, you may find you
already have a perfect understanding of all the concepts in this chapter. If you
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believe that’s the case without even reading the chapter, then feel free to skip it.
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You can always come back later if it turns out something isn’t as simple as you thought.
If you’re not certain you know everything in this chapter, you might want to look at
the summary at the end of each section, which highlights the important points—if any
of those sound unfamiliar, it’s worth reading that section in detail.

 We’ll start off by looking at delegates, then consider how the C# type system com-
pares with some other possibilities, and finally look at the differences between value
types and reference types. For each topic, I’ll describe the ideas and behavior, as well
as take the opportunity to define terms so that I can use them later on. After we’ve
looked at how C# 1 works, I’ll show you a quick preview of how many of the new fea-
tures in later versions relate to the topics examined in this chapter.

2.1 Delegates
I’m sure you already have an instinctive idea about what a delegate is, even though it
can be hard to articulate. If you’re familiar with C and had to describe delegates to
another C programmer, the term function pointer would no doubt crop up. Essentially,
delegates provide a level of indirection: instead of specifying behavior to be executed
immediately, the behavior can somehow be “contained” in an object. That object can
then be used like any other, and one operation you can perform with it is to execute
the encapsulated action. Alternatively, you can think of a delegate type as a single-
method interface, and a delegate instance as an object implementing that interface.

 If that’s just gobbledygook to you, maybe an example will help. It’s slightly morbid,
but it does capture what delegates are all about. Consider your will—your last will and
testament. It’s a set of instructions: “pay the bills, make a donation to charity, leave the
rest of my estate to the cat,” for instance. You write it before your death, and leave it in
an appropriately safe place. After your death, your attorney will (you hope!) act on
those instructions.

 A delegate in C# acts like your will does in the real world—it allows you to specify a
sequence of actions to be executed at the appropriate time. Delegates are typically
used when the code that wants to execute the actions doesn’t know the details of what
those actions should be. For instance, the only reason why the Thread class knows
what to run in a new thread when you start it is because you provide the constructor
with a ThreadStart or ParameterizedThreadStart delegate instance.

 We’ll start our tour of delegates with the four absolute basics, without which none
of the rest would make sense.

2.1.1 A recipe for simple delegates

In order for a delegate to do anything, four things need to happen:

 The delegate type needs to be declared.
 The code to be executed must be contained in a method.
 A delegate instance must be created.
 The delegate instance must be invoked.
Let’s take each step of this recipe in turn.
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DECLARING THE DELEGATE TYPE

A delegate type is effectively a list of parameter types and a return type. It specifies what
kind of action can be represented by instances of the type. 

 For instance, consider a delegate type declared like this:

delegate void StringProcessor(string input);

The code says that if you want to create an instance of StringProcessor, you’ll need a
method with one parameter (a string) and a void return type (the method doesn’t
return anything). 

 It’s important to understand that StringProcessor really is a type, deriving from
System.MulticastDelegate, which in turn derives from System.Delegate. It has
methods, you can create instances of it and pass around references to instances, the
whole works. There are obviously a few special features, but if you’re ever stuck won-
dering what’ll happen in a particular situation, first think about what would happen if
you were using a normal reference type.

SOURCE OF CONFUSION: THE AMBIGUOUS TERM DELEGATE Delegates can be mis-
understood because the word delegate is often used to describe both a delegate
type and a delegate instance. The distinction between these two is exactly the
same as between any other type and instances of that type—the string type
itself is different from a particular sequence of characters, for example. I’ve
used the terms delegate type and delegate instance throughout this chapter to try
to keep clear exactly what I’m talking about at any point.

We’ll use the StringProcessor delegate type when we consider the next ingredient. 

FINDING AN APPROPRIATE METHOD FOR THE DELEGATE INSTANCE’S ACTION

The next ingredient is to find (or write) a method that does what you want and has
the same signature as the delegate type you’re using. The idea is to make sure that
when you try to invoke a delegate instance, the parameters you use will all match up,
and you’ll be able to use the return value (if any) in the way you expect—just like a
normal method call.

 Consider these five method signatures as candidates to be used for a String-
Processor instance:

void PrintString(string x)
void PrintInteger(int x)
void PrintTwoStrings(string x, string y)
int GetStringLength(string x)
void PrintObject(object x)

The first method has everything right, so you can use it to create a delegate instance.
The second method has one parameter, but it’s not string, so it’s incompatible with
StringProcessor. The third method has the correct first parameter type, but it has
another parameter as well, so it’s still incompatible. The fourth method has the right
parameter list but a nonvoid return type. (If your delegate type had a return type, the

return type of the method would have to match that too.) 
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 The fifth method is interesting—any time you invoke a StringProcessor instance,
you could call the PrintObject method with the same arguments, because string
derives from object. It would make sense to be able to use it for an instance of
StringProcessor, but in C# 1 the delegate must have exactly the same parameter
types.1 C# 2 changes this situation—see chapter 5 for more details. In some ways, the
fourth method is similar, since you could always ignore the unwanted return value.
But void and nonvoid return types are currently always deemed to be incompatible.
This is partly because other aspects of the system (particularly the JIT) need to know
whether a value will be left on the stack as a return value when a method is executed.2

 Let’s assume you have a method body for the compatible signature (PrintString)
and move on to the next ingredient—the delegate instance itself. 

CREATING A DELEGATE INSTANCE

Now that you have a delegate type and a method with the right signature, you can cre-
ate an instance of that delegate type, specifying that this method be executed when
the delegate instance is invoked. No official terminology has been defined for this,
but for this book I’ll call it the action of the delegate instance. 

 The exact form of the expression used to create the delegate instance depends on
whether the action uses an instance method or a static method. Suppose PrintString
is a static method in a type called StaticMethods and an instance method in a type
called InstanceMethods. Here are two examples of creating an instance of String-
Processor:

StringProcessor proc1, proc2;
proc1 = new StringProcessor(StaticMethods.PrintString);
InstanceMethods instance = new InstanceMethods();
proc2 = new StringProcessor(instance.PrintString);

When the action is a static method, you only need to specify the type name. When the
action is an instance method, you need an instance of the type (or a derived type), as
you normally would. This object is called the target of the action, and when the dele-
gate instance is invoked, the method will be called on that object. If the action is
within the same class (as it often is, particularly when you’re writing event handlers in
UI code), you don’t need to qualify it either way—the this reference is used implicitly
for instance methods.3 Again, these rules act just as if you were calling the method
directly.

UTTER GARBAGE! (OR NOT, AS THE CASE MAY BE) It’s worth being aware that a
delegate instance will prevent its target from being garbage collected if the
delegate instance itself can’t be collected. This can result in apparent

1 In addition to the parameter types, you have to match whether the parameter is in (the default), out, or ref.
It’s reasonably rare to use out and ref parameters with delegates, though.

2 This is a deliberately vague use of the word stack to avoid going into too much irrelevant detail. See Eric Lip-
pert’s blog post “The void is invariant” for more information (http://mng.bz/4g58).

3 Of course, if the action is an instance method and you’re trying to create a delegate instance from within a

static method, you’ll still need to provide a reference to be the target.

http://mng.bz/4g58
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memory leaks, particularly when a short-lived object subscribes to an event in
a long-lived object, using itself as the target. The long-lived object indirectly
holds a reference to the short-lived one, prolonging its lifetime.

There’s not much point in creating a delegate instance if it doesn’t get invoked at
some point. Let’s look at the last step—the invocation. 

INVOKING A DELEGATE INSTANCE

Invoking a delegate instance is the really easy bit:4 it’s just a matter of calling a method
on the delegate instance. The method itself is called Invoke, and it’s always present in
a delegate type with the same list of parameters and return type that the delegate type
declaration specifies. In our continuing example,
there’s a method like this:

void Invoke(string input)

Calling Invoke will execute the action of the delegate
instance, passing on whatever arguments you’ve speci-
fied in the call to Invoke, and (if the return type isn’t
void) returning the return value of the action.

 As simple as this is, C# makes it even easier; if you
have a variable5 whose type is a delegate type, you can
treat it as if it were a method itself. It’s easiest to see
this happening as a chain of events occurring at differ-
ent times, as shown in figure 2.1.

 As you can see, that’s simple too. All the ingredi-
ents are now in place, so you can preheat your CLR to
200°C, stir everything together, and see what happens. 

A COMPLETE EXAMPLE AND SOME MOTIVATION

It’s easiest to see all this in action in a complete example—finally, something you can
actually run! As there are lots of bits and pieces involved, I’ve included the whole
source code this time rather than using snippets. There’s nothing mind-blowing in
the following listing, so don’t expect to be amazed—it’s just useful to have concrete
code to discuss.

using System;
delegate void StringProcessor(string input);
class Person
{

string name;
public Person(string name) { this.name = name; }

4 For synchronous invocation, anyway. You can use BeginInvoke and EndInvoke to invoke a delegate
instance asynchronously, but that’s beyond the scope of this chapter.

Listing 2.1 Using delegates in a variety of simple ways

Declares delegate typeB

proc1("Hello");

proc1.Invoke("Hello");

PrintString("Hello");

Compiles to...

Which at 
execution 
time invokes...

Figure 2.1 Processing a call to a 
delegate instance that uses the 
C# shorthand syntax
5 Or any other kind of expression—but it’s usually a variable.
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public void Say(string message)
{

Console.WriteLine("{0} says: {1}", name, message);
}

}
class Background
{

public static void Note(string note)
{

Console.WriteLine("({0})", note);
}

}
class SimpleDelegateUse
{

static void Main()
{

Person jon = new Person("Jon");
Person tom = new Person("Tom");
StringProcessor jonsVoice, tomsVoice, background;
jonsVoice = new StringProcessor(jon.Say);
tomsVoice = new StringProcessor(tom.Say);
background = new StringProcessor(Background.Note);
jonsVoice("Hello, son.");
tomsVoice.Invoke("Hello, Daddy!");
background("An airplane flies past.");

}
}

To start with, you declare the delegate type B. Next, you create two methods (C
and D) that are both compatible with the delegate type. You have one instance
method (Person.Say) and one static method (Background.Note), so you’ll see how
they’re used differently when you create the delegate instances E. Listing 2.1
includes two instances of the Person class, so you can see the difference that the tar-
get of a delegate makes. 

 When jonsVoice is invoked F, it calls the Say method on the Person object with
the name Jon; likewise, when tomsVoice is invoked, it uses the object with the name
Tom. This code includes both ways of invoking delegate instances that you’ve seen—
calling Invoke explicitly and using the C# shorthand—just for interest’s sake. Nor-
mally you’d use the shorthand. 

 The output of listing 2.1 is fairly obvious:

Jon says: Hello, son.
Tom says: Hello, Daddy!
(An airplane flies past.)

Frankly, there’s an awful lot of code in listing 2.1 to display three lines of output. Even
if you wanted to use the Person class and the Background class, there’s no real need to
use delegates here. So what’s the point? Why not just call the methods directly? The
answer lies in our original example of an attorney executing a will—just because you
want something to happen doesn’t mean you’re always there at the right time and

Declares 
compatible 
instance 
methodC

Declares compatible 
static method

D

Creates three 
delegate 
instances

E

Invokes 
delegate 
instances

F
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place to make it happen. Sometimes you need to give instructions—to delegate respon-
sibility, as it were.

 I should stress that back in the world of software, this isn’t a matter of objects leav-
ing dying wishes. Often the object that first creates a delegate instance is still alive and
well when the delegate instance is invoked. Instead, it’s about specifying some code to
be executed at a particular time, when you may not be able (or may not want) to
change the code that’s running at that point. If I want something to happen when a
button is clicked, I don’t want to have to change the code of the button—I just want to
tell the button to call one of my methods, which will take the appropriate action. It’s a
matter of adding a level of indirection, as so much of object-oriented programming is.
As you’ve seen, this adds complexity (look at how many lines of code it took to pro-
duce so little output!) but also flexibility.

 Now that you understand more about simple delegates, we’ll take a brief look at
combining delegates together to execute a whole bunch of actions instead of just one. 

2.1.2 Combining and removing delegates

So far, all the delegate instances we’ve looked at have had a single action. In reality,
life is a bit more complicated: a delegate instance actually has a list of actions associ-
ated with it called the invocation list. The static Combine and Remove methods of the
System.Delegate type are responsible for creating new delegate instances by respec-
tively splicing together the invocation lists of two delegate instances or removing the
invocation list of one delegate instance from another.

DELEGATES ARE IMMUTABLE Once you’ve created a delegate instance, noth-
ing about it can be changed. This makes it safe to pass around references to
delegate instances and combine them with others without worrying about
consistency, thread safety, or anyone trying to change their actions. This is
like strings, which are also immutable, and Delegate.Combine is just like
String.Concat—they both combine existing instances together to form a
new one without changing the original
objects at all. In the case of delegate
instances, the original invocation lists are
concatenated together. Note that if you
ever try to combine null with a delegate
instance, the null is treated as if it were a
delegate instance with an empty invoca-
tion list.

You’ll rarely see an explicit call to Delegate
.Combine in C# code—usually the + and += opera-
tors are used. Figure 2.2 shows the translation
process, where x and y are both variables of the
same (or compatible) delegate types. All of this is

void Dump(int x, int y = 20, int z 

required
parameter

default
values

optional
parameters

Figure 2.2 The transformation process 
used for the C# shorthand syntax for 
combining delegate instances
done by the C# compiler.
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As you can see, it’s a straightforward transformation, but it makes the code a lot
neater. Just as you can combine delegate instances, you can remove one from another
with the Delegate.Remove method, and C# uses the shorthand of the - and -= opera-
tors in the obvious way. Delegate.Remove(source, value) creates a new delegate
whose invocation list is the one from source, with the list from value having been
removed. If the result would have an empty invocation list, null is returned.

 When a delegate instance is invoked, all its actions are executed in order. If the
delegate’s signature has a nonvoid return type, the value returned by Invoke is the
value returned by the last action executed. It’s rare to see a nonvoid delegate instance
with more than one action in its invocation list because it means the return values of
all the other actions are never seen unless the invoking code explicitly executes the
actions one at a time, using Delegate.GetInvocationList to fetch the list of actions.

 If any of the actions in the invocation list throws an exception, that prevents any of
the subsequent actions from being executed. For example, if a delegate instance with
an invocation list [a, b, c] is invoked, and action b throws an exception, the excep-
tion will be propagated immediately and action c won’t be executed.

 Combining and removing delegate instances is particularly useful when it comes to
events. Now that you understand what combining and removing involves, we can talk
about events. 

2.1.3 A brief diversion into events

You probably have an instinctive idea about the overall point of events, particularly if
you’ve written any UIs. The idea is that an event allows code to react when something
happens—saving a file when the appropriate button is clicked, for example. In this
case, the event is the clicking of the button, and the action is the saving of the file.
Understanding the reason for the concept isn’t the same as understanding how C#
defines events in language terms, though.

 Developers often confuse events and delegate instances, or events and fields
declared with delegate types. The difference is important: events aren’t fields. The rea-
son for the confusion is that C# provides a shorthand in the form of field-like events.
We’ll come to those in a minute, but first let’s consider what events consist of as far as
the C# compiler is concerned.

 It’s helpful to think of events as being similar to properties. To start with, both of
them are declared to be of a certain type—an event is forced to be a delegate type. 

 When you use properties, it looks like you’re fetching or assigning values directly to
fields, but you’re actually calling methods (getters and setters). The property imple-
mentation can do what it likes within those methods—it just happens that most prop-
erties are implemented with simple fields backing them, sometimes with some
validation in the setter and sometimes with some thread safety thrown in for good
measure.

 Likewise, when you subscribe to or unsubscribe from an event, it looks like you’re

using a field whose type is a delegate type, with the += and -= operators. Again,
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though, you’re actually calling methods (add and remove).6 That’s all you can do with
an event—subscribe to it (add an event handler) or unsubscribe from it (remove an
event handler). It’s up to the event methods to do something useful, such as taking
notice of the event handlers you’re trying to add and remove, and making them avail-
able elsewhere within the class.

 The reason for having events in the first place is much like the reason for having
properties—they add a layer of encapsulation, implementing the publish/subscribe
pattern (see my article, “Delegates and Events,” here: http://mng.bz/HPx6). Just as
you don’t want other code to be able to set field values without the owner at least hav-
ing the option of validating the new value, you often don’t want code outside a class to
be able to arbitrarily change (or call) the handlers for an event. Of course, a class can
add methods to give extra access—for instance, to reset the list of handlers for an
event, or to raise the event (in other words, to call its event handlers). For example,
BackgroundWorker.OnProgressChanged just calls the ProgressChanged event han-
dlers. But if you only expose the event itself, code outside the class only has the ability
to add and remove handlers.

Field-like events make the implementation of all of this much simpler to look at—a
single declaration and you’re done. The compiler turns the declaration into both an
event with default add/remove implementations and a private field of the same type.
Code inside the class sees the field; code outside the class only sees the event. This
makes it look as if you can invoke an event, but what you actually do to call the event
handlers is invoke the delegate instance stored in the field.

 The details of events are outside the scope of this chapter—events themselves
haven’t changed much in later versions of C#,7 but I wanted to draw attention to the
difference between delegate instances and events now, to prevent confusion later on. 

2.1.4 Summary of delegates

Let’s summarize what we’ve covered on delegates:

 Delegates encapsulate behavior with a particular return type and set of parame-
ters, similar to a single-method interface.

 The type signature described by a delegate type declaration determines 
which methods can be used to create delegate instances, and the signature 
for invocation.

 Creating a delegate instance requires a method and (for instance methods) a
target to call the method on.

 Delegate instances are immutable.
 Delegate instances each contain an invocation list—a list of actions.

6 These aren’t their names in the compiled code; otherwise you could only have one event per type. The com-
piler creates two methods with names that aren’t used elsewhere, and includes a special piece of metadata to
let other types know that there’s an event with the given name, and what its add/remove methods are called.
7 There are very small changes to field-like events in C# 4. See section 4.2 for details.

http://mng.bz/HPx6
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 Delegate instances can be combined with and removed from each other.
 Events aren’t delegate instances—they’re just add/remove method pairs (think

property getters/setters).

Delegates are one specific feature of C# and .NET—a detail in the grand scheme of
things. Both of the other reminder sections in this chapter deal with much broader
topics. First, we’ll consider what it means to talk about C# being a statically typed lan-
guage and the implications that has.

2.2 Type system characteristics
Almost every programming language has a type system of some kind. Over time,
these have been classified as strong/weak, safe/unsafe, static/dynamic, and no doubt
some more esoteric variations. It’s obviously important to understand the type system
you’re working with, and it’s reasonable to expect that knowing the categories into
which a language falls would give you a lot of information on that front. But because
the terms are used by different people to mean somewhat different things, miscom-
munication is almost inevitable. I’ll try to explain exactly what I mean by each term to
minimize confusion.

 One important thing to note is that this section is only applicable to safe code,
which means all C# code that isn’t explicitly within an unsafe context. As you might
judge from the name, code within an unsafe context can do various things that safe
code can’t, and that may violate some aspects of normal type safety, although the type
system is still safe in many other ways. Most developers are unlikely ever to need to
write unsafe code, and the characteristics of the type system are far simpler to describe
and understand when only safe code is considered.

 This section shows what restrictions are and aren’t enforced in C# 1 while defining
some terms to describe that behavior. We’ll then look at a few things you can’t do with
C# 1—first from the point of view of what you can’t tell the compiler, and then from
the point of view of what you might wish you didn’t have to tell the compiler.

 Let’s start off with what C# 1 does, and with the terminology that’s usually used to
describe that kind of behavior.

2.2.1 C#’s place in the world of type systems

It’s easiest to begin by making a statement and then clarifying what it means and what
the alternatives might be:

C# 1’s type system is static, explicit, and safe.

You might have expected the word strong to appear in the list, and I had half a mind to
include it. But although most people can reasonably agree on whether a language has
the characteristics I listed, deciding whether a language is strongly typed can cause
heated debate because the definitions vary so wildly. Some meanings (those prevent-
ing any conversions, explicit or implicit) would clearly rule C# out, whereas others are

quite close to (or even the same as) statically typed, which would include C# 1. Most of
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the articles and books I’ve read that describe C# as a strongly typed language are effec-
tively using “strongly typed” to mean statically typed.

 Let’s take the terms in the definition one at a time and shed some light on them.

STATIC TYPING VERSUS DYNAMIC TYPING

C# 1 is statically typed: each variable is of a particular type, and that type is known at
compile time.8 Only operations that are known for that type are allowed, and this is
enforced by the compiler. Consider this example of enforcement:

object o = "hello";
Console.WriteLine(o.Length);

As you look at the code, it’s obvious that the value of o refers to a string, and that the
string type has a Length property, but the compiler only thinks of o as being of type
object. If you want to get to the Length property, you have to tell the compiler that
the value of o refers to a string:

object o = "hello";
Console.WriteLine(((string)o).Length);

The compiler is then able to find the Length property of System.String. It uses this
to validate that the call is correct, emit the appropriate IL, and work out the type of
the larger expression. The compile-time type of an expression is also known as its
static type—so you might say, “The static type of o is System.Object.”

WHY IS IT CALLED STATIC TYPING? The word static is used to describe this
kind of typing because the analysis of what operations are available is per-
formed using unchanging data: the compile-time types of expressions. Sup-
pose a variable is declared to be of type Stream; the type of the variable
doesn’t change even if the value of the variable varies from a reference to a
MemoryStream, a FileStream, or no stream at all (with a null reference).
Even within static type systems, there can be some dynamic behavior; the
actual implementation executed by a virtual method call will depend on the
value it’s called on. The idea of unchanging information is also the motiva-
tion behind the static modifier, but it’s generally simpler to think of a
static member as one belonging to the type itself rather than to any particu-
lar instance of the type. For most practical purposes, you can think of the
two uses of the word as unrelated.

The alternative to static typing is dynamic typing, which can take a variety of guises. The
essence of dynamic typing is that variables just have values—they aren’t restricted to
particular types, so the compiler can’t perform the same sort of checks. Instead, the
execution environment attempts to understand expressions in an appropriate manner
for the values involved. For example, if C# 1 were dynamically typed, you could do this:

8 This applies to most expressions too, but not quite all of them. Certain expressions don’t have a type, such as
void method invocations, but this doesn’t affect C# 1’s status of being statically typed. I’ve used the word vari-

able throughout this section to avoid unnecessary brain strain.
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o = "hello";
Console.WriteLine(o.Length);
o = new string[] {"hi", "there"};
Console.WriteLine(o.Length);

This would invoke two completely unrelated Length properties—String.Length and
Array.Length—by examining the types dynamically at execution time. Like many
aspects of type systems, there are different levels of dynamic typing. Some languages
allow you to specify types where you want to—possibly still treating them dynamically
apart from assignment—but let you use untyped variables elsewhere.

 Although I’ve specified C# 1 repeatedly in this description, C# was entirely stati-
cally typed up to and including C# 3. You’ll see later that C# 4 introduced some
dynamic typing, although the vast majority of code in most C# 4 applications will still
use static typing. 

EXPLICIT TYPING VERSUS IMPLICIT TYPING

The distinction between explicit typing and implicit typing is only relevant in statically
typed languages. With explicit typing, the type of every variable must be explicitly
stated in the declaration. Implicit typing allows the compiler to infer the type of the
variable based on its use. For example, the language could dictate that the type of the
variable is the type of the expression used to assign the initial value.

 Consider a hypothetical language that uses the keyword var to indicate type infer-
ence.9 Table 2.1 shows how code in such a language could be written in C# 1. The
code in the left column is not allowed in C# 1, but the code in the right column is the
equivalent valid code.

Hopefully it’s clear why this is only relevant for statically typed situations: for both
implicit and explicit typing, the type of the variable is known at compile time, even if
it’s not explicitly stated. In a dynamic context, the variable doesn’t even have a
compile-time type to state or infer. 

TYPE-SAFE VERSUS TYPE-UNSAFE

The easiest way of describing a type-safe system is to describe its opposite. Some lan-
guages (I’m thinking particularly of C and C++) allow you to do some really devious
things. They’re potentially powerful in the right situations, but with great power
comes a free box of donuts, or however the expression goes, and the right situations

Table 2.1 An example showing the differences between implicit and explicit typing

Invalid C# 1—implicit typing Valid C# 1—explicit typing

var s = "hello"; string s = "hello";

var x = s.Length; int x = s.Length;

var twiceX = x * 2; int twiceX = x * 2;

WHAT IF?
9 Okay, not so hypothetical. See section 8.2 for C# 3’s implicitly typed local variable capabilities.
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are relatively rare. Some of these devious things can shoot you in the foot if you get
them wrong. Abusing the type system is one of them.

 With the right voodoo rituals, you can persuade these languages to treat a value of
one type as if it were a value of a completely different type without applying any conver-
sions. I don’t just mean calling a method that happens to have the same name, as in
the dynamic typing example earlier. I mean code that looks at the raw bytes within a
value and interprets them in the “wrong” way. The following listing gives a simple C
example of what I mean.

#include <stdio.h>
int main(int argc, char**argv)
{

char *first_arg = argv[1];
int *first_arg_as_int = (int *)first_arg;
printf ("%d", *first_arg_as_int);

}

If you compile listing 2.2 and run it with a simple argument of "hello", you’ll see a
value of 1819043176—at least on a little-endian architecture with a compiler treating
int as 32 bits and char as 8 bits, and where text is represented in ASCII or UTF-8. The
code is treating the char pointer as an int pointer, so dereferencing it returns the first
4 bytes of text, treating them as a number.

 In fact, this tiny example is tame compared with other potential abuses—casting
between completely unrelated structs can easily result in total mayhem. It’s not that
this happens in real life very often, but some elements of the C typing system often
require you to tell the compiler what to do, leaving it no option but to trust you even
at execution time. 

 Fortunately, none of this occurs in C#. Yes, there are plenty of conversions avail-
able, but you can’t pretend that data for one particular type of object is actually data
for a different type. You can try by adding a cast to give the compiler this extra (and
incorrect) information, but if the compiler spots that it’s actually impossible for that
cast to work, it’ll trigger a compilation error—and if it’s theoretically allowed but actu-
ally incorrect at execution time, the CLR will throw an exception.

 Now that you know a little about how C# 1 fits into the bigger picture of type sys-
tems, I’d like to mention a few downsides of its choices. That’s not to say the choices
are wrong—they’re just limiting in some ways. Often language designers have to
choose between different paths that add different limitations or have other undesir-
able consequences. I’ll start with the case where you want to give the compiler more
information, but there’s no way of doing so. 

2.2.2 When is C# 1’s type system not rich enough?

There are two common situations where you might want to expose more information
to the caller of a method, or perhaps force the caller to limit what it provides in its

Listing 2.2 Demonstrating a type-unsafe system with C code
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arguments. The first involves collections, and the second involves inheritance and
overriding methods or implementing interfaces. We’ll examine each in turn.

COLLECTIONS, STRONG AND WEAK

Having avoided the terms strong and weak for the C# type system in general, I’ll use
them when talking about collections. The terms are used almost everywhere in this
context, with little room for ambiguity. Broadly speaking, three kinds of collection
types are built into .NET 1.1:

 Arrays—strongly typed—in both the language and the runtime
 Weakly typed collections in the System.Collections namespace
 Strongly typed collections in the System.Collections.Specialized

namespace

Arrays are strongly typed,10 so at compile time you can’t set an element of a string[]
to be a FileStream, for instance. But reference type arrays also support covariance,
which provides an implicit conversion from one type of array to another, as long as
there’s a conversion between the element types. Checks occur at execution time to
make sure that the wrong type of reference isn’t being stored, as shown in the follow-
ing listing.

string[] strings = new string[5];
object[] objects = strings;
objects[0] = new Button();

If you run listing 2.3, you’ll see that an ArrayTypeMismatchException is thrown C.
This is because the conversion from string[] to object[] B returns the original ref-
erence—both strings and objects refer to the same array. The array itself knows it’s
a string array and will reject attempts to store references to nonstrings. Array covari-
ance is occasionally useful, but it comes at the cost of implementing some of the type
safety at execution time instead of compile time.

 Let’s compare this with the situation that weakly typed collections, such as Array-
List and Hashtable, put you in. The API of these collections uses object as the type
of keys and values. When you write a method that takes an ArrayList, for example,
there’s no way of making sure at compile time that the caller will pass in a list of
strings. You can document it, and the type safety of the runtime will enforce it if you
cast each element of the list to string, but you don’t get compile-time type safety.
Likewise, if you return an ArrayList, you can indicate in the documentation that it’ll
just contain strings, but callers will have to trust that you’re telling the truth, and
they’ll have to insert casts when they access the elements of the list.

Listing 2.3 Demonstration of array covariance and execution-time checking

Applies covariant conversionB

Attempts to store a ButtonC
10 At least, the language allows them to be. You can use the Array type for weakly typed access to arrays, though.
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 Finally, consider strongly typed collections, such as StringCollection. These pro-
vide a strongly typed API, so you can be confident that when you receive a String-
Collection as a parameter or return value, it’ll only contain strings, and you don’t
need to cast when fetching elements of the collection. It sounds ideal, but there are
two problems. First, it implements IList, so you can still try to add nonstrings to it
(although you’ll fail at execution time). Second, it only deals with strings. There are
other specialized collections, but all told they don’t cover much ground. There’s the
CollectionBase type, which can be used to build your own strongly typed collec-
tions, but that means creating a new collection type for each element type, which is
also not ideal.

 Now that you’ve seen the problem with collections, let’s consider the issue that can
occur when you’re overriding methods and implementing interfaces. It’s related to
the idea of covariance, which we’ve already seen with arrays.

LACK OF COVARIANT RETURN TYPES

ICloneable is one of the simplest interfaces in the framework. It has a single method,
Clone, which should return a copy of the object that the method is called on. Now,
leaving aside the issue of whether this should be a deep or shallow copy, let’s look at
the signature of the Clone method:

object Clone()

It’s a straightforward signature, certainly—but as I said, the method should return
a copy of the object it’s called on. That means it needs to return an object of the
same type, or at least a compatible one (where that meaning will vary depending on
the type). 

 It would make sense to be able to override the method with a signature that gives a
more accurate description of what the method actually returns. For example, in a
Person class it’d be nice to be able to implement ICloneable with

public Person Clone()

That wouldn’t break anything—code expecting any old object would still work fine.
This feature is called return type covariance but, unfortunately, interface implementa-
tion and method overriding don’t support it. Instead, the normal workaround for
interfaces is to use explicit interface implementation to achieve the desired effect:

public Person Clone()
{
 [Implementation goes here] 

}
object ICloneable.Clone()
{

return Clone();
}

Any code that calls Clone() on an expression with a static type of Person will call the
top method; if the type of the expression is ICloneable, it’ll call the bottom method.

Implements interface explicitly

Calls noninterface method
This works, but it’s really ugly. The mirror image of this situation also occurs with



44 CHAPTER 2 Core foundations: building on C# 1

parameters, where if you had an interface or virtual method with a signature of, say,
void Process(string x), it’d seem logical to be able to implement or override the
method with a less demanding signature, such as void Process(object x). This is
called parameter type contravariance; it’s just as unsupported as return type covariance,
and you have to use the same workaround for interfaces and normal overloading for
virtual methods. It’s not a showstopper, but it’s irritating.

 Of course, C# 1 developers put up with all of these issues for a long time, and Java
developers had a similar situation for far longer. Although compile-time type safety is
a great feature in general, I can’t remember seeing many bugs where people actually
put the wrong type of element in a collection. I can live with the workaround for the
lack of covariance and contravariance. But there’s such a thing as elegance and mak-
ing your code clearly express what you mean, preferably without needing explanatory
comments. Even if bugs don’t strike, enforcing the documented contract that a collec-
tion must only contain strings (for example) can be expensive and fragile in the face
of mutable collections. This is the sort of contract you really want the type system itself
to enforce.

 You’ll see later that C# 2 isn’t flawless either, but it makes large improvements.
There are more changes in C# 4, but even so, return type covariance and parameter
contravariance are missing.11

2.2.3 Summary of type system characteristics

In this section, you’ve learned some of the differences between type systems, and in
particular which characteristics apply to C# 1:

 C# 1 is statically typed—the compiler knows what members to let you use.
 C# 1 is explicit—you have to state the type of every variable.
 C# 1 is safe—you can’t treat one type as if it were another unless there’s a genu-

ine conversion available.
 Static typing doesn’t allow a single collection to be a strongly typed list of strings

or list of integers without a lot of code duplication for different element types.
 Method overriding and interface implementation don’t allow covariance or

contravariance.

The next section covers one of the most fundamental aspects of C#’s type system
beyond its high-level characteristics—the differences between structs and classes.

2.3  Value types and reference types
It would be hard to overstate how important the subject of this section is. Everything
you do in .NET will deal with either a value type or a reference type, and yet it’s curi-
ously possible to develop for a long time with only a vague idea of what the difference
is. Worse yet, there are plenty of myths to confuse things further. The unfortunate fact
is that it’s easy to make a short but incorrect statement that’s close enough to the truth
11 C# 4 introduced limited generic covariance and contravariance, but that’s not quite the same thing.
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to be plausible but inaccurate enough to be misleading—but it’s relatively tricky to
come up with a concise but accurate description.

 This section isn’t a complete breakdown of how types are handled, marshaling
between application domains, interoperability with native code, and the like. Instead,
it’s a brief look at the absolute basics of the topic (as applied to C# 1) that are crucial
in order to come to grips with later versions of C#.

 We’ll start off by seeing how the fundamental differences between value types and
reference types appear naturally in the real world, as well as in .NET.

2.3.1 Values and references in the real world

Suppose you’re reading something fantastic, and you want a friend to read it too. Let’s
further suppose that it’s a document in the public domain, just to avoid any accusa-
tions of supporting copyright violation. What do you need to give your friend so that
he can read it too? It depends entirely on what you’re reading.

 First we’ll deal with the case where you have real paper in your hands. To give your
friend a copy, you’d need to photocopy all the pages and then give it to him. At that
point, he has his own complete copy of the document. In this situation, you’re dealing
with value type behavior. All the information is directly in your hands—you don’t need
to go anywhere else to get it. Your copy of the information is also independent of your
friend’s after you’ve made the copy. You could add some notes to your pages, and his
pages wouldn’t be changed at all.

 Compare that with the situation where you’re reading a web page. This time, all
you have to give your friend is the URL of the web page. This is reference type behavior,
with the URL taking the place of the reference. In order to read the document, you
have to navigate the reference by putting the URL in your browser and asking it to
load the page. If the web page changes for some reason (imagine it’s a wiki page and
you’ve added your notes to the page), both you and your friend will see that change
the next time each of you loads the page.

 These differences in the real world illustrate the heart of the distinction between
value types and reference types in C# and .NET. Most types in .NET are reference types,
and you’re likely to create far more reference than value types. The most common
cases are classes (declared using class), which are reference types, and structures
(declared using struct), which are value types. The other situations are as follows:

 Array types are reference types, even if the element type is a value type (so
int[] is still a reference type, even though int is a value type).

 Enumerations (declared using enum) are value types.
 Delegate types (declared using delegate) are reference types.
 Interface types (declared using interface) are reference types, but they can be

implemented by value types.

Now that you have a basic idea of what reference types and value types are about, we’ll
look at a few of the most important details. 
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2.3.2 Value and reference type fundamentals

The key concept to grasp when it comes to value types and reference types is what the
value of a particular expression is. To keep things concrete, I’ll use variables as the
most common examples of expressions, but the same thing applies to properties,
method calls, indexers, and other expressions.

 As we discussed in section 2.2.1, most expressions have a static type associated with
them. The value of a value type expression is the value, plain and simple. For instance,
the value of the expression "2 + 3" is 5. The value of a reference type expression, though,
is a reference—it’s not the object that the reference refers to. The value of the expres-
sion String.Empty is not an empty string—it’s a reference to an empty string. In every-
day discussions and even in documentation, we tend to blur this distinction. For
instance, I might describe String.Concat as returning “a string that’s the concatena-
tion of all the parameters.” Using precise terminology here would be time consuming
and distracting, and there’s no problem as long as everyone involved understands that
only a reference is returned.

 To demonstrate this further, consider a Point type that stores two integers, x and y.
It could have a constructor that takes the two values. This type could be implemented
as either a struct or a class. Figure 2.3 shows the result of executing the following lines
of code:

Point p1 = new Point(10, 20);
Point p2 = p1;

The left side of figure 2.3 indicates the values involved when Point is a class (a refer-
ence type), and the right side shows the situation when Point is a struct (a value type).
In both cases, p1 and p2 have the same value after the assignment. But in the case
where Point is a reference type, that value is a reference: both p1 and p2 refer to the
same object. When Point is a value type, the value of p1 is the whole of the data for a
point—the x and y values. Assigning the value of p1 to p2 copies all of that data.

 The values of variables are stored wherever they’re declared. Local variable values
are always stored on the stack,12 and instance variable values are always stored

12 This is only totally true for C# 1. You’ll see later that local variables can end up on the heap in certain situa-
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wherever the instance itself is stored. Reference type instances (objects) are always
stored on the heap, as are static variables.

 Another difference between the two kinds of type is that value types can’t be
derived from. One consequence of this is that the value doesn’t need any extra infor-
mation about what type that value actually is. Compare that with reference types,
where each object contains a block of data at the start identifying the type of the
object, along with some other information. You can never change the type of an
object—when you perform a simple cast, the runtime just takes a reference, checks
whether the object it refers to is a valid object of the desired type, and returns the ref-
erence if it’s valid or throws an exception otherwise. The reference itself doesn’t know
the type of the object, so the same reference value can be used for multiple variables
of different types. For instance, consider the following code:

Stream stream = new MemoryStream();
MemoryStream memoryStream = (MemoryStream) stream;

The first line creates a new MemoryStream object and sets the value of the stream
variable to be a reference to that new object. The second line checks whether the
value of stream refers to a MemoryStream (or derived type) object and sets the value of
memoryStream to be the same as stream.

 Once you understand these basic points, you can apply them when thinking about
some of the falsehoods that are often stated about value types and reference types. 

2.3.3 Dispelling myths

Various myths do the rounds on a regular basis. I’m sure the misinformation is almost
always passed on with no malice and with no idea of the inaccuracies involved, but it’s
unhelpful nonetheless. In this section, I’ll tackle the most prominent myths, explain-
ing the true situation as I go.

MYTH #1: STRUCTS ARE LIGHTWEIGHT CLASSES

This myth comes in a variety of forms. Some people believe that value types can’t or
shouldn’t have methods or other significant behavior—they should be used as simple
data transfer types, with just public fields or simple properties. The DateTime type is a
good counterexample to this: it makes sense for it to be a value type, in terms of being
a fundamental unit like a number or a character, and it also makes sense for it to be
able to perform calculations based on its value. Looking at things from the other
direction, data transfer types should often be reference types anyway—the decision
should be based on the desired value or reference type semantics, not the simplicity of
the type.

 Other people believe that value types are “lighter” than reference types in terms
of performance. The truth is that in some cases value types are more performant—
they don’t require garbage collection unless they’re boxed, don’t have the type
identification overhead, and don’t require dereferencing, for example. But in other
ways, reference types are more performant—parameter passing, assigning values to

variables, returning values, and similar operations only require 4 or 8 bytes to be
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copied (depending on whether you’re running the 32-bit or 64-bit CLR) rather than
copying all the data. Imagine if ArrayList were somehow a “pure” value type, and
passing an ArrayList expression to a method involved copying all its data! In almost
all cases, performance isn’t really determined by this sort of decision anyway. Bottle-
necks are almost never where you think they’ll be, and before you make a design deci-
sion based on performance, you should measure the different options.

 It’s worth noting that the combination of the two beliefs doesn’t work either. It
doesn’t matter how many methods a type has (whether it’s a class or a struct)—the
memory taken per instance isn’t affected. (There’s a cost in terms of the memory
taken up for the code itself, but that’s incurred once rather than for each instance.) 

MYTH #2: REFERENCE TYPES LIVE ON THE HEAP; VALUE TYPES LIVE ON THE STACK

This one is often caused by laziness on the part of the person repeating it. The first
part is correct—an instance of a reference type is always created on the heap. It’s the
second part that causes problems. As I’ve already noted, a variable’s value lives wher-
ever it’s declared, so if you have a class with an instance variable of type int, that vari-
able’s value for any given object will always be where the rest of the data for the object
is—on the heap. Only local variables (variables declared within methods) and method
parameters live on the stack. In C# 2 and later, even some local variables don’t really
live on the stack, as you’ll see when we look at anonymous methods in chapter 5.

ARE THESE CONCEPTS RELEVANT NOW? It’s arguable that if you’re writing man-
aged code, you should let the runtime worry about how memory is best used.
Indeed, the language specification makes no guarantees about what lives
where; a future runtime may be able to create some objects on the stack if it
knows it can get away with it, or the C# compiler could generate code that
hardly uses the stack at all.

The next myth is usually just a terminology issue. 

MYTH #3: OBJECTS ARE PASSED BY REFERENCE IN C# BY DEFAULT

This is probably the most widely propagated myth. Again, the people who make this
claim often (though not always) know how C# actually behaves, but they don’t know
what “pass by reference” really means. Unfortunately, this is confusing for people who
do know what it means. 

 The formal definition of pass by reference is relatively complicated, involving l-values
and similar computer-science terminology, but the important thing is that if you pass a
variable by reference, the method you’re calling can change the value of the caller’s vari-
able by changing its parameter value. Now, remember that the value of a reference
type variable is the reference, not the object itself. You can change the contents of the
object that a parameter refers to without the parameter itself being passed by refer-
ence. For instance, the following method changes the contents of the StringBuilder
object in question, but the caller’s expression will still refer to the same object as
before:
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void AppendHello(StringBuilder builder)
{

builder.Append("hello");
}

When this method is called, the parameter value (a reference to a StringBuilder) is
passed by value. If you were to change the value of the builder variable within the
method—for example, with the statement builder = null;—that change wouldn’t be
seen by the caller, contrary to the myth.

 It’s interesting to note that not only is the “by reference” bit of the myth inaccu-
rate, but so is the “objects are passed” bit. Objects themselves are never passed, either
by reference or by value. When a reference type is involved, either the variable is
passed by reference or the value of the argument (the reference) is passed by value.
Aside from anything else, this answers the question of what happens when null is
used as a by-value argument—if objects were being passed around, that would cause
issues, as there wouldn’t be an object to pass! Instead, the null reference is passed by
value in the same way as any other reference would be.

 If this quick explanation has left you bewildered, you might want to look at my arti-
cle, “Parameter passing in C#,” (http://mng.bz/otVt), which goes into much more
detail.

 These myths aren’t the only ones around. Boxing and unboxing come in for their
fair share of misunderstanding, which I’ll try to clear up next. 

2.3.4 Boxing and unboxing

Sometimes, you just don’t want a value type value. You want a reference. There are var-
ious reasons why this can happen, and fortunately C# and .NET provide a mechanism
called boxing that lets you create an object from a value type value and use a reference
to that new object. Before we leap into an example, let’s start off by reviewing two
important facts:

 The value of a reference type variable is always a reference.
 The value of a value type variable is always a value of that type.

Given those two facts, the following three lines of code don’t seem to make much
sense at first glance:

int i = 5;
object o = i;
int j = (int) o;

You have two variables: i is a value type variable, and o is a reference type variable.
How does it make sense to assign the value of i to o? The value of o has to be a refer-
ence, and the number 5 isn’t a reference—it’s an integer value. What’s actually hap-
pening is boxing: the runtime creates an object (on the heap—it’s a normal object)
that contains the value (5). The value of o is then a reference to that new object. The
value in the object is a copy of the original value—changing the value of i won’t

change the value in the box at all.
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 The third line performs the reverse operation—unboxing. You have to tell the com-
piler which type to unbox the object as, and if you use the wrong type (if it’s a boxed
uint or long, for example, or not a boxed value at all), an InvalidCastException is
thrown. Again, unboxing copies the value that was in the box; after the assignment,
there’s no further association between j and the object.

 That’s boxing and unboxing in a nutshell. The only remaining problem is knowing
when boxing and unboxing occur. Unboxing is usually obvious, because the cast is pres-
ent in the code. Boxing can be more subtle. You’ve seen the simple version, but it can
also occur if you call the ToString, Equals, or GetHashCode methods on the value of a
type that doesn’t override them,13 or if you use the value as an interface expression—
assigning it to a variable whose type is an interface type or passing it as the value for a
parameter with an interface type. For example, the statement IComparable x = 5;
would box the number 5.

 It’s worth being aware of boxing and unboxing because of the potential perfor-
mance penalty involved. A single box or unbox operation is cheap, but if you perform
hundreds of thousands of them, you not only have the cost of the operations, but
you’re also creating a lot of objects, which gives the garbage collector more work to do.
This performance hit isn’t usually an issue, but it’s worth being aware of so you can
measure the effect if you’re concerned. 

2.3.5 Summary of value types and reference types

In this section, we’ve looked at the differences between value types and reference
types and at some of the myths surrounding them. Here are the key points:

 The value of a reference type expression (a variable, for example) is a refer-
ence, not an object.

 References are like URLs—they’re small pieces of data that let you access the
real information.

 The value of a value type expression is the actual data.
 There are times when value types are more efficient than reference types, and

vice versa.
 Reference type objects are always on the heap, but value type values can be on

either the stack or the heap, depending on context.
 When a reference type is used as a method parameter, by default the argument

is passed by value, but the value itself is a reference.
 Value type values are boxed when reference type behavior is needed; unboxing

is the reverse process.

Now that we’ve had a look at all the bits of C# 1 that you need to be comfortable with,
it’s time to take a quick look forward and see where each of the features are enhanced
by the later versions of C#.

13 Boxing will always occur when you call GetType() on a value type variable, because it can’t be overridden.
You should already know the exact type if you’re dealing with the unboxed form, so you can just use typeof

instead.
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2.4 Beyond C# 1: new features on a solid base
The three topics covered in this chapter are vital to all versions of C#. Almost all the
new features relate to at least one of them, and they change the balance of how the
language is used. Before we wrap up the chapter, let’s explore how the new features
relate to the old ones. I won’t give many details (for some reason the publisher didn’t
want a 600-page section), but it’s helpful to have an idea of where we’re going before
we get to the nitty-gritty. We’ll look at them in the same order as we covered them ear-
lier, starting with delegates.

2.4.1 Features related to delegates

Delegates of all kinds get a boost in C# 2, and then they’re given even more special
treatment in C# 3. Most of the features aren’t new to the CLR but are clever compiler
tricks to make delegates work more smoothly within the language. The changes affect
not just the syntax you can use, but the appearance and feeling of idiomatic C# code.
Over time, C# is gaining a more functional approach.

 C# 1 has pretty clumsy syntax when it comes to creating a delegate instance. For
one thing, even if you need to accomplish something straightforward, you have to
write a whole separate method to create a delegate instance for it. C# 2 fixed this with
anonymous methods and introduced a simpler syntax for the cases where you still
want to use a normal method to provide the action for the delegate. You can also cre-
ate delegate instances using methods with compatible signatures—the method signa-
ture no longer has to be exactly the same as the delegate’s declaration.

 The following listing demonstrates all these improvements.

static void HandleDemoEvent(object sender, EventArgs e)
{

Console.WriteLine ("Handled by HandleDemoEvent");
}
...
EventHandler handler;
handler = new EventHandler(HandleDemoEvent);
handler(null, EventArgs.Empty);

handler = HandleDemoEvent;
handler(null, EventArgs.Empty);

handler = delegate(object sender, EventArgs e)
{

Console.WriteLine ("Handled anonymously");
};
handler(null, EventArgs.Empty);

handler = delegate
{

Console.WriteLine ("Handled anonymously again");
};

Listing 2.4 Improvements in delegate instantiation brought in by C# 2

Specifies delegate 
type and method

B

Implicitly converts 
to delegate instance

C

Specifies action with 
anonymous method

D

Uses anonymous 
method shortcut

E

handler(null, EventArgs.Empty);
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MouseEventHandler mouseHandler = HandleDemoEvent;
mouseHandler(null, new MouseEventArgs(MouseButtons.None,

0, 0, 0, 0));

The first part of the main code B is just C# 1 code, kept for comparison. The
remaining delegates all use new features of C# 2. Method group conversions C make
event subscription code read a lot more pleasantly—lines such as saveButton.Click
+= SaveDocument; are straightforward, with no extra fluff to distract the eye. The
anonymous method syntax D is a little cumbersome, but it does allow the action to
be clear at the point of creation, rather than being another method to look at before
you understand what’s going on. A shortcut is available when using anonymous meth-
ods E, but this form can only be used when you don’t need the parameters. Anony-
mous methods have other powerful features as well, but we’ll see those later.

 The final delegate instance created F is an instance of MouseEventHandler rather
than just EventHandler, but the HandleDemoEvent method can still be used due to con-
travariance, which specifies parameter compatibility. Covariance specifies return type
compatibility. We’ll look at both of these in more detail in chapter 5. Event handlers
are probably the biggest beneficiaries of this, because suddenly the Microsoft guide-
line to make all delegate types used in events follow the same convention makes a lot
more sense. In C# 1, it didn’t matter whether two different event handlers looked
quite similar—you had to have a method with an exactly matching signature in order
to create a delegate instance. In C# 2, you may find yourself able to use the same
method to handle many different kinds of events, particularly if the purpose of the
method is fairly event independent, such as logging.

 C# 3 provides special syntax for instantiating delegate types, using lambda expres-
sions. To demonstrate these, we’ll use a new delegate type. When the CLR gained
generics in .NET 2.0, generic delegate types became available and were used in a num-
ber of API calls in generic collections. .NET 3.5 takes things a step further, introducing
a group of generic delegate types called Func that all take parameters of specified
types and return a value of another specified type. The following listing shows the use
of a Func delegate type as well as lambda expressions. 

Func<int,int,string> func = (x, y) => (x * y).ToString();
Console.WriteLine(func(5, 20));

Func<int,int,string> is a delegate type that takes two integers and returns a string.
The lambda expression in listing 2.5 specifies that the delegate instance (held in
func) should multiply the two integers together and call ToString(). The syntax is
much more straightforward than that of anonymous methods, and there are other
benefits in terms of the amount of type inference the compiler is prepared to perform
for you. Lambda expressions are absolutely crucial to LINQ, and you should get ready
to make them a core part of your language toolkit. They’re not restricted to working

Listing 2.5 Lambda expressions—like improved anonymous methods

Uses delegate 
contravariance

F
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with LINQ, though—any use of anonymous methods from C# 2 can use lambda
expressions in C# 3, and that will almost always lead to shorter code.

 To summarize, the new features related to delegates are as follows:

 Generics (generic delegate types)—C# 2 
 Delegate instance creation expressions—C# 2 
 Anonymous methods—C# 2 
 Delegate covariance/contravariance—C# 2 
 Lambda expression—C# 3 

Additionally, C# 4 allows generic covariance and contravariance for delegates, which
goes beyond what you’ve just seen. Indeed, generics form one of the principal
enhancements to the type system, which we’ll look at next. 

2.4.2 Features related to the type system

The primary new feature in C# 2 regarding the type system is the inclusion of gener-
ics. It largely addresses the issues I raised in section 2.2.2 about strongly typed collec-
tions, although generic types are useful in a number of other situations too. As a
feature, it’s elegant, it solves a real problem, and despite a few wrinkles it generally
works well. You’ve seen examples of this in quite a few places already, and it’s
described fully in the next chapter, so I won’t go into any more detail here. Generics
form probably the most important feature in C# 2 with respect to the type system, and
you’ll see generic types throughout the rest of the book.

 C# 2 doesn’t tackle the issues of return type covariance and parameter contravari-
ance for overriding members or implementing interfaces. But it does improve the situ-
ation for creating delegate instances in certain situations, as you saw in section 2.4.1.

 C# 3 introduced a wealth of new concepts in the type system, most notably anony-
mous types, implicitly typed local variables, and extension methods. Anonymous types them-
selves are mostly present for the sake of LINQ, where it’s useful to be able to effectively
create a data transfer type with a bunch of read-only properties without having to actu-
ally write the code for them. There’s nothing to stop them from being used outside
LINQ, though, which makes life easier for demonstrations. Listing 2.6 shows both fea-
tures in action.

var jon = new { Name = "Jon", Age = 31 };
var tom = new { Name = "Tom", Age = 4 };
Console.WriteLine ("{0} is {1}", jon.Name, jon.Age);
Console.WriteLine ("{0} is {1}", tom.Name, tom.Age);

The first two lines each show implicit typing (the use of var) and anonymous object
initializers (the new {...} bit), which create instances of anonymous types.

 There are two things worth noting at this stage, long before we get into the
details—points that have caused people to worry needlessly before. The first is that C#

Listing 2.6 Demonstration of anonymous types and implicit typing
3 is still statically typed. The C# compiler has declared jon and tom to be of a particular
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type, just as normal, and when you use the properties of the objects, they’re normal
properties—no dynamic lookup is going on. It’s just that you (as a source code author)
can’t tell the compiler what type to use in the variable declaration because the com-
piler will be generating the type itself. The properties are also statically typed—here
the Age property is of type int, and the Name property is of type string.

 The second point is that we haven’t created two different anonymous types here.
The variables jon and tom both have the same type because the compiler uses the prop-
erty names, types, and order to work out that it can generate just one type and use it for
both statements. This is done on a per-assembly basis, and makes life a lot simpler in
terms of being able to assign the value of one variable to another (for example, jon =
tom; would be permitted in the previous code) and similar operations.

 Extension methods are also there for the sake of LINQ but can be useful outside it.
Think of all the times you’ve wished that a framework type had a certain method, and
you’ve had to write a static utility method to implement it. For instance, to create a
new string by reversing an existing one, you might write a static StringUtil.Reverse
method. Well, the extension method feature effectively lets you call that static method
as if it existed on the string type itself, so you could write

string x = "dlrow olleH".Reverse();

Extension methods also let you appear to add methods with implementations to
interfaces, and LINQ relies on this heavily, allowing calls to all kinds of methods on
IEnumerable<T> that have never previously existed.

 C# 4 has two features related to the type system. A relatively minor feature is cova-
riance and contravariance for generic delegates and interfaces. This has been present
in the CLR since .NET 2.0 came out, but only with the introduction of C# 4 and
updates to the generic types in the Base Class Library (BCL) has it become usable for
C# developers. A far bigger feature—although one many coders may never need—is
dynamic typing in C#.

 Remember the introduction I gave to static typing, where I tried to use the Length
property of an array and a string via the same variable? Well, in C# 4 it works—when
you want it to. The following listing shows the same code except for the variable decla-
ration, but working as valid C# 4 code.

dynamic o = "hello";
Console.WriteLine(o.Length);
o = new string[] {"hi", "there"};
Console.WriteLine(o.Length);

By declaring the variable o as having a static type of dynamic (yes, you read that right),
the compiler handles almost everything to do with o differently, leaving all the bind-
ing decisions (such as what Length means) until execution time.

 Obviously we’re going to look at dynamic typing in greater depth, but I want to

Listing 2.7 Dynamic typing in C# 4
stress now that C# 4 is still a statically typed language for the most part. Unless you’re
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using the dynamic type (which acts as a static type denoting a dynamic value), every-
thing works exactly the same way as before. Most C# developers will only rarely need
dynamic typing, and for the rest of the time they can ignore it. When dynamic typing
is handy, it can be really slick—and it lets you play nicely with code written in dynamic
languages running on the Dynamic Language Runtime (DLR). I’d just advise you not to
start using C# as a primarily dynamic language. If that’s what you want, use Iron-
Python or something similar; languages that are designed to support dynamic typing
from the ground up are likely to have fewer unexpected gotchas. 

 Here’s the quick-view list of these features, along with which version of C# they’re
introduced in:

 Generics—C# 2
 Limited delegate covariance/contravariance—C# 2
 Anonymous types—C# 3
 Implicit typing—C# 3
 Extension methods—C# 3
 Limited generic covariance/contravariance—C# 4
 Dynamic typing—C# 4

After that fairly diverse set of features on the type system, let’s look at the features
added to one specific part of typing in .NET—value types. 

2.4.3 Features related to value types

There are only two features to talk about here, both introduced in C# 2. The first goes
back to generics yet again, and in particular to collections. One common complaint
about using value types in collections with .NET 1.1 was that due to all of the general-
purpose APIs being specified in terms of the object type, every operation that added a
struct value to a collection would involve boxing it, and you’d have to unbox it when
retrieving it. While boxing is pretty cheap for an individual call, it can cause a signifi-
cant performance hit if it’s used every time with frequently accessed collections. It also
takes more memory than it needs to, due to the per-object overhead. Generics fix
both the speed and memory deficiencies by using the real type involved rather than a
general-purpose object. For example, it would’ve been madness to read a file and
store each byte as an element in an ArrayList in .NET 1.1, but in .NET 2.0 it wouldn’t
be crazy to do the same with a List<byte>.

 The second feature addresses another common cause of complaint, particularly
when talking to databases—the fact that you can’t assign null to a value type variable.
There’s no such concept as an int value of null, for instance, even though a database
integer field may well be nullable. That makes it hard to model the database table
within a statically typed class without ugliness of some form or another. Nullable types
are part of .NET 2.0, and C# 2 includes extra syntax to make them easy to use. The fol-
lowing listing gives a brief example of this.
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int? x = null;
x = 5;
if (x != null)
{

int y = x.Value;
Console.WriteLine (y);

}
int z = x ?? 10;

Listing 2.8 shows a number of the features of nullable types and the shorthand that C#
provides for working with them. We’ll get around to the details of each feature in
chapter 4, but the important point here is how much easier and cleaner all of this is
than any of the workarounds used in the past.

 The list of enhancements is smaller this time, but they’re important features in
terms of both performance and elegance of expression:

 Generics—C# 2
 Nullable types—C# 2

2.5 Summary
This chapter has mostly been a revision exercise for C# 1. The aim wasn’t to cover any
one topic in its entirety, but merely to get everyone on the same page so that I can
describe the later features without worrying about the ground that I’m building on.

 All of the topics we’ve covered are core to C# and .NET, but I’ve seen a lot of mis-
understandings around them within community discussions. Although this chapter
hasn’t gone into much depth about any one point, it’ll hopefully have cleared up any
confusion that would’ve made the rest of the book harder to understand.

 The three core topics we briefly covered in this chapter have all been significantly
enhanced since C# 1, and some features touch on more than one topic. In particular,
the addition of generics has an impact on almost every area we’ve covered in this
chapter—it’s probably the most widely used and important feature in C# 2. Now that
we’ve finished all our preparations, we can start looking at generics properly in the
next chapter.

Listing 2.8 Demonstration of a variety of nullable type features

Declares, sets nullable variable

Tests for presence of real value

Obtains real value

Uses null-coalescing operator



Part 2

C# 2: Solving the
issues of C# 1

In part 1 we took a quick look at a few of the features of C# 2. Now it’s time to
do the job properly. You’ll see how C# 2 fixes various problems that developers
ran into when using C# 1, and how C# 2 makes existing features more useful by
streamlining them. This is no mean feat, and life with C# 2 is much more pleas-
ant than with C# 1.

 The new features in C# 2 have a certain amount of independence. That’s not
to say they’re not related at all; many of the features are based on—or at least
interact with—the massive contribution that generics make to the language. But
the different topics we’ll look at in the next five chapters don’t combine into one
super-feature.

 The first four chapters of this part cover the biggest new features. We’ll look
at the following:

 Generics—The most important new feature in C# 2 (and indeed in the CLR
for .NET 2.0), generics allow type and method parameterization in terms
of the types they interact with.

 Nullable types—Value types such as int and DateTime don’t have any con-
cept of “no value present”; nullable types allow you to represent the
absence of a meaningful value.

 Delegates—Although delegates haven’t changed at the CLR level, C# 2
makes them a lot easier to work with. In addition to a few simple shortcuts,
the introduction of anonymous methods begins the movement toward a

more functional style of programming—a trend that continues in C# 3.



 Iterators—Although using iterators has always been simple in C# with the
foreach statement, it’s a pain to implement them in C# 1. The C# 2 compiler is
happy to build a state machine for you behind the scenes, hiding a lot of the
complexity involved.

Once we’ve covered the major, complex new features of C# 2 with a chapter dedicated
to each one, chapter 7 rounds off the coverage by introducing several simpler fea-
tures. Simpler doesn’t necessarily mean less useful; partial types, in particular, are cru-
cial for better designer support in versions of Visual Studio from 2005 onward. The
same feature is beneficial for other generated code, too. Likewise, many C# develop-
ers take the ability to write a property with a public getter and a private setter for
granted these days, but it was only introduced in C# 2.

 When the first edition of this book was published, many developers still hadn’t
used C# 2 at all. My impression in 2013 is that it’s rare to find someone who’s currently
using C#, but who hasn’t at least dabbled with C# 2, probably 3, and quite often 4. The
topics covered here are fundamental to how later versions of C# work; in particular,
attempting to learn about LINQ without understanding generics and iterators would
be tricky. The chapter on iterators is also related to C# 5’s asynchronous methods; the
two features are very different on the face of it, but both involve state machines built
by the compiler to change the conventional flow of execution.

 If you’ve been using C# 2 and upward for a while, you may find a lot of this part
covers familiar ground, but I suspect you’ll still benefit from a deeper knowledge of
the details presented.



Parameterized typing
with generics
True story:1 The other day my wife and I went out to do our weekly grocery shop-
ping. Just before we left, she asked me if I had the list. I confirmed that I did have
the list, and off we went. It was only when we got to the grocery store that our mis-
take became obvious. My wife had been asking about the shopping list, whereas I’d
brought the list of neat features in C# 2. When we asked an assistant whether we
could buy any anonymous methods, we received a strange look.

This chapter covers
 Type inference for generic methods

 Type constraints

 Reflection and generics

 CLR behavior

 Limitations of generics

 Comparisons with other languages
59

1 By which I mean “convenient for the purposes of introducing the chapter”—not necessarily accurate.
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 If only we could’ve expressed ourselves more clearly! If only she’d had some way of
saying that she wanted me to bring the list of items we wanted to buy! If only we’d had
generics…

 For most developers, generics are the most important new feature of C# 2. They
enhance performance, make your code more expressive, and move a lot of safety
checks from execution time to compile time. Essentially, they allow you to parameterize
types and methods. Just as normal method calls often have parameters to tell them
what values to use, generic types and methods have type parameters to tell them what
types to use. It all sounds confusing to start with—and if you’re completely new to
generics, you can expect a certain amount of head scratching—but once you get the
basic idea, you’ll come to love them.

 In this chapter, we’ll look at how to use generic types and methods that others have
provided (whether in the framework or as third-party libraries), and how to write your
own. Along the way, we’ll look at how generics work with the reflection calls in the API,
and at a bit of detail around how the CLR handles generics. To conclude the chapter,
I’ll present some of the most frequently encountered limitations of generics, along
with possible workarounds, and compare generics in C# with similar features in other
languages.

 First, though, you need to understand the problems that led to generics being
devised in the first place.

3.1 Why generics are necessary
If you still have any C# 1 code available, look at it and count the casts—particularly in
code that uses collections extensively. Don’t forget that almost every use of foreach
contains an implicit cast. When you use types that are designed to work with many dif-
ferent types of data, that naturally leads to casting, quietly telling the compiler not to
worry, that everything’s fine; just treat the expression over there as if it had this partic-
ular type. Using almost any API that has object as either a parameter type or a return
type will probably involve casts at some point. Having a single-class hierarchy with
object as the root makes some things more straightforward, but the object type in
itself is extremely dull, and to do anything genuinely useful with an object you almost
always need to cast it.

 Casts are bad, m’kay? Not bad in an almost never do this kind of way (like mutable
structs and nonprivate fields) but bad in a necessary evil kind of way. They’re an indica-
tion that you ought to give the compiler more information somehow, and that you’re
choosing to ask the compiler to trust you at compile time and to generate a check that
will run at execution time to keep you honest.

 If you need to tell the compiler the information somehow, chances are that anyone
reading your code is also going to need the same information. They can see it where
you’re casting, of course, but that’s not terribly useful. The ideal place to keep such
information is usually at the point where you declare a variable or method. This is

even more important if you’re providing a type or method that other people will call
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without access to your code. Generics allow library providers to prevent their users from
compiling code that calls the library with bad arguments. 

 In C# 1, you had to rely on manually written documentation, which can easily
become incomplete or inaccurate, as duplicate information so often is. When the
extra information can be declared in code as part of a method or type declaration,
everyone can work more productively. The compiler can do more checking; the IDE
can present IntelliSense options based on the extra information (for instance, offer-
ing the members of string as the next step when you access an element within a list
of strings); callers of methods can be more confident that arguments passed in and
values returned are correct; and anyone maintaining your code can better understand
what was running through your head when you originally wrote it.

WILL GENERICS REDUCE YOUR BUG COUNT? Every description of generics I’ve
read (including my own) emphasizes the importance of compile-time type
checking over execution-time type checking. I’ll let you in on a secret: I can’t
remember ever fixing a bug in released code that was directly due to the lack
of type checking. In other words, the casts we put in C# 1 code always worked,
in my experience. Those casts were like warning signs, forcing us to think
about the type safety explicitly rather than it flowing naturally in the code we
wrote. But although generics may not radically reduce the number of type
safety bugs you encounter, the greater readability they afford can reduce the
number of bugs across the board. Code that’s simple to understand is simple
to get right. Likewise, code that has to be robust in the face of malicious call-
ers is much simpler to write correctly when the type system can provide
appropriate guarantees.

All of this would be enough to make generics worthwhile, but there are performance
improvements, too. First, because the compiler can perform more enforcement, that
leaves less to be checked at execution time. Second, the JIT can treat value types in a
particularly clever way that manages to eliminate boxing and unboxing in many situa-
tions. In some cases, this can make a huge difference in performance in terms of both
speed and memory consumption.

 Many of the benefits of generics may strike you as being similar to the benefits of
statically typed languages over dynamic ones: better compile-time checking, more
information expressed directly in the code, more IDE support, better performance.
The reason for this is fairly simple: when you’re using a general API (such as Array-
List) that can’t differentiate between the different types, you effectively are in a
dynamic situation in terms of access to that API. The reverse isn’t generally true, by the
way—the benefits that dynamic languages provide rarely apply to the choice between
generic and nongeneric APIs. When you can reasonably use generics, the decision to
do so is usually a no-brainer.

 So, those are the goodies awaiting you in C# 2—now it’s time to start using generics. 
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3.2 Simple generics for everyday use
The topic of generics has a lot of dark corners if you want to know everything about it.
The C# language specification goes into a great deal of detail in order to make sure
that the behavior is specified in pretty much every conceivable case. But you don’t
need to understand most of those corner cases in order to be productive. (The same is
true in other areas, in fact. For example, you don’t need to know all the exact rules
about definite assignment—you just fix the code appropriately when the compiler
complains.)

 This section will cover most of what you’ll need in your day-to-day use of generics,
both for consuming generic APIs that other people have created and for creating your
own. If you get stuck while reading this chapter but want to keep making progress, I
suggest you concentrate on what you need to know in order to use generic types and
methods within the framework and other libraries; writing your own generic types and
methods crops up a lot less often than using the framework ones.

 We’ll start by looking at one of the collection classes introduced in .NET 2.0—
Dictionary<TKey,TValue>.

3.2.1 Learning by example: a generic dictionary

Using generic types can be straightforward if you don’t happen to hit some of the lim-
itations and start wondering what’s wrong. You don’t even need to know any of the ter-
minology to make a pretty good guess as to what a piece of code will do, and with a bit
of trial and error you could experiment your way to writing your own working code.
(One of the benefits of generics is that more checking is done at compile time, so
you’re more likely to have working code when it all compiles—this makes the experi-
mentation simpler.) Of course, the aim of this chapter is to build your knowledge so
that you won’t be using guesswork—you’ll know what’s going on at every stage.

 For now, let’s look at some code that’s straightforward, even if the syntax is unfa-
miliar. The following listing uses a Dictionary<TKey,TValue> (roughly the generic
equivalent of the nongeneric Hashtable class) to count the frequencies of words in a
given piece of text.

static Dictionary<string,int> CountWords(string text)
{

Dictionary<string,int> frequencies;
frequencies = new Dictionary<string,int>();

string[] words = Regex.Split(text, @"\W+");

foreach (string word in words)
{

if (frequencies.ContainsKey(word))
{

frequencies[word]++;

Listing 3.1 Using a Dictionary<TKey,TValue> to count words in text

Creates new map from 
word to frequency

B

Splits text 
into words

C

Adds to or 
updates map

D

}



63Simple generics for everyday use

else
{

frequencies[word] = 1;
}

}
return frequencies;

}
...
string text = @"Do you like green eggs and ham?

I do not like them, Sam-I-am.
I do not like green eggs and ham.";

Dictionary<string,int> frequencies = CountWords(text);
foreach (KeyValuePair<string,int> entry in frequencies)
{

string word = entry.Key;
int frequency = entry.Value;
Console.WriteLine ("{0}: {1}", word, frequency);

}

The CountWords method first creates an empty map from string to int B. This will
effectively count how often each word is used within the given text. You then use a reg-
ular expression C to split the text into words. It’s crude—you end up with an empty
string due to the period at the end of the text, and do and Do are counted separately.
These issues are easily fixable, but I wanted to keep the code as simple as possible for
this example. 

 For each word, you check whether it’s already in the map. If it is, you increment
the existing count; otherwise, you give the word an initial count of 1 D. Note how the
incrementing code doesn’t need to do a cast to int in order to perform the addition;
the value you retrieve is known to be an int at compile time. The step incrementing
the count is actually performing a get on the indexer for the map, then incrementing,
and then performing a set on the indexer. You may find it easier to keep this explicit,
using frequencies[word] = frequencies[word] + 1; instead.

 The final part of the listing is familiar: enumerating through a Hashtable gives a
similar (nongeneric) DictionaryEntry with Key and Value properties for each
entry E. But in C# 1, you would’ve needed to cast both the word and the frequency,
because the key and value would’ve been returned as just object. That also means
that the frequency would’ve been boxed. Admittedly you don’t have to put the word
and the frequency into variables—you could’ve had a single call to Console.Write-
Line and passed entry.Key and entry.Value as arguments. I included the variables
here to ram home the point that no casting is necessary. 

 Now that you’ve seen an example, let’s look at what it means to talk about
Dictionary<TKey,TValue> in the first place. What are TKey and TValue, and why do
they have angle brackets around them?

Adds to or 
updates map

D

Prints each 
key/value pair 
from map

E
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3.2.2  Generic types and type parameters

There are two forms of generics in C#: generic types (including classes, interfaces, dele-
gates, and structures—there are no generic enums) and generic methods. Both are
essentially ways of expressing an API (whether it’s for a single generic method or a
whole generic type) such that in some places where you’d expect to see a normal type,
you’ll see a type parameter instead.

 A type parameter is a placeholder for a real type. Type parameters appear in angle
brackets within a generic declaration, using commas to separate them. So in
Dictionary<TKey,TValue>, the type parameters are TKey and TValue. When you use
a generic type or method, you specify the real types you want to use. These are called
the type arguments—for example, in listing 3.1 the type arguments were string (for
TKey) and int (for TValue). 

JARGON ALERT! A lot of detailed terminology is involved in generics. I’ve
included it for reference—and because occasionally it makes it easier to talk
about topics precisely. It could also be useful if you ever need to consult the
language specification, but you’re unlikely to need this terminology in day-to-
day life. Just grin and bear it for the moment. A lot of this terminology is
defined in section 4.4 of the C# 5 specification (“Constructed Types”)—look
there for further details.

The form of a generic type where none of the type parameters have been provided with
type arguments is called an unbound generic type. When type arguments are specified, the
type is said to be a constructed type. Unbound generic types are effectively blueprints for
constructed types, much like how types (generic or not) can be regarded as blueprints
for objects. It’s a sort of extra layer of abstraction. Figure 3.1 shows this graphically.

Instance of 
Hashtable

Instantiation

Instance of  
Dictionary<string,int>

Specification of
type arguments

(etc.)

Instance of 
Dictionary<byte,long>

Nongeneric
blueprints

Generic
blueprints

Instantiation Instantiation

Dictionary<TKey,TValue>
(unbound generic type)

Hashtable
Dictionary<string,int>

(constructed type)
Dictionary<byte,long>

(constructed type)

Figure 3.1 Unbound generic types act as blueprints for constructed types, which then act as 

blueprints for actual objects, just as nongeneric types do.
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As a further complication, types can be open or closed. An open type is one that still
involves a type parameter (as one of the type arguments, or as the array element type,
for example), whereas a closed type is one that isn’t open; every aspect of the type is
known precisely. All code actually executes in the context of a closed constructed type.
The only time you’ll see an unbound generic type within C# code (other than as a
declaration) is within the typeof operator, which you’ll meet in section 3.4.4.

 The idea of a type parameter “receiving” information and a type argument “pro-
viding” the information—the dashed lines in figure 3.1—is exactly the same as with
method parameters and arguments, although type arguments have to be types rather
than just arbitrary values. The type argument has to be known at compile time, but it
can be (or can involve) a type parameter from the relevant context.

 You can think of a closed type as having the API of the open type but with the type
parameters being replaced with their corresponding type arguments.2 Table 3.1 shows
some public method and property declarations from the open type Dictionary
<TKey,TValue> and the equivalent member in the closed type you built from it—
Dictionary<string,int>.

One important thing to note is that none of the methods in table 3.1 are actually
generic methods. They’re normal methods within a generic type, and they happen to
use the type parameters declared as part of the type. We’ll look at generic methods in
the next section.

 Now that you know what TKey and TValue mean, and what the angle brackets are
for, you can see what the declarations in table 3.1 would look like within the class dec-
laration. Here’s what the code for Dictionary<TKey,TValue> might look like,
although the actual method implementations are all missing, and there are more
members in reality:

namespace System.Collections.Generic
{

public class Dictionary<TKey,TValue>
: IEnumerable<KeyValuePair<TKey,TValue>>

2 It doesn’t always work exactly that way—there are corner cases that break when you apply that simple rule—

Table 3.1 Examples of how method signatures in generic types contain placeholders, which are 
replaced when the type arguments are specified

Method signature in generic type
Method signature after type parameter 

substitution

void Add(TKey key, TValue value) void Add(string key, int value)

TValue this[TKey key] { get; set; } int this[string key] { get; set; }

bool ContainsValue(TValue value) bool ContainsValue(int value)

bool ContainsKey(TKey key) bool ContainsKey(string key)

Declares 
generic 
class

Implements 
generic 
interface
but it’s an easy way of thinking about generics that works in the vast majority of situations.
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{
public Dictionary() { ... }

public void Add(TKey key, TValue value) { ... }

public TValue this[TKey key]
{

get { ... }
set { ... }

}

public bool ContainsValue(TValue value) { ... }

public bool ContainsKey(TKey key) { ... }

[... other members ...]
}

}

Note how Dictionary<TKey,TValue> implements the generic interface IEnumerable
<KeyValuePair<TKey,TValue>> (and many other interfaces in real life). Whatever
type arguments you specify for the class are applied to the interface where the same
type parameters are used, so in this example, Dictionary<string,int> implements
IEnumerable<KeyValuePair<string,int>>. That’s sort of a doubly generic inter-
face—it’s the IEnumerable<T> interface with the structure KeyValue-

Pair<string,int> as the type argument. It’s because it implements that interface that
listing 3.1 was able to enumerate the keys and values as it did.

 It’s also worth pointing out that the constructor doesn’t list the type parameters in
angle brackets. The type parameters belong to the type rather than to the particular
constructor, so that’s where they’re declared. Members only declare type parameters
when they’re introducing new ones—and only methods can do that.

PRONOUNCING GENERICS If you ever need to describe a generic type to a col-
league, it’s conventional to use “of” to introduce the type parameters or argu-
ments—so List<T> is pronounced “list of T,” for example. In VB, this is part
of the language: the type itself would be written as List(Of T). When there
are multiple type parameters, I find it makes sense to separate them with a
word appropriate to the meaning of the overall type, so I’d talk about a “dic-
tionary of string to int” in order to emphasize the mapping aspect, but a
“tuple of string and int.”

Generic types can effectively be overloaded on the number of type parameters, so you
could define MyType, MyType<T>, MyType<T,U>, MyType<T,U,V>, and so forth, all
within the same namespace. The names of the type parameters aren’t used when con-
sidering this—just how many there are. These types are unrelated except in name—
there’s no default conversion from one to another, for instance. The same is true for
generic methods: two methods can be exactly the same in signature other than the
number of type parameters. Although this may sound like a recipe for disaster, it can
be useful if you want to take advantage of generic type inference where the compiler can

Declares 
parameterless 
constructorDeclares

method
using type
arameters
work out some of the type arguments for you. We’ll come back to that in section 3.3.2.
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NAMING CONVENTIONS FOR TYPE PARAMETERS Although you could have a type
with type parameters T, U, and V, it wouldn’t give much indication of what they
actually meant or how they should be used. Compare this with Dictionary
<TKey,TValue>, where it’s obvious that TKey represents the type of the keys
and TValue represents the type of the values. Where you have a single type
parameter and its meaning is clear, T is conventionally used (List<T> is a good
example of this). Multiple type parameters should usually be named
according to meaning, using the prefix T to indicate a type parameter. Every
so often, you may run into a type with multiple single-letter type parameters
(SynchronizedKeyedCollection<K,T>, for example), but you should try to
avoid creating the same situation yourself.

Now that you have an idea of what generic types do, let’s look at generic methods. 

3.2.3  Generic methods and reading generic declarations

I’ve mentioned generic methods a few times, but we haven’t actually met one yet. You
may find the overall idea of generic methods more confusing than generic types—
they’re somehow less natural for the brain—but it’s the same basic principle. You’re
used to the parameters and return value of a method having firmly specified types,
and you’ve seen how a generic type can use its type parameters in method declara-
tions. Generic methods go one step further: even if you know exactly which con-
structed type you’re dealing with, an individual method can have type parameters too.
Don’t worry if you’re still none the wiser—the concept is likely to click at some point,
after you’ve seen enough examples.

Dictionary<TKey,TValue> doesn’t have any generic methods, but its close neigh-
bor List<T> does. As you can imagine, List<T> is just a list of items of whatever type is
specified—List<string> is a list of strings, for instance. Remembering that T is the
type parameter for the whole class, let’s dissect a generic method declaration.
Figure 3.2 identifies the different parts of the declaration of the ConvertAll method.

 When you look at a generic declaration—whether it’s for a generic type or a
generic method—trying to work out what it means can be daunting, particularly if you
have to deal with generic types of generic types, as you did when you saw the interface
implemented by the dictionary. The key is to not panic—just take things calmly and
pick an example situation. Use a different type for each type parameter, and apply
them all consistently.

List<TOutput> ConvertAll<TOutput>(Converter<T,TOutput> converter)

Return type 
(a generic list)

Parameter type (generic delegate)Method name

Parameter nameType parameter
Figure 3.2 The anatomy of a generic method declaration
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In this case, let’s start by replacing the type parameter of the type containing the
method (the <T> part of List<T>). We’ll stick with the concept of a list of strings and
replace T with string everywhere in the method declaration:

List<TOutput> ConvertAll<TOutput>(Converter<string,TOutput> converter)

That looks a bit better, but you’ve still got TOutput to deal with. You can tell that it’s a
method’s type parameter (apologies for the confusing terminology) because it’s in
angle brackets directly after the name of the method, so let’s try another familiar
type—Guid—as the type argument for TOutput. Again you replace the type parameter
with the type argument everywhere. You can now think of the method as if it were
nongeneric, removing the type parameter part of the declaration:

List<Guid> ConvertAll(Converter<string,Guid> converter)

Now everything is expressed in terms of a concrete type, so it’s easier to think about.
Even though the real method is generic, we’ll treat it as if it weren’t for the sake of
understanding it better. Let’s go through the elements of this declaration from left to
right:

 The method returns a List<Guid>.
 The method’s name is ConvertAll.
 The method has a single parameter: a Converter<string,Guid>

called converter.

Now you just need to know what Converter<string,Guid> is and you’re all done. Not
surprisingly, Converter<string,Guid> is a constructed generic delegate type (the
unbound type is Converter<TInput,TOutput>), which is used to convert a string to a
GUID.

 So you have a method that can operate on a list of strings, using a converter to pro-
duce a list of GUIDs. Now that you understand the method’s signature, it’s easier to
understand the documentation, which confirms that this method does the obvious
thing and creates a new List<Guid>, converts each element in the original list into the
target type, adding it to the new list, and then returns that list. Thinking about the sig-
nature in concrete terms gives you a clearer mental model, and makes it simpler to
think about what the method might do. Although this technique may sound some-
what simplistic, I find it useful for complicated methods even now. Some of the LINQ
method signatures with four type parameters are fearsome beasts, but putting them
into concrete terms tames them significantly.

 Just to prove I haven’t been leading you down the garden path, let’s take a look at
the ConvertAll method in action. The following listing shows the conversion of a list
of integers into a list of floating-point numbers, where each element of the second list
is the square root of the corresponding element in the first list. After the conversion,
the results are printed.
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static double TakeSquareRoot(int x)
{

return Math.Sqrt(x);
}
...
List<int> integers = new List<int>();
integers.Add(1);
integers.Add(2);
integers.Add(3);
integers.Add(4);
Converter<int,double> converter = TakeSquareRoot;
List<double> doubles;
doubles = integers.ConvertAll<double>(converter);
foreach (double d in doubles)
{

Console.WriteLine(d);
}

The creation and population of the list B is straightforward enough—it’s just a
strongly typed list of integers. The assignment to converter C uses a feature of dele-
gates (method group conversions) which is new to C# 2 and which we’ll discuss in
more detail in section 5.2. Although I don’t like using a feature before describing it
fully, the line would’ve been too long to fit on the page with the C# 1 delegate syntax.
It does what you expect it to, though. At D you call the generic method, specifying
the type argument for the method in the same way you’ve seen for generic types. This
is one situation where you could’ve used type inference to avoid explicitly specifying
the type argument, but I wanted to take it one step at a time. Writing out the list that
has been returned is simple, and when you run the code you’ll see it print 1, 1.414…,
1.732…, and 2, as expected.

 What’s the point of all of this? We could’ve just used a foreach loop to go through
the integers and printed out the square root immediately, of course, but it’s not
uncommon to want to convert a list of one type to a list of another by performing
some logic on it. The code to do it manually is simple, but it’s easier to read a version
that does it in a single method call. That’s often the way with generic methods—they
often do things that previously you’d have happily done “longhand” but that are sim-
pler with a method call. Before generics, there could’ve been a similar operation to
ConvertAll on ArrayList converting from object to object, but it would’ve been a
lot less satisfactory. Anonymous methods (see section 5.4) also help here—if you
hadn’t wanted to introduce an extra method, you could’ve specified the conversion
inline. LINQ and lambda expressions take this pattern much further, as you’ll see in
part 3 of the book.

 Note that generic methods can be part of nongeneric types as well. The following
listing shows a generic method being declared and used within a normal nongeneric
type.

Listing 3.2 The List<T>.ConvertAll<TOutput> method in action

Creates, 
populates list 
of integers

B

Creates delegate 
instanceC

Calls generic method 
to convert listD
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static List<T> MakeList<T>(T first, T second)
{

List<T> list = new List<T>();
list.Add(first);
list.Add(second);
return list;

}
...
List<string> list = MakeList<string>("Line 1", "Line 2");
foreach (string x in list)
{

Console.WriteLine (x);
}

The MakeList<T> generic method only needs one type parameter (T). All it does is
build a list containing the two parameters. It’s worth noting that you can use T as a
type argument when you create the List<T> in the method. Just as when we were
looking at generic declarations, you can think of the implementation as (roughly
speaking) replacing all of the mentions of T with string. When you call the method,
you use the same syntax you’ve seen before to specify the type arguments.

 All okay so far? You should now have the hang of simple generics. There’s a bit
more complexity to come, I’m afraid, but if you’re happy with the fundamental idea
of generics, you’ve jumped the biggest hurdle. Don’t worry if it’s still a bit hazy (partic-
ularly when it comes to the open/closed/unbound/constructed terminology), but
now would be a good time to do some experimentation so you can see generics in
action before you go any further. If you haven’t used the generic collections before,
you might want to quickly look at appendix B, which describes what’s available. The
collection types give you a simple starting point for playing with generics, and they’re
widely used in almost every nontrivial .NET program.

 One thing you may find when you experiment is that it’s hard to go only part of
the way. Once you make one part of an API generic, you’ll often find that you need to
rework other code, either making that generic too or putting in the casts required by
the new, more strongly typed method calls. An alternative would be to have a strongly
typed implementation, using generic classes under the covers, but leaving a weakly
typed API for the moment. As time goes on, you’ll become more confident about
when it’s appropriate to use generics. 

3.3 Beyond the basics
The relatively simple uses of generics we’ve looked at so far can get you a long way, but
there are some more features that can help you go further. 

 We’ll start by examining type constraints, which give you more control over which
type arguments can be specified. They’re useful when creating your own generic types
and methods, and you’ll need to understand them in order to know what options are

Listing 3.3 Implementing a generic method in a nongeneric type
available when using the framework, too.
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 We’ll then examine type inference—a handy compiler trick that allows you to not
explicitly state the type arguments when you’re using generic methods. You don’t
have to use it, but it can make your code a lot easier to read when used appropriately.
You’ll see in part 3 of the book that the C# compiler is gradually being allowed to infer
a lot more information from your code, while still keeping the language safe and stati-
cally typed.3

 The last part of this section deals with obtaining the default value of a type param-
eter and the comparisons that are available when you’re writing generic code. We’ll
wrap up with an example that demonstrates most of the features we’ve covered and
that’s a useful class in itself.

 Although this section delves a bit deeper into generics, there’s nothing really hard
about it. There’s plenty to remember, but all the features serve a purpose, and you’ll
be grateful for them when you need them. Let’s get started.

3.3.1 Type constraints

So far, all the type parameters we’ve looked at can be applied to any type at all—
they’re unconstrained. You can have a List<int>, a Dictionary<object,FileMode>,
anything. That’s fine when you’re dealing with collections that don’t have to interact
with what they store, but not all uses of generics are like that. Often you want to call
methods on instances of the type parameter, or create new instances, or make sure
you only accept reference types (or only accept value types). In other words, you want
to specify rules that say which type arguments are considered valid for your generic
type or method. In C# 2, you do this with constraints.

 Four kinds of constraints are available, and the general syntax is the same for all
of them. Constraints come at the end of the declaration of a generic method or type
and are introduced by the contextual keyword where. They can be combined
together in sensible ways, as you’ll see later. First, though, we’ll explore each kind of
constraint in turn.

REFERENCE TYPE CONSTRAINTS

The first kind of constraint ensures that the type argument used is a reference type.
It’s expressed as T : class and must be the first constraint specified for that type
parameter. The type argument can be any class, interface, array, delegate, or another
type parameter that’s already known to be a reference type. For example, consider the
following declaration:

struct RefSample<T> where T : class

Valid closed types using this declaration include

 RefSample<IDisposable>

 RefSample<string>

 RefSample<int[]>
3 Well, aside from any C# 4 code that explicitly uses dynamic typing, anyway.
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Invalid closed types include

 RefSample<Guid>

 RefSample<int>

I deliberately made RefSample a struct (and therefore a value type) to emphasize the
difference between the constrained type parameter and the type itself. RefSample
<string> is still a value type with value semantics everywhere—it just happens to use
the string type wherever T is specified in the code.

 When a type parameter is constrained this way, you can compare references
(including null) with == and !=, but be aware that unless there are any other con-
straints, only references will be compared, even if the type in question overloads those
operators (as string does, for example). With a conversion type constraint
(described shortly), you can end up with compiler guaranteed overloads of == and !=, in
which case those overloads are used—but that’s relatively rare. 

VALUE TYPE CONSTRAINTS

The value type constraint, expressed as T : struct, ensures that the type argument
used is a value type, including enums. It excludes nullable types (as described in chap-
ter 4), though. Let’s look at an example declaration:

class ValSample<T> where T : struct

Valid closed types include

 ValSample<int>

 ValSample<FileMode>

Invalid closed types include

 ValSample<object>

 ValSample<StringBuilder>

This time ValSample is a reference type, despite T being constrained to be a value
type. Note that System.Enum and System.ValueType are both reference types in
themselves, so they aren’t allowed as valid type arguments for ValSample. When a
type parameter is constrained to be a value type, comparisons using == and != are
prohibited.

 I rarely find myself using value or reference type constraints, although you’ll see in
the next chapter that nullable value types rely on value type constraints. The remain-
ing two constraints are likely to prove more useful when you’re writing your own
generic types. 

CONSTRUCTOR TYPE CONSTRAINTS

The constructor type constraint is expressed as T : new() and must be the last constraint
for any particular type parameter. It simply checks that the type argument used has a
parameterless constructor that can be used to create an instance. This is the case for any
value type; for any nonstatic, nonabstract class without any explicitly declared construc-

tors; and for any nonabstract class with an explicit public parameterless constructor.
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C# VERSUS CLI STANDARDS There’s a discrepancy between the C# and CLI
standards when it comes to value types and constructors. The C# specification
states that all value types have a default parameterless constructor, and the
language uses the same syntax to call both explicitly declared constructors
and the parameterless one, relying on the compiler to do the right thing
underneath. The CLI specification has no such requirement but provides a
special instruction to create a default value without specifying any parame-
ters. You can see this discrepancy at work when you use reflection to find the
constructors of a value type—you won’t see a parameterless one.

Again, let’s look at a quick example, this time for a method. Just to show how it’s use-
ful, I’ll give the implementation of the method too:

public T CreateInstance<T>() where T : new()
{

return new T();
}

This method returns a new instance of whatever type you specify, provided that it has a
parameterless constructor. That means calls to CreateInstance<int>() and Create-
Instance<object>() are okay, but CreateInstance<string>() isn’t, because string
doesn’t have a parameterless constructor.

 There’s no way of constraining type parameters to force other constructor signa-
tures. For instance, you can’t specify that there has to be a constructor taking a single
string parameter. It can be frustrating, but that’s unfortunately just the way it is. We’ll
look at this issue in more detail when we consider the various restrictions of .NET
generics in section 3.5.

 Constructor type constraints can be useful when you need to use factory-like pat-
terns, where one object will create another one as and when it needs to. Factories
often need to produce objects that are compatible with a certain interface, of course,
and that’s where our last type of constraint comes in. 

CONVERSION TYPE CONSTRAINTS

The final (and most complicated) kind of constraint lets you specify another type that
the type argument must be implicitly convertible to via an identity, reference, or box-
ing conversion. You can specify that one type argument be convertible to another type
argument, too—this is called a type parameter constraint. These constraints make it
harder to understand the declaration, but they can be handy every so often. Table 3.2
shows some examples of generic type declarations with conversion type constraints,
along with valid and invalid examples of corresponding constructed types.

 The third constraint in table 3.2, T : IComparable<T>, is just one example of using
a generic type as the constraint. Other variations, such as T : List<U> (where U is
another type parameter) and T : IList<string>, are also fine. 
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You can specify multiple interfaces, but only one class. For instance, this is fine (if
hard to satisfy):

class Sample<T> where T : Stream,
  IEnumerable<string>,
  IComparable<int>

But this isn’t:

class Sample<T> where T : Stream,
  ArrayList,
  IComparable<int>

No type can derive directly from more than one class anyway, so such a constraint
would usually either be impossible (like the preceding one) or part of it would be
redundant (specifying that the type had to derive from both Stream and Memory-
Stream, for example). 

 There’s one more set of restrictions: the type you specify can’t be a value type, a
sealed class (such as string), or any of the following “special” types:

 System.Object

 System.Enum

 System.ValueType

 System.Delegate

WORKING AROUND THE LACK OF ENUM AND DELEGATE CONSTRAINTS The inabil-
ity to specify the preceding types in conversion type constraints sounds like
it’s due to a CLR restriction—but it’s not. That may have been true historically
(at some point when generics were still being designed), but if you construct
the appropriate code in IL, it works fine. The CLI specification even lists
enum and delegate constraints as examples and explains what would be valid
and what wouldn’t. This is frustrating, and there are plenty of generic meth-
ods that would be useful when restricted to delegates or enums. I have an

Table 3.2 Examples of conversion type constraints

Declaration Constructed type examples

class Sample<T> where T : Stream Valid: Sample<Stream> (identity conversion)
Invalid: Sample<string>

struct Sample<T> where T : IDisposable Valid: Sample<SqlConnection> 
        (reference conversion)
Invalid: Sample<StringBuilder>

class Sample<T> where T : IComparable<T> Valid: Sample<int> (boxing conversion)
Invalid: Sample<FileInfo>

class Sample<T,U> where T : U Valid: Sample<Stream,IDisposable>
        (reference conversion)
Invalid: Sample<string,IDisposable>
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open source project called Unconstrained Melody (http://code.google.com/
p/unconstrained-melody/), which performs some hackery to build a class
library that does have these constraints on various utility methods. Although
the C# compiler won’t let you declare such constraints, it’s happy to apply
them when you call the methods in the library. Perhaps the prohibition will
be lifted in a future version of C#.

Conversion type constraints are probably the most useful kind, as they mean you can
use members of the specified type on instances of the type parameter. One particu-
larly handy example of this is T : IComparable<T>, which enables you to compare two
instances of T meaningfully and directly. We’ll look at an example of this (and discuss
other forms of comparison) in section 3.3.3. 

COMBINING CONSTRAINTS

I’ve mentioned the possibility of having multiple constraints, and you’ve seen them in
action for conversion type constraints, but I haven’t shown the different kinds being
combined together. Obviously no type can be both a reference type and a value type,
so that combination is forbidden. Likewise, every value type has a parameterless con-
structor, so you can’t specify the construction constraint when you already have a value
type constraint (although you can still use new T() within methods if T is constrained
to be a value type). If you have multiple conversion type constraints and one of them
is a class, that has to come before the interfaces—and you can’t specify the same inter-
face more than once. Different type parameters can have different constraints, and
they’re each introduced with a separate where.

 Let’s look at some valid and invalid examples:

Valid:
class Sample<T> where T : class, IDisposable, new()
class Sample<T> where T : struct, IDisposable
class Sample<T,U> where T : class where U : struct, T
class Sample<T,U> where T : Stream where U : IDisposable

Invalid:
class Sample<T> where T : class, struct
class Sample<T> where T : Stream, class
class Sample<T> where T : new(), Stream
class Sample<T> where T : IDisposable, Stream
class Sample<T> where T : XmlReader, IComparable, IComparable
class Sample<T,U> where T : struct where U : class, T
class Sample<T,U> where T : Stream, U : IDisposable

I included the last example in each list because it’s so easy to try the invalid one
instead of the valid version, and the compiler error isn’t at all helpful. Just remember
that each list of type parameter constraints needs its own introductory where. The
third valid example is interesting—if U is a value type, how can it derive from T, which
is a reference type? The answer is that T could be an object or an interface that U
implements. It’s a pretty nasty constraint, though.

http://code.google.com/p/unconstrained-melody/
http://code.google.com/p/unconstrained-melody/
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SPECIFICATION TERMINOLOGY The specification categorizes constraints
slightly differently—into primary constraints, secondary constraints, and con-
structor constraints. A primary constraint is a reference type constraint, a value
type constraint, or a conversion type constraint using a class. A secondary con-
straint is a conversion type constraint using an interface or another type
parameter. I don’t find these particularly useful categories, but they make it
easier to define the grammar of constraints: the primary constraint is optional
but you can only have one; you can have as many secondary constraints as you
like; the constructor constraint is optional (unless you have a value type con-
straint, in which case it’s forbidden).

Now that you know all you need to read generic type declarations, let’s look at the
type argument inference that I mentioned earlier. In listing 3.2 you explicitly stated
the type arguments to List<T>.ConvertAll, and you did the same in listing 3.3 for
the MakeList method—now let’s ask the compiler to work them out when it can, mak-
ing it simpler to call generic methods. 

3.3.2 Type inference for type arguments of generic methods

 Specifying type arguments when you’re calling a generic method can often seem
pretty redundant. Usually it’s obvious what the type arguments should be, based on
the method arguments themselves. To make life easier, from C# 2 onward, the com-
piler is allowed to be smart in tightly defined ways, so you can call the method without
explicitly stating the type arguments. But before we go any further, I should stress that
this is only true for generic methods. It doesn’t apply to generic types.

 Let’s look at the relevant lines from listing 3.3 and see how things can be simpli-
fied. Here are the lines declaring and invoking the method:

static List<T> MakeList<T>(T first, T second)
...
List<string> list = MakeList<string>("Line 1", "Line 2");

Look at the arguments—they’re both strings. Each of the parameters in the method is
declared to be of type T. Even if you didn’t have the <string> part of the method invo-
cation expression, it would be fairly obvious that you meant to call the method using
string as the type argument for T. The compiler allows you to omit it, leaving this:

List<string> list = MakeList("Line 1", "Line 2");

That’s a bit neater, isn’t it? At least, it’s shorter. That doesn’t always mean it’s more
readable, of course. In some cases it’ll be harder for the reader to work out what type
arguments you’re trying to use, even if the compiler can do it easily. I recommend that
you judge each case on its merits. My personal preference is to let the compiler infer
the type arguments in most cases where it works.

 Note how the compiler definitely knows that you’re using string as the type argu-
ment, because the assignment to list works too, and that still does specify the type
argument (and has to). The assignment has no influence on the type argument

inference process, though. It just means that if the compiler works out what type
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arguments it thinks you want to use but gets it wrong, you’re still likely to get a
compile-time error.

 How could the compiler get it wrong? Suppose you actually want to use object as
the type argument. The method parameters are still valid, but the compiler thinks you
meant to use string, as they’re both strings. Changing one of the parameters to
explicitly be cast to object makes type inference fail, as one of the method arguments
would suggest that T should be string, and the other suggests that T should be
object. The compiler could look at this and say that setting T to object would satisfy
everything but setting T to string wouldn’t, but the specification only has a limited
number of steps to follow. This subject is fairly complicated in C# 2, and C# 3 takes
things even further. I won’t try to cover all the nuts and bolts of the C# 2 rules here,
but the basic steps are as follows:

1 For each method argument (the bits in normal parentheses, not angle brack-
ets), try to infer some of the type arguments of the generic method, using some
fairly simple techniques.

2 Check that all the results from the first step are consistent. In other words, if
one argument implied one type argument for a particular type parameter, and
another implied a different type argument for the same type parameter, then
inference fails for the method call.

3 Check that all the type parameters needed for the generic method have been
inferred. You can’t let the compiler infer some while you specify others explic-
itly—it’s all or nothing.

To avoid learning all the rules (and I wouldn’t recommend it unless you’re particu-
larly interested in the fine details), there’s one simple thing to do: try it and see what
happens. If you think the compiler might be able to infer all the type arguments, try
calling the method without specifying any. If it fails, stick the type arguments in explic-
itly. You lose nothing more than the time it takes to compile the code once, and you
don’t need to have all the extra language-lawyer garbage in your head.

 To make it easier to use generic types, type inference can be combined with the
idea of overloading type names based on the number of type parameters. We’ll look at
an example of this in a while, when we put everything together. 

3.3.3 Implementing generics

You’re likely to spend more time using generic types and methods than writing them
yourself. Even when you’re providing the implementation, you can usually just pre-
tend that T (or whatever your type parameter is called) is the name of a type and get
on with writing code as if you weren’t using generics at all. But there are a few extra
things you should know.

DEFAULT VALUE EXPRESSIONS

When you know exactly what type you’re working with, you know its default value—

the value an otherwise uninitialized field would have, for instance. When you don’t
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know what type you’re referring to, though, you can’t specify that default value
directly. You can’t use null because it might not be a reference type. You can’t use 0
because it might not be a numeric type. 

 It’s fairly rare to need the default value, but it can be useful on occasion. Dictionary
<TKey,TValue> is a good example—it has a TryGetValue method that works a bit like
the TryParse methods on the numeric types: it uses an output parameter for the value
you’re trying to fetch and a Boolean return value to indicate whether it succeeded. This
means that the method has to have some value of type TValue to populate the output
parameter with. (Remember that output parameters must be assigned before the
method returns normally.)

THE TRYXXX PATTERN A few patterns in .NET are easily identifiable by the
names of the methods involved—BeginXXX and EndXXX suggest an asynchro-
nous operation, for example. The TryXXX pattern is one that has had its use
expanded from .NET 1.1 to 2.0. It’s designed for situations that might nor-
mally be considered to be errors (in that the method can’t perform its pri-
mary duty), but where failure could well occur without indicating a serious
issue, and shouldn’t be deemed exceptional. For instance, users often fail to
type in numbers correctly, so being able to try to parse some text without hav-
ing to catch an exception and swallow it is useful. Not only does it improve
performance in the failure case, but more importantly, it saves exceptions for
genuine error cases where something is wrong in the system (however widely
you wish to interpret that). It’s a useful pattern to have up your sleeve as a
library designer, when applied appropriately.

C# 2 provides the default value expression to care for just this need. The specification
doesn’t refer to it as an operator, but you can think of it as being similar to the typeof
operator, just returning a different value. The following listing shows this in a generic
method, and also gives an example of type inference and a conversion type constraint
in action.

static int CompareToDefault<T>(T value)
where T : IComparable<T>

{
return value.CompareTo(default(T));

}
...
Console.WriteLine(CompareToDefault("x"));
Console.WriteLine(CompareToDefault(10));
Console.WriteLine(CompareToDefault(0));
Console.WriteLine(CompareToDefault(-10));
Console.WriteLine(CompareToDefault(DateTime.MinValue));

Listing 3.4 shows a generic method being used with three different types: string,
int, and DateTime. The CompareToDefault method dictates that it can only be used

Listing 3.4 Comparing a given value to the default in a generic way
with types implementing the IComparable<T> interface, which allows you to call
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CompareTo(T) on the value passed in. The other value you use for the comparison is
the default value for the type. As string is a reference type, the default value is null,
and the documentation for CompareTo states that for reference types, everything
should be greater than null, so the first result is 1. The next three lines show compar-
isons with the default value of int, demonstrating that the default value is 0. The out-
put of the last line is 0, showing that DateTime.MinValue is the default value for
DateTime.

 Of course, the method in listing 3.4 will fail if you pass it null as the argument—
the line calling CompareTo will throw NullReferenceException in the normal way.
Don’t worry about that for the moment—there’s an alternative using IComparer<T>,
as you’ll see soon. 

DIRECT COMPARISONS

Although listing 3.4 showed how a comparison is possible, you won’t always want to con-
strain your types to implement IComparable<T> or its sister interface, IEquatable<T>,
which provides a strongly typed Equals(T) method to complement the Equals
(object) method that all types have. Without the extra information these interfaces
give you access to, there’s little you can do in terms of comparisons, other than calling
Equals(object), which will result in boxing the value you want to compare with when
it’s a value type. (There are a couple of types to help you in some situations—we’ll come
to them in a minute.)

 When a type parameter is unconstrained (no constraints are applied to it), you can
use the == and != operators, but only to compare a value of that type with null; you
can’t compare two values of type T with each other. When the type argument is a refer-
ence type, the normal reference comparison will be used. In the case where the type
argument provided for T is a non-nullable value type, a comparison with null will
always decide that they’re unequal (so the comparison can be removed by the JIT
compiler). When the type argument is a nullable value type, the comparison will
behave in the natural way, making the comparison against the null value of the type.4

(Don’t worry if this last bit doesn’t make sense yet—it will when you’ve read the next
chapter. Some features are too intertwined to allow me to describe either of them
completely without referring to the other, unfortunately.)

 When a type parameter is constrained to be a value type, == and != can’t be used
with it at all. When it’s constrained to be a reference type, the kind of comparison
performed depends on how the type parameter is constrained. If the only constraint
is that it’s a reference type, simple reference comparisons are performed. If it’s fur-
ther constrained to derive from a particular type that overloads the == and != opera-
tors, those overloads are used. Beware, though—extra overloads that happen to be
made available by the type argument specified by the caller are not used. The next

4 At the time of this writing (testing with .NET 4.5 and earlier), the code generated by the JIT compiler for com-
paring unconstrained type parameter values against null is extremely slow for nullable value types. If you
constrain a type parameter T to be non-nullable and then compare a value of type T? against null, that com-

parison is much faster. This shows some scope for future JIT optimization.
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listing demonstrates this with a simple reference type constraint and a type argument
of string.

static bool AreReferencesEqual<T>(T first, T second)
where T : class

{
return first == second;

}
...
string name = "Jon";
string intro1 = "My name is " + name;
string intro2 = "My name is " + name;
Console.WriteLine(intro1 == intro2);
Console.WriteLine(AreReferencesEqual(intro1, intro2));

Even though string overloads == (as demonstrated by the comparison at C printing
True), this overload isn’t used by the comparison at B. Basically, when AreReferences-
Equal<T> is compiled, the compiler doesn’t know what overloads will be available—it’s
as if the parameters passed in were of type object.

 This isn’t specific to operators—on encountering a generic type, the compiler
resolves all the method overloads when compiling the unbound generic type, rather
than reconsidering each possible method call for more specific overloads at execution
time. For instance, a statement of Console.WriteLine(default(T)); will always
resolve to a call to Console.WriteLine(object value)—it doesn’t call Console
.WriteLine(string value) when T happens to be string. This is similar to the nor-
mal situation of overloads being chosen at compile time rather than execution time,
but readers familiar with templates in C++ may be surprised nonetheless.5

 Two classes that are extremely useful when it comes to comparing values are
EqualityComparer<T> and Comparer<T>, both in the System.Collections.Generic
namespace. They implement IEqualityComparer<T> and IComparer<T>, respectively,
and the Default property returns an implementation that generally does the right
thing for the appropriate type.

THE GENERIC COMPARISON INTERFACES There are four main generic inter-
faces for comparisons. Two of them—IComparer<T> and IComparable<T>—
are about comparing values for ordering (is one value less than, equal to, or
greater than the other?), and the other two—IEqualityComparer<T> and
IEquatable<T>—are for comparing two items for equality according to some
criteria and for finding the hash of an item (in a manner compatible with the
same notion of equality).

Splitting the four another way, IComparer<T> and IEqualityComparer<T>
are implemented by types that are capable of comparing two different values,
whereas an instance of IComparable<T> or IEquatable<T> is capable of com-
paring itself with another value. 

Listing 3.5 Comparisons using == and != performing reference comparisons

Compares 
references

B

Compares using 
string overload

C

5 You’ll see in chapter 14 that dynamic typing provides the ability to resolve overloads at execution time.
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See the documentation for more details, and consider using these (and similar types
such as StringComparer) when performing comparisons. We’ll use Equality-
Comparer<T> in the next example. 

FULL COMPARISON EXAMPLE: REPRESENTING A PAIR OF VALUES

To finish off our section on implementing generics, here’s a complete example. It
implements a useful generic type—a Pair<T1,T2> that holds two values together, like
a key/value pair, but with no expectations as to the relationship between the two values.

.NET 4 AND TUPLES .NET 4 provides a lot of this functionality out of the box—
and for many different numbers of type parameters, too. Look for Tuple<T1>,
Tuple<T1,T2>, and so on in the System namespace.

In addition to providing properties to access the values themselves, you’ll override
Equals and GetHashCode to allow instances of your type to play nicely when used as
keys in a dictionary. The following listing gives the complete code.

using System;
using System.Collections.Generic;

public sealed class Pair<T1, T2> : IEquatable<Pair<T1, T2>>
{

private static readonly IEqualityComparer<T1> FirstComparer =
EqualityComparer<T1>.Default;

private static readonly IEqualityComparer<T2> SecondComparer =
EqualityComparer<T2>.Default;

private readonly T1 first;
private readonly T2 second;

public Pair(T1 first, T2 second)
{

this.first = first;
this.second = second;

}

public T1 First { get { return first; } }

public T2 Second { get { return second; } }

public bool Equals(Pair<T1, T2> other)
{

return other != null &&
FirstComparer.Equals(this.First, other.First) &&
SecondComparer.Equals(this.Second, other.Second);

}

public override bool Equals(object o)
{

return Equals(o as Pair<T1, T2>);
}

Listing 3.6  Generic class representing a pair of values
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public override int GetHashCode()
{

return FirstComparer.GetHashCode(first) * 37 +
SecondComparer.GetHashCode(second);

}
}

Listing 3.6 is straightforward. The constituent values are stored in appropriately typed
member variables, and access is provided by simple read-only properties. You imple-
ment IEquatable<Pair<T1,T2>> to give a strongly typed API that’ll avoid unnecessary
execution-time checks. The equality and hash-code computations both use the default
equality comparer for the two type parameters—these handle nulls automatically,
which makes the code somewhat simpler. The static variables used to store the equal-
ity comparers for T1 and T2 are mostly there for the sake of formatting the code for
the printed page, but they’ll also be useful as a reference point in the next section.

CALCULATING HASH CODES The formula used for calculating the hash code
based on the two “part” results comes from Effective Java, 2nd edition (Addi-
son-Wesley, 2008), by Joshua Bloch. It certainly doesn’t guarantee a good dis-
tribution of hash codes, but in my opinion it’s better than using a bitwise
exclusive OR. See Effective Java for more details, and for many other useful tips
and design insights.

Now that you have your Pair class, how do you construct an instance of it? At the
moment, you’d need to use something like this:

Pair<int,string> pair = new Pair<int,string>(10, "value");

That’s not terribly nice. It would be good to use type inference, but that only works for
generic methods, and you don’t have any of those. If you put a generic method in the
generic type, you’d still need to specify the type arguments for the type before you
could call a method on it, which would defeat the purpose. The solution is to use a
nongeneric helper class with a generic method in it, as shown in the following listing.

public static class Pair
{

public static Pair<T1,T2> Of<T1,T2>(T1 first, T2 second)
{

return new Pair<T1,T2>(first, second);
}

}

If this is your first time reading this book, ignore the fact that the class is declared to
be static—we’ll come to that in chapter 7. The important point is that you have a non-
generic class with a generic method. That means you can turn the previous example
into this far-more-pleasant version:

Listing 3.7 Using a nongeneric type with a generic method to enable type inference
Pair<int,string> pair = Pair.Of(10, "value");
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In C# 3 you could even dispense with the explicit typing of the pair variable, but let’s
not get ahead of ourselves. This use of nongeneric helper classes (or partially generic
helper classes, if you have two or more type parameters and want to infer some of
them but leave others explicit) is a handy trick.

 We’ve finished looking at the intermediate features now. I realize it can all seem
complicated at first, but don’t be put off; the benefits of generics far outweigh the
added complexity. Over time, they become second nature. Now that you have the
Pair class as an example, it might be worth looking over your own code base to see
whether there are some patterns that you keep reimplementing solely to use differ-
ent types. 

 In any large topic there’s always more to learn. The next section will take you
through the most important advanced topics in generics. If you’re feeling over-
whelmed at this point, you might want to skip to the relative comfort of section 3.5,
where we’ll explore some of the limitations of generics. It’s worth understanding the
topics in the next section eventually, but if everything so far has been new to you, it
won’t hurt to skip it for the moment. 

3.4 Advanced generics
You may expect me to claim that in the rest of this chapter we’ll cover every aspect of
generics that we haven’t looked at so far. But there are so many little nooks and cran-
nies involving generics that it’s simply not possible—and I certainly wouldn’t want to
read about all the details, let alone write about them. Fortunately, the nice people at
Microsoft and ECMA have written down all the details in the language specification, so
if you ever want to check some obscure situation that isn’t covered here, that should
be your next port of call. Unfortunately I can’t point to one particular area of the
specification that covers generics: they pop up almost everywhere. Arguably, if your
code ends up in a corner case so complicated that you need to consult the specifica-
tion to work out what it should do, you should refactor it into a more obvious form
anyway; you don’t want each maintenance engineer from now until eternity to have to
read the gory details.

 My aim with this section is to cover everything you’re likely to want to know about
generics. I’ll talk more about the CLR and the framework side of things than the par-
ticular syntax of the C# 2 language, although it’s all relevant when developing in C#.
We’ll start by considering static members of generic types, including type initializa-
tion. From there, it’s a natural step to wonder how all this is implemented under the
covers, but we’ll keep it fairly light on detail, concentrating on the important effects of
the implementation decisions. We’ll look at what happens when you enumerate a
generic collection using foreach in C# 2, and round off the section by seeing how
reflection in the .NET Framework is affected by generics.
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3.4.1 Static fields and static constructors

Just as instance fields belong to an instance, static fields belong to the type they’re
declared in. If you declare a static field x in class SomeClass, there’s exactly one Some-
Class.x field, no matter how many instances of SomeClass you create, and no matter
how many types derive from SomeClass.6 That’s the familiar scenario from C# 1—so
how does it map across to generics?

 The answer is that each closed type has its own set of static fields. You saw this in list-
ing 3.6 when you stored the default equality comparers for T1 and T2 in static fields,
but let’s look at it in more detail with another example. The following listing creates a
generic type including a static field. You set the field’s value for different closed types
and then print out the values to show that they’re separate.

class TypeWithField<T>
{

public static string field;
public static void PrintField()
{

Console.WriteLine(field + ": " + typeof(T).Name);
}

}
...
TypeWithField<int>.field = "First";
TypeWithField<string>.field = "Second";
TypeWithField<DateTime>.field = "Third";

TypeWithField<int>.PrintField();
TypeWithField<string>.PrintField();
TypeWithField<DateTime>.PrintField();

You set the value of each field to a different value and then print out each field along
with the name of the type argument used for that closed type. Here’s the output from
listing 3.8:

First: Int32
Second: String
Third: DateTime

The basic rule is one static field per closed type. The same applies for static initializers
and static constructors. But it’s possible to have one generic type nested within
another, and types with multiple generic parameters. This sounds a lot more compli-
cated, but it works as you probably think it should. The following listing shows this in
action, this time using static constructors to show just how many types there are.

6 Well, there’s one per application domain. For the purposes of this section, we’ll assume we’re only dealing
with one application domain. The concepts for different application domains work the same with generics as

Listing 3.8 Proof that different closed types have different static fields
with nongeneric types. Variables decorated with [ThreadStatic] violate this rule, too.
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public class Outer<T>
{

public class Inner<U,V>
{

static Inner()
{

Console.WriteLine("Outer<{0}>.Inner<{1},{2}>",
typeof(T).Name,
typeof(U).Name,
typeof(V).Name);

}
public static void DummyMethod() {}

}
}
...
Outer<int>.Inner<string,DateTime>.DummyMethod();
Outer<string>.Inner<int,int>.DummyMethod();
Outer<object>.Inner<string,object>.DummyMethod();
Outer<string>.Inner<string,object>.DummyMethod();
Outer<object>.Inner<object,string>.DummyMethod();
Outer<string>.Inner<int,int>.DummyMethod();

The first call to DummyMethod() for any type will cause the type to be initialized, at
which point the static constructor prints out some diagnostics. Each different list of
type arguments counts as a different closed type, so the output of listing 3.9 looks like
this:

Outer<Int32>.Inner<String,DateTime>
Outer<String>.Inner<Int32,Int32>
Outer<Object>.Inner<String,Object>
Outer<String>.Inner<String,Object>
Outer<Object>.Inner<Object,String>

Just as with nongeneric types, the static constructor for any closed type is only exe-
cuted once, which is why the last line of listing 3.9 doesn’t create a sixth line of out-
put—the static constructor for Outer<string>.Inner<int,int> executed earlier,
producing the second line of output. 

 To clear up any doubts, if you had a nongeneric PlainInner class inside Outer,
there still would’ve been one possible Outer<T>.PlainInner type per closed Outer
type, so Outer<int>.PlainInner would be separate from Outer<long>.PlainInner,
with a separate set of static fields, as seen earlier.

 Now that you’ve seen what constitutes a different type, we should look at what the
effects of that might be in terms of the amount of native code generated. And no, it’s
not as bad as you might think… 

3.4.2 How the JIT compiler handles generics

Given that we have all of these different closed types, the JIT’s job is to convert the IL

Listing 3.9 Static constructors with nested generic types
of the generic type into native code so it can actually be run. In some ways, you
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shouldn’t care exactly how it does that—beyond keeping a close eye on memory and
CPU time, you wouldn’t see much difference if the JIT took the simplest possible
approach and generated native code for each closed type separately, as if each one
had nothing to do with any other type. But the JIT authors are clever enough that it’s
worth looking at what they’ve done.

 Let’s start with a simple situation first, with a single type parameter—we’ll use
List<T> for the sake of convenience. The JIT creates different code for each closed
type with a type argument that’s a value type—int, long, Guid, and the like. But it
shares the native code generated for all the closed types that use a reference type as the
type argument, such as string, Stream, and StringBuilder. It can do this because all
references are the same size (the size varies between a 32-bit CLR and a 64-bit CLR, but
within any one CLR all references are the same size). An array of references will always
be the same size, whatever the references happen to be. The space required on the
stack for a reference will always be the same. The JIT can use the same optimizations to
store references in registers regardless of the type—the List<Reason> goes on.

 Each of the types still has its own static fields, as described in section 3.4.1, but the
executable code itself is reused. Of course, the JIT does all of this lazily—it won’t gen-
erate the code for List<int> before it needs to, and it’ll cache that code for all future
uses of List<int>. 

 In theory, it’s possible to share code for at least some value types. The JIT would
have to be careful, not just due to size, but also for garbage collection reasons—it
would have to be able to quickly identify areas of a struct value that are live references.
But value types that are the same size and have the same in-memory footprint as far as
the garbage collector is concerned could share code. At the time of this writing, that’s
been of sufficiently low priority that it hasn’t been implemented, and it may well stay
that way.

 This level of detail is primarily of academic interest, but it does have a slight perfor-
mance impact in terms of more code being JIT compiled. The performance benefits of
generics can be huge, though, and again that comes down to having the opportunity to
compile to different code for different types. Consider a List<byte>, for instance. In
.NET 1.1, adding individual bytes to an ArrayList would’ve meant boxing each one of
them and storing a reference to each boxed value. Using List<byte> has no such
impact—List<T> has a member of type T[] to replace the object[] within ArrayList,
and that array is of the appropriate type, taking the appropriate space. List<byte> has
a straight byte[] within it used to store the elements of the array. (In many ways, this
makes a List<byte> behave like a MemoryStream.)

 Figure 3.3 shows an ArrayList and a List<byte>, each with the same six values.
The arrays themselves have more than six elements, to allow for growth. Both List<T>
and ArrayList have a buffer, and they create a larger buffer when they need to.

 The difference in efficiency here is incredible. Let’s look at the ArrayList first, con-
sidering a 32-bit CLR.7 Each of the boxed bytes will take up 8 bytes of object overhead,
7 When running on a 64-bit CLR, the overheads are bigger.
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plus 4 bytes (1 byte, rounded up to a word boundary) for the data itself. On top of that,
you have all the references themselves, each of which takes up 4 bytes. So for each byte
of useful data, you’re paying at least 16 bytes—and then there’s the extra unused space
for references in the buffer.

 Compare this with the List<byte>. Each byte in the list takes up a single byte
within the elements array. There’s still wasted space in the buffer, waiting to be used by
new items, but at least you’re only wasting a single byte per unused element there.

 You don’t just gain space, you gain execution speed, too. You save the time taken to
allocate the box, to perform the type checking involved in unboxing the bytes in order
to get at them, and to garbage collect the boxes when they’re no longer referenced.

 You don’t have to go down to the CLR level to find things happening transparently
on your behalf, though. C# has always made life easier with syntactic shortcuts, and
the next section looks at a familiar example but with a generic twist: iterating with
foreach. 

3.4.3 Generic iteration

One of the most common operations you’ll want to perform on a collection is to iter-
ate through all its elements. Usually, the simplest way of doing that is to use the
foreach statement. In C# 1, this relied on the collection either implementing the
System.Collections.IEnumerable interface or having a similar GetEnumerator()
method that returned a type with a suitable MoveNext() method and a Current prop-
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Figure 3.3 Visual demonstration of why List<T> takes up a lot less space than ArrayList
when storing value types
erty. The Current property didn’t have to be of type object, and that was the whole
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point of having these extra rules, which look odd at first sight. Yes, even in C# 1 you
could avoid boxing and unboxing during iteration if you had a custom iteration type.

 C# 2 makes this somewhat easier, as the rules for the foreach statement have been
extended to also use the System.Collections.Generic.IEnumerable<T> interface
along with its partner, IEnumerator<T>. These are simply the generic equivalents of
the old iteration interfaces, and they’re used in preference to the nongeneric ver-
sions. This means that if you iterate through a generic collection of value type ele-
ments—List<int>, for example—then no boxing is performed at all. If the old
interface had been used instead, you wouldn’t have incurred the boxing cost while
storing the elements of the list, but you’d still have ended up boxing them when you
retrieved them using foreach.

 All of this is done for you under the covers—all you need to do is use the foreach
statement in the normal way, using an appropriate type for the iteration variable, and
all will be well. That’s not the end of the story, though. In the relatively rare situation
where you need to implement iteration over one of your own types, you’ll find that
IEnumerable<T> extends the old IEnumerable interface, which means you have to
implement two different methods:

IEnumerator<T> GetEnumerator();
IEnumerator GetEnumerator();

Can you see the problem? The methods differ only in return type, and the overloading
rules of C# prevent you from writing two such methods normally. Back in section 2.2.2,
you saw a similar situation, and you can use the same workaround here. If you imple-
ment IEnumerable using explicit interface implementation, you can implement
IEnumerable<T> with a “normal” method. Fortunately, because IEnumerator<T>
extends IEnumerator, you can use the same return value for both methods and imple-
ment the nongeneric method by just calling the generic version. Of course, now you
need to implement IEnumerator<T> and you quickly run into similar problems, this
time with the Current property.

 The following listing gives a full example, implementing an enumerable class that
always enumerates the integers 0 to 9.

class CountingEnumerable: IEnumerable<int>
{

public IEnumerator<int> GetEnumerator()
{

return new CountingEnumerator();
}

IEnumerator IEnumerable.GetEnumerator()
{

return GetEnumerator();
}

}

Listing 3.10 A full generic iterator—of the numbers 0 to 9

Implements 
IEnumerable<T> 
implicitlyB

Implements 
IEnumerable 
explicitlyC



89Advanced generics

class CountingEnumerator : IEnumerator<int>
{

int current = -1;

public bool MoveNext()
{

current++;
return current < 10;

}

public int Current { get { return current; } }

object IEnumerator.Current { get { return Current; } }

public void Reset()
{

current = -1;
}
public void Dispose() {}

}
...
CountingEnumerable counter = new CountingEnumerable();
foreach (int x in counter)
{

Console.WriteLine(x);
}

Clearly these results aren’t particularly useful, but the code shows the little hoops you
have to go through in order to implement generic iteration appropriately—at least if
you’re doing it all longhand. (And that’s without making an effort to throw excep-
tions if Current is accessed at an inappropriate time.) If you think that listing 3.10
looks like a lot of work just to print out the numbers 0 to 9, I can’t help but agree with
you, and there’d be even more code if you wanted to iterate over anything useful. For-
tunately, you’ll see in chapter 6 that C# 2 takes a large amount of the work away from
iterators in many cases. I’ve shown the full version here so you can appreciate the
slight wrinkles that have been introduced by the design decision for IEnumerable<T>
to extend IEnumerable. I’m not suggesting it was the wrong decision, though; it allows
you to pass any IEnumerable<T> into a method written in C# 1 with an IEnumerable
parameter. That’s not as important now as it was back in 2005, but it’s still a useful
transition path.

 You only need the trick of using explicit interface implementation twice—once
for IEnumerable.GetEnumerator C and once for IEnumerator.Current E. Both of
these call their generic equivalents (B and D, respectively). Another addition to
IEnumerator<T> is that it extends IDisposable, so you have to provide a Dispose
method. The foreach statement in C# 1 already called Dispose on an iterator if it
implemented IDisposable, but in C# 2 no execution-time testing is required—if the
compiler finds that you’ve implemented IEnumerable<T>, it creates an unconditional
call to Dispose at the end of the loop (in a finally block). Many iterators won’t actu-
ally need to dispose of anything, but it’s nice to know that when it is required, the most

Implements 
IEnumerator<T>.Current 
implicitly

D

Implements
IEnumerator.Current

explicitly E

Proves that 
enumerable 
type works

F

common way of working through an iterator (the foreach statement F) handles the
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calling side automatically. This is most commonly used to release resources when
you’ve finished iterating. For example, you might have an iterator that reads lines from
a file and needs to close the file handle when the calling code has finished looping. 

 We’ll now go from compile-time efficiency to execution-time flexibility: our final
advanced topic is reflection. Even in .NET 1.0/1.1, reflection could be tricky, but
generic types and methods introduce an extra level of complexity. The framework
provides everything you need (with a bit of helpful syntax from C# 2 as a language),
and although the additional considerations can be daunting, it’s not too bad if you
take it one step at a time. 

3.4.4 Reflection and generics

Reflection is used by different people for all sorts of things. You might use it for
execution-time introspection of objects to perform a simple form of data binding. You
might use it to inspect a directory full of assemblies to find implementations of a plug-
in interface. You might write a file for an inversion of control framework (see
www.martinfowler.com/articles/injection.html) to load and dynamically configure
your application’s components. As the uses of reflection are so diverse, I won’t focus
on any particular one but will instead give you more general guidance on performing
common tasks. We’ll start by looking at the extensions to the typeof operator.

USING TYPEOF WITH GENERIC TYPES

Reflection is all about examining objects and their types. As such, one of the most
important things you need to be able to do is obtain a reference to a particular
System.Type object, which allows access to all the information about that type. C#
uses the typeof operator to obtain such a reference for types known at compile time,
and this has been extended to encompass generic types.

 There are two ways of using typeof with generic types—one retrieves the generic
type definition (in other words, the unbound generic type) and one retrieves a particu-
lar constructed type. To obtain the generic type definition—the type with none of the
type arguments specified—you simply take the name of the type as it would’ve been
declared and remove the type parameter names, keeping any commas. To retrieve
constructed types, you specify the type arguments in the same way as you would to
declare a variable of the generic type. The next listing gives an example of both uses.
It uses a generic method so we can revisit how typeof can be used with a type parame-
ter, which we previously saw in 3.8.

static void DemonstrateTypeof<X>()
{

Console.WriteLine(typeof(X));

Console.WriteLine(typeof(List<>));
Console.WriteLine(typeof(Dictionary<,>));

Listing 3.11 Using the typeof operator with type parameters

Displays method’s 
type parameter

Displays generic types

Displays closed types (despite B

Console.WriteLine(typeof(List<X>)); using type parameter)

www.martinfowler.com/articles/injection.html
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Console.WriteLine(typeof(Dictionary<string,X>));

Console.WriteLine(typeof(List<long>));
Console.WriteLine(typeof(Dictionary<long,Guid>));

}
...
DemonstrateTypeof<int>();

Most of listing 3.11 works as you might naturally expect, but it’s worth pointing out
two things. First, look at the syntax for obtaining the generic type definition of Dic-
tionary <TKey,TValue>. The comma in the angle brackets is required to tell the
compiler to look for the type with two type parameters; remember that there can be
several generic types with the same name, as long as they vary by the number of type
parameters they have. Similarly, you’d retrieve the generic type definition for MyClass
<T1,T2,T3,T4> using typeof(MyClass<,,,>). The number of type parameters is
specified in IL (and in full type names as far as the framework is concerned) by put-
ting a back tick after the first part of the type name and then the number. The type
parameters are then indicated in square brackets instead of the angle brackets we’re
used to. For instance, the second line printed ends with List`1[T], showing that
there’s one type parameter, and the third line includes Dictionary`2[TKey,TValue].

 Second, note that wherever the method’s type parameter (X) is used, the actual
value of the type argument is used at execution time. So this line B prints
List`1[System. Int32] rather than List`1[X], which you might have expected.8 In
other words, a type that’s open at compile time may be closed at execution time. This
is very confusing. You should be aware of it in case you don’t get the results you expect, but other-
wise, don’t worry. To retrieve a truly open constructed type at execution time, you need
to work a bit harder. See the MSDN documentation for Type.IsGenericType for a suit-
ably convoluted example (http://mng.bz/9W6O).

 For reference, here’s the output of listing 3.11:

System.Int32
System.Collections.Generic.List`1[T]
System.Collections.Generic.Dictionary`2[TKey,TValue]
System.Collections.Generic.List`1[System.Int32]
System.Collections.Generic.Dictionary`2[System.String,System.Int32]
System.Collections.Generic.List`1[System.Int64]
System.Collections.Generic.Dictionary`2[System.Int64,System.Guid]

Having retrieved an object representing a generic type, there are many next steps you
can take. All the previously available ones (finding the members of the type, creating
an instance, and so on) are still present—although some aren’t applicable for generic
type definitions—and there are new ones as well that let you inquire about the generic
nature of the type. 

8 I deliberately bucked the convention of using a type parameter named T, precisely so that we could tell the

Displays closed types
difference between the T in the List<T> declaration and the X in our method declaration.

http://mng.bz/9W6O
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METHODS AND PROPERTIES OF SYSTEM.TYPE

There are far too many new methods and properties to look at them all in detail, but
there are two particularly important ones: GetGenericTypeDefinition and Make-
GenericType. They’re effectively opposites—the first acts on a constructed type,
retrieving the generic type definition; the second acts on a generic type definition and
returns a constructed type. Arguably it would’ve been clearer if this method had been
called ConstructType, MakeConstructedType, or some other name with construct or
constructed in it, but we’re stuck with what we’ve got.

 Just like normal types, there’s only one Type object for any particular type—so call-
ing MakeGenericType twice with the same types as arguments will return the same ref-
erence twice. Similarly, calling GetGenericTypeDefinition on two types constructed
from the same generic type definition will give the same result for both calls, even if
the constructed types are different (such as List<int> and List<string>).

 Two other methods worth exploring—this time methods that already existed in
.NET 1.1—are Type.GetType(string) and its related Assembly.GetType(string)
method, both of which provide a dynamic equivalent to typeof. You might expect to
be able to feed each line of the output of listing 3.11 to the GetType method called on
an appropriate assembly, but unfortunately life isn’t quite that straightforward. It’s
fine for closed constructed types—the type arguments just go in square brackets. For
generic type definitions, though, you need to remove the square brackets entirely—
otherwise GetType thinks you mean an array type. The following listing shows all of
these methods in action.

string listTypeName = "System.Collections.Generic.List`1";

Type defByName = Type.GetType(listTypeName);

Type closedByName = Type.GetType(listTypeName + "[System.String]");
Type closedByMethod = defByName.MakeGenericType(typeof(string));
Type closedByTypeof = typeof(List<string>);

Console.WriteLine(closedByMethod == closedByName);
Console.WriteLine(closedByName == closedByTypeof);

Type defByTypeof = typeof(List<>);
Type defByMethod = closedByName.GetGenericTypeDefinition();

Console.WriteLine(defByMethod == defByName);
Console.WriteLine(defByName == defByTypeof);

The output of listing 3.12 is just True four times, validating that however you obtain a
reference to a particular type object, only one such object is involved.

 As I mentioned earlier, there are many new methods and properties on Type, such
as GetGenericArguments, IsGenericTypeDefinition, and IsGenericType. Again, the
documentation for IsGenericType is probably the best starting point for further
exploration. 

Listing 3.12 Various ways of retrieving generic and constructed Type objects
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REFLECTING GENERIC METHODS

Generic methods have a similar (though smaller) set of additional properties and
methods. The following listing gives a brief demonstration of this, calling a generic
method by reflection.

public static void PrintTypeParameter<T>()
{

Console.WriteLine(typeof(T));
}
...
Type type = typeof(Snippet);
MethodInfo definition = type.GetMethod("PrintTypeParameter");
MethodInfo constructed = definition.MakeGenericMethod(typeof(string));
constructed.Invoke(null, null);

First you retrieve the generic method definition, and then you make a constructed
generic method using MakeGenericMethod. As with types, you could go the other way
if you wanted to, but unlike Type.GetType, there’s no way of specifying a constructed
method in the GetMethod call. The framework also has a problem if methods are over-
loaded purely by number of type parameters—there are no methods in Type that
allow you to specify the number of type parameters, so instead you’d have to call
Type.GetMethods and find the right one by looking through all the methods.

 After retrieving the constructed method, you invoke it. The arguments in this
example are both null, as you’re invoking a static method that doesn’t have any nor-
mal parameters. The output is System.String, as you’d expect. Note that the meth-
ods retrieved from generic type definitions can’t be invoked directly—instead, you
must get the methods from a constructed type. This applies to both generic and non-
generic methods.

SAVED BY C# 4 If all of this looks messy to you, I agree. Fortunately, in many
cases C#’s dynamic typing can come to the rescue, taking a lot of the work out
of generic reflection. It doesn’t help in all situations, so it’s worth being aware
of the general flow of the preceding code, but where it does apply it’s great.
We’ll look at dynamic typing in detail in chapter 14.

Again, more methods and properties are available on MethodInfo, and IsGeneric-
Method is a good starting point in MSDN (http://mng.bz/P36u). Hopefully the infor-
mation in this section will have been enough to get you going, and to point out some
of the added complexities you might not have otherwise anticipated when first start-
ing to access generic types and methods with reflection.

 That’s all we’ll cover in the way of advanced features. Just to reiterate, this chapter
isn’t meant to be a complete guide to generics by any means, but most developers are
unlikely to need to know the more obscure details. I hope for your sake that you fall
into this camp, as specifications tend to get harder to read the deeper you go into

Listing 3.13 Retrieving and invoking a generic method with reflection
them. Remember that unless you’re developing alone and just for yourself, you’re

http://mng.bz/P36u
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unlikely to be the only one to work on your code. If you need features that are more
complex than the ones demonstrated here, you should assume that anyone reading
your code will need help to understand it. On the other hand, if you find that your co-
workers don’t know about some of the topics we’ve covered so far, please feel free to
direct them to the nearest bookshop…

 Our final main section of the chapter looks at some of the limitations of generics
in C# and considers similar features in other languages. 

3.5 Limitations of generics in C# and other languages
There’s no doubt that generics contribute a great deal to C# in terms of expressive-
ness, type safety, and performance. The feature has been carefully designed to cope
with most of the tasks that C++ programmers typically used templates for, but without
some of the accompanying disadvantages. But this isn’t to say limitations don’t exist.
There are some problems that C++ templates solve with ease but that C# generics
can’t help with. Similarly, though generics in Java are generally less powerful than in
C#, there are some concepts that can be expressed in Java but that don’t have a C#
equivalent. This section will take you through some of the most commonly encoun-
tered weaknesses, and I’ll briefly compare the C#/.NET implementation of generics
with C++ templates and Java generics.

 It’s important to stress that pointing out these snags doesn’t imply that they
should’ve been avoided in the first place. In particular, I’m in no way saying that I
could’ve done a better job! The language and platform designers have had to balance
power with complexity (and the small matter of achieving both design and implemen-
tation within a reasonable time scale). Most likely, you won’t encounter problems, and
if you do, you’ll be able to work around them with the guidance given here.

 We’ll start with the answer to a question that almost everyone raises sooner or later:
Why can’t I convert a List<string> to a List<object>?

3.5.1 Lack of generic variance

In section 2.2.2, we looked at the covariance of arrays—the fact that an array of a refer-
ence type can be viewed as an array of its base type, or an array of any of the interfaces
it implements. There are actually two forms of this idea, called covariance and contra-
variance, or collectively just variance. Generics don’t support this—they’re invariant.
This is for the sake of type safety, as you’ll see, but it can be annoying.

 One thing I’d like to make clear to start with: C# 4 improves the generic variance
situation somewhat. Many of the restrictions listed here do still apply though, and this
section serves as a useful introduction to the idea of variance. We’ll see how C# 4 helps
in chapter 13, but many of the clearest examples of generic variance rely on other new
features from C# 3, including LINQ. Variance is also quite a complicated topic in itself,
so it’s worth waiting until you’re comfortable with the rest of C# 2 and 3 before you
tackle it. For the sake of readability, I won’t point out every place in this section that’s
slightly different in C# 4…it’ll all become clear in chapter 13.



95Limitations of generics in C# and other languages

WHY DON’T GENERICS SUPPORT COVARIANCE?
Suppose you have two classes, Turtle and Cat, both of which derive from an abstract
Animal class. In the code that follows, the array code (first block) is valid C# 2; the
generic code (second block) isn’t.  

The compiler has no problem with the second line in either case, but the first line
under Invalid causes the following error:

error CS0029: Cannot implicitly convert type
'System.Collections.Generic.List<Cat>' to
'System.Collections.Generic.List<Animal>'

This was a deliberate choice on the part of the framework and language designers.
The obvious question to ask is why this is prohibited, and the answer lies in the second
line. 

 There’s nothing about the second line that should raise any suspicion. After all,
List<Animal> effectively has a method with the signature void Add(Animal value)—
you should be able to put a Turtle into any list of animals, for instance. But the actual
object referred to by animals is a Cat[] (in the code under Valid) or a List<Cat>
(under Invalid), both of which require that only references to instances of Cat (or fur-
ther subclasses) are stored in them. Although the array version will compile, it’ll fail at
execution time. This was deemed by the designers of generics to be worse than failing
at compile time, which is reasonable—the whole point of static typing is to find out
about errors before the code ever gets run.

WHY ARE ARRAYS COVARIANT? Having answered the question about why
generics are invariant, the next obvious step is to question why arrays are cova-
riant. According to the Common Language Infrastructure Annotated Standard
(Miller and Ragsdale, Addison-Wesley Professional, 2003), for the first version
of .NET the designers wanted to reach as broad an audience as possible, which
included being able to run code compiled from Java source. In other words,
.NET has covariant arrays because Java has covariant arrays—despite this
being a known wart in Java.

So, that’s why things are the way they are—but why should you care, and how can you
get around the restriction?

WHERE COVARIANCE WOULD BE USEFUL

The example I’ve given with a list is clearly problematic. You can add items to the list,
which is where you lose the type safety in this case, and an add operation is an exam-
ple of a value being used as an input into the API: the caller is supplying the value.

Valid (at compile time) Invalid

Animal[] animals = new Cat[5];
animals[0] = new Turtle();

List<Animal> animals = new List<Cat>();
animals.Add(new Turtle());
What would happen if you limited yourself to getting values out? 
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 The obvious examples of this are IEnumerator<T> and (by association)
IEnumerable<T>. In fact, these are almost the canonical examples for generic covari-
ance. Together they describe a sequence of values—all you know about the values you
see is that each one will be compatible with T, such that you can always write

T currentValue = iterator.Current;

This uses the normal idea of compatibility—it would be fine for an IEnumerator
<Animal> to yield references to instances of Cat or Turtle, for example. There’s no
way you can push values that are inappropriate for the actual sequence type, so you’d
like to be able to treat an IEnumerator<Cat> as an IEnumerator<Animal>. Let’s con-
sider an example of where that might be useful.

 Suppose you take the customary shape example for inheritance, but using an inter-
face (IShape). Now consider another interface, IDrawing, that represents a drawing
made up of shapes. You’ll have two concrete types of drawing—a MondrianDrawing
(made of rectangles) and a SeuratDrawing (made of circles).9 Figure 3.4 shows the
class hierarchies involved.

 Both drawing types need to implement the IDrawing interface, so they need to
expose a property with this signature:

IEnumerable<IShape> Shapes { get; }

But each drawing type would probably find it easier to maintain a more strongly typed
list internally. For example, a Seurat drawing may include a field of type
List<Circle>. It’s useful for it to have this rather than a List<IShape> so that if it
needs to manipulate the circles in a circle-specific way, it can do so without casting. If
you had a List<IShape>, you could either return it directly or at least wrap it in a
ReadOnlyCollection<IShape> to prevent callers from messing with it via casting—the
property implementation would be cheap and simple either way. But you can’t do that
when your types don’t match up. You can’t convert from an IEnumerable<Circle> to
an IEnumerable<IShape>. So what can you do?

9 If these names mean nothing to you, check out the artists’ Wikipedia entries (http://en.wikipedia.org/wiki/
Piet_Mondrian and http://en.wikipedia.org/wiki/Georges-Pierre_Seurat). They have special meanings to
me for different reasons: Mondrian is also the name of a code review tool we used at Google, and Seurat is

<<interface>>
IShape

Circle Rectangle

<<interface>>
IDrawing

+Shapes: IEnumerable<IShape>

MondrianDrawing

+rectangles: List<Rectangle>
SeuratDrawing

+circles: List<Circle>

Figure 3.4 Interfaces for shapes and drawings, and two implementations of each
the eponymous George of Sunday in the Park with George—a wonderful musical by Stephen Sondheim.

http://en.wikipedia.org/wiki/Piet_Mondrian
http://en.wikipedia.org/wiki/Piet_Mondrian
http://en.wikipedia.org/wiki/Georges-Pierre_Seurat
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 There are a few options here:

 Change the field type to List<IShape> and just live with the casts. This isn’t
pleasant, and it pretty much defeats the point of using generics.

 Use the new features provided by C# 2 for implementing iterators, as you’ll see
in chapter 6. This is a reasonable solution for this particular case, but only this
case (where you’re dealing with IEnumerable<T>).

 Make each Shapes property implementation create a new copy of the list, possi-
bly using List<T>.ConvertAll for simplicity. Creating an independent copy of
a collection is often the right thing to do in an API anyway, but it causes a lot of
copying, which can be unnecessarily inefficient in many cases.

 Make IDrawing generic, indicating the type of shapes in the drawing. Thus,
MondrianDrawing would implement IDrawing<Rectangle>, and SeuratDrawing
would implement IDrawing<Circle>. This is only viable when you own the
interface.

 Create a helper class to adapt one kind of IEnumerable<T> into another:
class EnumerableWrapper<TOriginal, TWrapper> : IEnumerable<TWrapper>

where TOriginal : TWrapper

Again, as this particular situation (IEnumerable<T>) is special, you could get
away with just a utility method. In fact, .NET 3.5 ships with two useful methods
like this: Enumerable.Cast<T> and Enumerable.OfType<T>. They’re part of
LINQ, and we’ll look at them in chapter 11. Although this is a special case, it’s
probably the most common form of generic covariance you’ll come across.

When you run into covariance issues, you may need to consider all of these options
and anything else you can think of. It depends heavily on the exact nature of the situ-
ation. Unfortunately, covariance isn’t the only problem you have to deal with. There’s
also the matter of contravariance, which is like covariance in reverse. 

WHERE CONTRAVARIANCE WOULD BE USEFUL

Contravariance feels slightly less intuitive than covariance, but it does make sense.
With covariance, you were trying to convert from SomeType<Circle> to SomeType
<IShape> (using IEnumerable<T> for SomeType in the previous example). Contravari-
ance is about converting the other way—from SomeType<IShape> to SomeType
<Circle>. How can that be safe? Well, covariance is safe when SomeType only describes
operations that return the type parameter—and contravariance is safe when SomeType
only describes operations that accept the type parameter.10

 The simplest example of a type that only uses its type parameter in an input posi-
tion is IComparer<T>, which is commonly used to sort collections. Let’s expand the
IShape interface (which has been empty so far) to include an Area property. It’s now
easy to write an implementation of IComparer<IShape> that compares any two shapes
by area. You’d then like to be able to write the following code:
10 You’ll see in chapter 13 that there’s slightly more to it than that, but that’s the general principle.
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IComparer<IShape> areaComparer = new AreaComparer();
List<Circle> circles = new List<Circle>();
circles.Add(new Circle(Point.Empty, 20));
circles.Add(new Circle(Point.Empty, 10));
circles.Sort(areaComparer);

That won’t work, though, because the Sort method on List<Circle> effectively takes
an IComparer<Circle>. The fact that AreaComparer can compare any shape rather
than just circles doesn’t impress the compiler at all. It considers IComparer <Circle>
and IComparer<IShape> to be completely different types. Maddening, isn’t it? It
would be nice if the Sort method had this signature instead:

void Sort<S>(IComparer<S> comparer) where T : S

Unfortunately, not only is that not the signature of Sort, but it can’t be—the constraint
is invalid, because it’s a constraint on T instead of S. You want a conversion type con-
straint but in the other direction, constraining the S to be somewhere up the inheri-
tance tree of T instead of down.

 Given that this isn’t possible, what can you do? There are fewer options this time.
First, you could revisit the idea of creating a generic helper class, as follows.

class ComparisonHelper<TBase, TDerived> : IComparer<TDerived>
where TDerived : TBase

{
private readonly IComparer<TBase> comparer;

public ComparisonHelper(IComparer<TBase> comparer)
{

this.comparer = comparer;
}

public int Compare(TDerived x, TDerived y)
{

return comparer.Compare(x, y);
}

}

This is an example of the adapter pattern at work, although instead of adapting one
interface to a completely different one, you’re just adapting from IComparer<TBase>
to IComparer<TDerived>. You just remember the original comparer providing the
real logic to compare items of the base type C and then call it when you’re asked to
compare items of the derived type D. The fact that no casts are involved (not even
hidden ones) should give you some confidence: this helper is completely type-safe.
You’re able to call the base comparer due to an implicit conversion being available
from TDerived to TBase, which you required with a type constraint B.

 The second option is to make the area-comparison class generic with a conversion
type constraint, so it can compare any two values of the same type, as long as that type
implements IShape. For the sake of simplicity in the situation where you really don’t

Listing 3.14 Working around the lack of contravariance with a helper
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need this functionality, you could keep the nongeneric class by just making it derive
from the generic one:

class AreaComparer<T> : IComparer<T> where T : IShape

class AreaComparer : AreaComparer<IShape>

Of course, you can only do this when you’re able to change the comparison class. This
can be an effective solution, but it still feels unnatural—why should you have to con-
struct the comparer in various ways for different types when it’s not going to behave
any differently? Why should you have to derive from the class to simplify things when
you’re not actually specializing the behavior?

 Note that the various options for both covariance and contravariance use more
generics and constraints to express the interface in a more general manner, or to pro-
vide generic helper classes. I know that adding a constraint makes it sound less gen-
eral, but the generality is added by first making the type or method generic. When you
run into a problem like this, adding a level of genericity somewhere with an appropri-
ate constraint should be the first option to consider. Generic methods (rather than
generic types) are often helpful here, as type inference can make the lack of variance
invisible to the naked eye. This is particularly true in C# 3, which has stronger type
inference capabilities than C# 2.

 This limitation is a very common cause of questions on C# discussion sites. The
remaining issues are either relatively academic or affect only a moderate subset of the
development community. The next one mostly affects those who do a lot of calcula-
tions (usually scientific or financial) in their work. 

3.5.2 Lack of operator constraints or a “numeric” constraint

C# isn’t without its downsides when it comes to heavily mathematical code. The need
to explicitly use the Math class for every operation beyond the simplest arithmetic and
the lack of C-style typedefs to allow the data representation used throughout a pro-
gram to be easily changed have always been raised by the scientific community as bar-
riers to C#’s adoption. Generics weren’t likely to fully solve either of those issues, but
there’s a common problem that stops generics from helping as much as they could
have. 

 Consider this (illegal) generic method:

public T FindMean<T>(IEnumerable<T> data)
{

T sum = default(T);
int count = 0;
foreach (T datum in data)
{

sum += datum;
count++;

}
return sum / count;

}

NVALID
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Obviously that could never work for all types of data—what could it mean to add one
Exception to another, for instance? Clearly a constraint of some kind is called for…
something that can express what you need to be able to do: add two instances of T
together, and divide a T by an integer. If that were available, even if it were limited to
built-in types, you could write generic algorithms that wouldn’t care whether they
were working on an int, a long, a double, a decimal, and so forth. 

 Limiting it to the built-in types would’ve been disappointing, but better than noth-
ing. The ideal solution would have to also allow user-defined types to act in a numeric
capacity, so you could define a Complex type to handle complex numbers, for
instance.11 That complex number could then store each of its components in a generic
way as well, so you could have a Complex<float>, a Complex<double>, and so on.

 Two related (but hypothetical) solutions present themselves. One would be to
allow constraints on operators, so you could write a set of constraints such as these
(currently invalid) ones:

where T : T operator+ (T, T), T operator/ (T, int)

This would require that T have the operations you need in the earlier code. The other
solution would be to define a few operators and perhaps conversions that must be sup-
ported in order for a type to meet the extra constraint—you could make it the
“numeric constraint” written where T : numeric.

 One problem with both of these options is that they can’t be expressed as normal
interfaces, because operator overloading is performed with static members, which
can’t be used to implement interfaces. I find the idea of static interfaces appealing:
interfaces that only declare static members, including methods, operators, and con-
structors. Such static interfaces would only be useful within type constraints, but
they’d present a type-safe generic way of accessing static members. This is just blue sky
thinking, though (see my blog post on the topic for more details: http://mng.bz/
3Rk3). I don’t know of any plans to include this in a future version of C#.

 The two neatest workarounds for this problem to date require later versions of
.NET: one designed by Marc Gravell (http://mng.bz/9m8i) uses expression trees
(which you’ll meet in chapter 9) to build dynamic methods; the other uses the
dynamic features of C# 4. You’ll see an example of the latter in chapter 14. But, as you
can tell by the descriptions, both of these are dynamic—you have to wait until execu-
tion time to see whether your code will work with a particular type. There are a few
workarounds that still use static typing, but they have other disadvantages (surpris-
ingly enough, they can sometimes be slower than the dynamic code).

 The two limitations we’ve looked at so far have been quite practical—they’ve been
issues you may well run into during actual development. But if you’re generally curi-
ous like I am, you may also be asking yourself about other limitations that don’t neces-
sarily slow down development but are intellectual curiosities. In particular, why are
generics limited to types and methods?

11 This is assuming you’re not using .NET 4 or higher, of course, because then you could use System

.Numerics.Complex.

http://mng.bz/3Rk3
http://mng.bz/3Rk3
http://mng.bz/9m8i
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3.5.3 Lack of generic properties, indexers, and other member types

We’ve looked at generic types (classes, structs, delegates, and interfaces) and generic
methods. There are plenty of other members that could be parameterized, but there
are no generic properties, indexers, operators, constructors, finalizers, or events. 

 First, let’s be precise about what we mean here: clearly an indexer can have a
return type that’s a type parameter—List<T> is an obvious example. KeyValue-
Pair<TKey,TValue> provides similar examples for properties. What you can’t have is
an indexer or property (or any of the other members in that list) with extra type
parameters. 

 Leaving the possible syntax of declaration aside for the minute, let’s look at how
these members might have to be called:

SomeClass<string> instance = new SomeClass<string><Guid>("x");
int x = instance.SomeProperty<int>;
byte y = instance.SomeIndexer<byte>["key"];
instance.Click<byte> += ByteHandler;
instance = instance +<int> instance;

I hope you’ll agree that all of those look somewhat silly. Finalizers can’t even be called
explicitly from C# code, which is why there isn’t a line for them. The fact that you
can’t do any of these isn’t going to cause significant problems anywhere, as far as I can
see—it’s just worth being aware of this as an academic limitation.

 The member where this restriction is most irritating is probably the constructor. A
static generic method in the class is a good workaround for this, though, and the sam-
ple generic constructor syntax shown previously with two lists of type arguments is
horrific.

 These are by no means the only limitations of C# generics, but I believe they’re the
ones that you’re most likely to run up against, either in your daily work, in community
conversations, or when idly considering the feature as a whole. In the next two sec-
tions, we’ll look at how some aspects of these aren’t issues in the two other languages
whose features are most commonly compared with C#’s generics: C++ (with tem-
plates) and Java (with generics, as of Java 5). We’ll tackle C++ first. 

3.5.4 Comparison with C++ templates

C++ templates are a bit like macros taken to an extreme level. They’re incredibly pow-
erful, but there are costs associated with them both in terms of code bloat and ease of
understanding.

 When a template is used in C++, the code is compiled for that particular set of tem-
plate arguments, as if the template arguments were in the source code. This means
that there’s not as much need for constraints, because the compiler will check what
you’re allowed to do with the type while it’s compiling the code for this particular set
of template arguments. The C++ standards committee has recognized that constraints
are still useful, though. Constraints were included and then removed from C++11 (the

NVALID
latest version of C++) but they may yet see the light of day, under the name of concepts.
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 The C++ compiler is smart enough to compile the code only once for any given set
of template arguments, but it isn’t able to share code in the way that the CLR does with
reference types. That lack of sharing does have its benefits, though—it allows type-
specific optimizations, such as inlining method calls for some type parameters but not
others, from the same template. It also means that overload resolution can be per-
formed separately for each set of type parameters, rather than just once based solely
on the limited knowledge the C# compiler has due to any constraints present.

 Don’t forget that with normal C++ there’s only one compilation involved, rather
than the “compile to IL” and then “JIT compile to native code” model of .NET. A
program using a standard template in 10 different ways will include the code 10 times
in a C++ program. A similar program in C# using a generic type from the framework
in 10 different ways won’t include the code for the generic type at all—it’ll refer to it,
and the JIT will compile as many different versions as required (as described in
section 3.4.2) at execution time.

 One significant feature that C++ templates have over C# generics is that the tem-
plate arguments don’t have to be type names. Variable names, function names, and
constant expressions can be used as well. A common example of this is a buffer type
that has the size of the buffer as one of the template arguments—a buffer <int,20>
will always be a buffer of 20 integers, and a buffer<double,35> will always be a buffer
of 35 doubles. This ability is crucial to template metaprogramming (see the Wikipedia
article, http://en.wikipedia.org/wiki/Template_metaprogramming), which is an
advanced C++ technique, the very idea of which scares me but that can be powerful in
the hands of experts.

 C++ templates are more flexible in other ways too. They don’t suffer from the lack
of operator constraints described in section 3.5.2, and there are a few other restrictions
that don’t exist in C++: you can derive a class from one of its type parameters, and you
can specialize a template for a particular set of type arguments. The latter ability allows
the template author to write general code to be used when there’s no more knowledge
available, and specific (often highly optimized) code for particular types.

 The same variance issues of .NET generics exist in C++ templates as well. An exam-
ple given by Bjarne Stroustrup (the inventor of C++) is that there are no implicit con-
versions between vector<shape*> and vector<circle*> with similar reasoning—in
this case, it might allow you to put a square peg in a round hole.

 For further details on C++ templates, I recommend Stroustrup’s The C++ Program-
ming Language, 3rd edition (Addison-Wesley Professional, 1997). It’s not always the
easiest book to follow, but the templates chapter is fairly clear (once you get your
mind around C++ terminology and syntax). For more comparisons with .NET gener-
ics, look at the blog post by the Visual C++ team on this topic (http://mng.bz/En13).

 The other obvious language to compare with C# in terms of generics is Java, which
introduced the feature into the mainstream language for the 1.5 release12 several
years after other projects had created Java-like languages that supported generics. 
12 Or 5.0, depending on which numbering system you use. Don’t get me started.

http://en.wikipedia.org/wiki/Template_metaprogramming
http://mng.bz/En13
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3.5.5 Comparison with Java generics

Where C++ includes more of the template in the generated code than C# does, Java
includes less. In fact, the Java runtime doesn’t know about generics at all. The Java byte-
code (roughly equivalent to IL) for a generic type includes some extra metadata to say
that it’s generic, but after compilation the calling code doesn’t have much to indicate
that generics were involved at all, and an instance of a generic type only knows about
the nongeneric side of itself. For example, an instance of HashSet<E> doesn’t know
whether it was created as a HashSet<String> or a HashSet<Object>. The compiler
effectively adds casts where necessary and performs more sanity checking. 

 Here’s an example—first the generic Java code:

ArrayList<String> strings = new ArrayList<String>();
strings.add("hello");
String entry = strings.get(0);
strings.add(new Object());

And here’s the equivalent nongeneric code:

ArrayList strings = new ArrayList();
strings.add("hello");
String entry = (String) strings.get(0);
strings.add(new Object());

They would generate the same Java bytecode, except for the last line, which is valid in
the nongeneric case but will be caught by the compiler as an error in the generic
version. You can use a generic type as a raw type, which is similar to using
java.lang.Object for each of the type arguments. This rewriting—and loss of infor-
mation—is called type erasure. Java doesn’t have user-defined value types, but you can’t
even use the built-in ones as type arguments. Instead, you have to use the boxed ver-
sions—ArrayList<Integer> for a list of integers, for example.

 You’ll be forgiven for thinking this is all a bit disappointing compared with gener-
ics in C#, but there are some nice features of Java generics too:

 The virtual machine doesn’t know anything about generics, so you can use code
compiled using generics on an older version, as long as you don’t use any
classes or methods that aren’t present on the old version. Versioning in .NET is
much stricter in general—for each assembly you reference, you can specify
whether the version number has to match exactly. In addition, code built to run
on the 2.0 CLR won’t run on .NET 1.1.

 You don’t need to learn a new set of classes to use Java generics—where a non-
generic developer would use ArrayList, a generic developer just uses Array-
List<E>. Existing classes can be upgraded to generic versions reasonably easily.

 The previous feature has been utilized quite effectively with the reflection sys-
tem—java.lang.Class (the equivalent of System.Type) is generic, which
allows compile-time type safety to be extended to cover many situations involv-
ing reflection. In some other situations it’s a pain, though.
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 Java has support for generic variance using wildcards. For instance, ArrayList
<? extends Base> can be read as “this is an ArrayList of some type that derives
from Base, but we don’t know which exact type.” When we discuss C# 4’s support
for generic variance in chapter 13, we’ll revisit this with a short example.

My personal opinion is that .NET generics are superior in almost every respect,
although when I run into covariance/contravariance issues, I often wish I had wild-
cards. C# 4’s limited generic variance improves this somewhat, but there are still times
when the variance Java model works better. Java with generics is still much better than
Java without generics, but there are no performance benefits and the safety only
applies at compile time. 

3.6 Summary
Phew! It’s a good thing generics are simpler to use in reality than they are to describe.
Although they can get complicated, they’re widely regarded as the most important
addition to C# 2 and they’re incredibly useful. The worst thing about writing code
using generics is that if you ever have to go back to C# 1, you’ll miss them terribly.
(Fortunately that’s becoming increasingly unlikely, of course.)

 In this chapter, I haven’t tried to cover every detail of what is and isn’t allowed
when using generics—that’s the job of the language specification, and it makes for dry
reading. Instead, I’ve aimed for a practical approach, providing the information you’ll
need in everyday use, with a smattering of theory for the sake of academic interest.

 We’ve looked at the three main benefits of generics: compile-time type safety, per-
formance, and code expressiveness. Being able to get the IDE and compiler to validate
your code early is certainly a good thing, but it’s arguable that more is to be gained
from tools providing intelligent options based on the types involved than from the
actual safety aspect.

 Performance is improved most radically when it comes to value types, which no
longer need to be boxed and unboxed when they’re used in strongly typed generic
APIs, particularly the generic collection types provided in .NET 2.0. Performance with
reference types is usually improved but only slightly.

 Your code is able to express its intention more clearly using generics—instead of a
comment or a long variable name being required to describe exactly what types are
involved, the details of the type itself can do the work. Comments and variable names
can often become inaccurate over time, as they can be forgotten when the code is
changed, but the type information is correct by definition.

 Generics aren’t capable of doing everything you might sometimes like them to do,
and I’ve covered some of their limitations in the chapter, but if you truly embrace
C# 2 and the generic types within the .NET 2.0 Framework, you’ll come across good
uses for them incredibly frequently in your code.

 This topic will come up time and time again in future chapters, as other new fea-
tures build on this key one. Indeed, the subject of the next chapter would be very dif-

ferent without generics—we’ll look at nullable types, as implemented by Nullable<T>.



Saying nothing
with nullable types
Nullity is a concept that has provoked debate over the years. Is a null reference a
value, or the absence of a value? Is “nothing” a “something”? Should languages sup-
port the concept of nullity at all, or should it be represented in other patterns? 

 In this chapter, I’ll try to stay more practical than philosophical. First we’ll look
at why there’s a problem at all—why you can’t set a value type variable to null in C#
1 and what the traditional alternatives have been. After that, I’ll introduce you to
our knight in shining armor—System.Nullable<T>—and then we’ll look at how
C# 2 makes working with nullable types simple and compact. Like generics, nul-
lable types sometimes have uses beyond what you might expect, and we’ll look at a
few examples of these at the end of the chapter.

This chapter covers
 Reasons for using null values

 Framework and runtime support for nullable types

 Language support in C# 2 for nullable types

 Patterns using nullable types
105

 So, when is a value not a value? Let’s find out.
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4.1 What do you do when you just don’t have a value?
The C# and .NET designers don’t add features just for kicks. There has to be a real,
significant problem that needs fixing before they’ll go as far as changing C# as a lan-
guage or .NET at the platform level. In this case, the problem is best summed up in
one of the most frequently asked questions in C# and .NET discussion groups:

I need to set my DateTime variable to null, but the compiler won’t let me. What should I do?1

It’s a question that comes up fairly naturally—an example might be in an e-commerce
application where users are looking at their account history. If an order has been
placed but not delivered, there may be a purchase date but no dispatch date, so how
would you represent that in a type that’s meant to provide the order details?

 Before C# 2, the answer to the question usually came in two parts: an explanation
of why you couldn’t use null in the first place, and a list of which options were avail-
able. Nowadays the answer would usually explain nullable types instead, but it’s worth
looking at the C# 1 options to understand where the problem comes from.

4.1.1 Why value type variables can’t be null

As you saw in chapter 2, the value of a reference type variable is a reference, and the
value of a value type variable is the real data itself. A non-null reference is a way of get-
ting at an object, but null acts as a special value that means I don’t refer to any object. 

 If you want to think of references as being like URLs, null is (very roughly speak-
ing) the reference equivalent of about:blank. It’s represented as all zeroes in memory
(which is why it’s the default value for all reference types—clearing a whole block of
memory is cheap, so that’s the way objects are initialized), but it’s still basically stored
in the same way as other references. There’s no extra bit hidden somewhere for each
reference type variable. That means you can’t use the “all zeroes” value for a real refer-
ence, but that’s okay—your memory is going to run out long before you have that
many live objects anyway. This is the key to why null isn’t a valid value type value. 

 Let’s consider the byte type as a familiar one that’s easy to think about. The value
of a variable of type byte is stored in a single byte—it may be padded for alignment
purposes, but the value itself is conceptually only made up of one byte. You’ve got to
be able to store the values 0–255 in that variable; otherwise it’s useless for reading
arbitrary binary data. With the 256 normal values and one null value, you’d have to
cope with a total of 257 values, and there’s no way of squeezing that many values into a
single byte. The designers could’ve decided that every value type would have an extra
flag bit somewhere determining whether a value was null or contained real data, but
the memory usage implications are horrible, not to mention the fact that you’d have
to check the flag every time you wanted to use the value. In a nutshell, with value types
you often care about having the whole range of possible bit patterns available as real

1 It’s almost always DateTime rather than any other value type. I’m not entirely sure why—it’s as if developers

inherently understand why a byte shouldn’t be null, but feel that dates are more inherently nullable.
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values, whereas with reference types it’s okay to lose one potential value in order to
gain the benefits of making the null reference available.

 That’s the usual situation. Now why would you want to be able to represent null
for a value type anyway? The most common reason is simply because databases typi-
cally support NULL as a value for every type (unless you specifically make the field non-
nullable), so you can have nullable character data, nullable integers, nullable Bool-
eans—the whole works. When you fetch data from a database, it’s generally not a good
idea to lose information, so you want to be able to represent the nullity of whatever
you read, somehow.

 That just moves the question one step further on, though. Why do databases allow
null values for dates, integers, and the like? Null values are typically used for
unknown or missing values, such as the dispatch date in the earlier e-commerce
example. Nullity represents an absence of definite information, which can be impor-
tant in many situations. Indeed, there doesn’t have to be a database involved for nul-
lable value types to be useful; that’s just the scenario where developers typically
encounter the problem first. 

 That brings us to options for representing null values in C# 1. 

4.1.2 Patterns for representing null values in C# 1

There are three basic patterns commonly used to get around the lack of nullable
value types in C# 1. Each has its pros and cons—mostly cons—and all of them are
fairly unsatisfying. But they’re worth knowing, partly to more fully appreciate the ben-
efits of the integrated solution in C# 2.

PATTERN 1: THE MAGIC VALUE

The first pattern is to sacrifice one value to represent a null value. This tends to be
used as the solution for DateTime; few people expect their databases to actually con-
tain dates in AD 1, so DateTime.MinValue can be used as a convenient magic value
without losing any useful data. In other words, it goes against the line of reasoning I
gave earlier, which assumes that every possible value needs to be available for normal
purposes. The semantic meaning of such a null value will vary from application to
application—it may mean that the user hasn’t entered the value into a form yet, or
that it’s not required for that record, for example.

 The good news is that using a magic value doesn’t waste any memory or require any
new types. But it does rely on you picking an appropriate value that you’ll never want
to use for real data. Also, it’s basically inelegant. It just doesn’t feel right. If you ever
find yourself needing to go down this path, you should at least use a constant (or static
read-only value for types that can’t be expressed as constants) to represent the magic
value—comparisons with DateTime.MinValue everywhere, for instance, don’t express
the meaning of the magic value. Additionally, it’s easy to accidentally use the magic
value as if it were a normal, meaningful value—neither the compiler nor the runtime
will help you spot the error. In contrast, most of the other solutions presented here
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(including the one in C# 2) would result in either a compilation error or an exception
at execution time, depending on the exact situation. 

 The magic value pattern is deeply embedded in computing in the form of IEEE-754
binary floating-point types such as float and double. These go further than the idea
of a single value representing this isn’t really a number—there are many bit patterns that
are classified as not-a-number (NaN), as well as values for positive and negative infin-
ity. I suspect few programmers (myself included) are as cautious around these values
as we should be, which is another indication of the pattern’s shortcomings.

ADO.NET has a variation on this pattern where the same magic value—
DBNull.Value—is used for all null values, regardless of the type. In this case, an extra
value and indeed an extra type have been introduced to indicate when a database has
returned null. But it’s only applicable where compile-time type safety isn’t important
(in other words, when you’re happy to use object and cast after testing for nullity),
and again it doesn’t feel quite right. In fact, it’s a mixture of the magic value pattern
and the reference type wrapper pattern, which we’ll look at next. 

PATTERN 2: A REFERENCE TYPE WRAPPER

The second solution can take two forms. The simpler one is to use object as the vari-
able type, boxing and unboxing values as necessary. The more complex (and more
appealing) form is to have a reference type for each value type you need in a nullable
form, containing a single instance variable of that value type, and with implicit conver-
sion operators to and from the value type. With generics, you could do this in one
generic type, but if you’re using C# 2 anyway, you might as well use the nullable types
described in this chapter instead. If you’re stuck in C# 1, you have to create extra
source code for each type you want to wrap. This isn’t hard to put in the form of a
template for automatic code generation, but it’s still a burden that’s best avoided if
possible.

 Both of these forms have the problem that though they allow you to use null
directly, they require objects to be created on the heap, which can lead to garbage col-
lection pressure if you need to use this approach frequently and adds memory use due
to the overhead associated with objects. For the more complex solution, you could
make the reference type mutable, which may reduce the number of instances you
need to create, but it could also make for some unintuitive code. 

PATTERN 3: AN EXTRA BOOLEAN FLAG

The final pattern involves a normal value type value and another value—a Boolean
flag—indicating whether the value is “real” or whether it should be disregarded.
Again, there are two ways of implementing this solution. Either you could maintain
two separate variables in the code that uses the value, or you could encapsulate the
value-plus-flag into another value type.

 This latter solution is quite similar to the more complicated reference type idea
described earlier, except that you avoid the garbage collection issue by using a value
type and indicate nullity within the encapsulated value rather than with a null refer-

ence. The downside of having to create a new one of these types for every value type
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you wish to handle is the same, though. Also, if the value is ever boxed for some rea-
son, it’ll be boxed in the normal way whether it’s considered to be null or not.

 The last pattern (in the more encapsulated form) is effectively how nullable types
work in C# 2, although the new features of the framework, CLR, and language all com-
bine to provide a solution that’s significantly neater than anything that was possible in
C# 1. The next section deals with the support provided by the framework and the CLR
in .NET 2: if C# 2 only supported generics, most of section 4.2 would still be relevant
and the feature would still work and be useful. But C# 2 provides extra syntactic sugar
to make it even better—that’s the subject of section 4.3. 

4.2 System.Nullable<T> and System.Nullable
The core structure at the heart of nullable types is the System.Nullable<T> struct. In
addition, the System.Nullable static class provides utility methods that occasionally
make nullable types easier to work with. (From now on I’ll leave out the namespace,
to make life simpler.) We’ll look at both of these types in turn, and for this section I’ll
avoid any extra features provided by the language, so you’ll be able to understand
what’s going on in the IL code when we do look at the shorthand provided by C# 2.

4.2.1 Introducing Nullable<T>

As you can tell by its name, Nullable<T> is a generic type. The type parameter T has a
value type constraint, so you can’t use Nullable<Stream>, for example. As I men-
tioned in section 3.3.1 this also means you can’t use another nullable type as the
argument, so Nullable<Nullable<int>> is forbidden, even though Nullable<T> is a
value type in every other way. The type of T for any particular nullable type is called
the underlying type of that nullable type. For example, the underlying type of
Nullable<int> is int.

 The most important parts of Nullable<T> are its properties, HasValue and Value.
They do the obvious: Value represents the non-nullable value (the real one, if you
will), when there is one, and throws an InvalidOperationException if (conceptually)
there’s no real value. HasValue is a Boolean property indicating whether there’s a real
value or whether the instance should be regarded as null. For now, I’ll talk about an
“instance with a value” or an “instance without a value,” which mean an instance
where the HasValue property returns true or false, respectively.

 These properties are backed by simple
fields in the obvious way. Figure 4.1 shows
instances of Nullable<int> representing
(from left to right) no value, 0, and 5.
Remember that Nullable<T> is still a
value type, so if you have a variable of type
Nullable<int>, the variable’s value will
directly contain a bool and an int—it

false

hasValue

0

value

true

hasValue

0

value

true

hasValue

5

value

No value 
(null)

Value of 0 Value of 5

Figure 4.1 Sample values of Nullable<int>
won’t be a reference to a separate object.
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Now that you know what the properties should achieve, let’s look at how you can cre-
ate an instance of the type. Nullable<T> has two constructors: the default one (creat-
ing an instance without a value) and one taking an instance of T as the value. Once an
instance has been constructed, it’s immutable.

Nullable<T> introduces a single new method, GetValueOrDefault, which has two
overloads. Both return the value of the instance if there is one, or a default value oth-
erwise. One overload doesn’t have any parameters (in which case the default value of
the underlying type is used), and the other allows you to specify the default value to
return if necessary.

 The other methods implemented by Nullable<T> all override existing methods:
GetHashCode, ToString, and Equals. GetHashCode returns 0 if the instance doesn’t
have a value, or the result of calling GetHashCode on the value if there is one.
ToString returns an empty string if there isn’t a value, or the result of calling
ToString on the value if there is. Equals is slightly more complicated—we’ll come
back to it when we’ve discussed boxing.

 Finally, two conversions are provided by the framework. First, there’s an implicit
conversion from T to Nullable<T>. This always results in an instance where HasValue
returns true. Likewise, there’s an explicit conversion from Nullable<T> to T, which
behaves exactly the same as the Value property, including throwing an exception
when there’s no real value to return.

WRAPPING AND UNWRAPPING The C# specification names the process of con-
verting an instance of T to an instance of Nullable<T> wrapping, with the obvi-
ous opposite process being called unwrapping. The specification defines these
terms with reference to the constructor taking a parameter and the Value
property, respectively. Indeed, these calls are generated by the C# code even

Value types and mutability
A type is said to be immutable if it’s designed so that an instance can’t be changed
after it’s been constructed. Immutable types often lead to a cleaner design than
you’d get if you had to keep track of what might be changing shared values—partic-
ularly among different threads.

Immutability is particularly important for value types; they should almost always be
immutable. Most value types in the framework are immutable, but there are some
commonly used exceptions—in particular, the Point structures for both Windows
Forms and Windows Presentation Foundation are mutable.

If you need a way of basing one value on another, follow the lead of DateTime and
TimeSpan—provide methods and operators that return a new value rather than mod-
ifying an existing one. This avoids all kinds of subtle bugs, including situations where
you may appear to be changing something, but you’re actually changing a copy. Just
say No to mutable value types. 
when it otherwise looks as if you’re using the conversions provided by the



111System.Nullable<T> and System.Nullable

framework. The results are the same either way, though. For the rest of this
chapter, I won’t distinguish between the two implementations available.

Before we go any further, let’s see all this in action. The following listing shows every-
thing you can do with Nullable<T> directly, leaving Equals aside for the moment.

static void Display(Nullable<int> x)
{

Console.WriteLine("HasValue: {0}", x.HasValue);
if (x.HasValue)
{

Console.WriteLine("Value: {0}", x.Value);
Console.WriteLine("Explicit conversion: {0}", (int)x);

}
Console.WriteLine("GetValueOrDefault(): {0}",

x.GetValueOrDefault());
Console.WriteLine("GetValueOrDefault(10): {0}",

x.GetValueOrDefault(10));
Console.WriteLine("ToString(): \"{0}\"", x.ToString());
Console.WriteLine("GetHashCode(): {0}", x.GetHashCode());
Console.WriteLine();

}
...
Nullable<int> x = 5;
x = new Nullable<int>(5);
Console.WriteLine("Instance with value:");
Display(x);

x = new Nullable<int>();
Console.WriteLine("Instance without value:");
Display(x);

In listing 4.1, you first use the two different ways (in terms of C# source code) of wrap-
ping a value of the underlying type C, and then you use various different members on
the instance B. Next, you create an instance that doesn’t have a value D and use the
same members in the same order, just omitting the Value property and the explicit
conversion to int, because these would throw exceptions. 

 The output of listing 4.1 is as follows:

Instance with value:
HasValue: True
Value: 5
Explicit conversion: 5
GetValueOrDefault(): 5
GetValueOrDefault(10): 5
ToString(): "5"
GetHashCode(): 5

Instance without value:
HasValue: False
GetValueOrDefault(): 0

Listing 4.1 Using various members of Nullable<T>

Displays 
diagnosticsB

Wraps 
value of 5

C

Constructs instance 
without valueD
GetValueOrDefault(10): 10
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ToString(): ""
GetHashCode(): 0

So far, you could probably have predicted all of the results by looking at the members
provided by Nullable<T>. When it comes to boxing and unboxing, though, there’s
special behavior to make nullable types behave how you’d really like them to behave,
rather than how they’d behave if you slavishly followed the normal boxing rules. 

4.2.2 Boxing Nullable<T> and unboxing

It’s important to remember that Nullable<T> is a struct—a value type. This means
that if you want to convert it to a reference type (object is the most obvious example),
you’ll need to box it. It’s only with respect to boxing and unboxing that the CLR has
any special behavior regarding nullable types—the rest is standard generics, conver-
sions, method calls, and so forth. In fact, the behavior was only changed shortly before
the release of .NET 2.0, as the result of community requests. In the preview releases,
nullable value types were boxed just like
any other value types.

 An instance of Nullable<T> is boxed
to either a null reference (if it doesn’t
have a value) or a boxed value of T (if it
does), as shown in figure 4.2. It never
boxes to a “boxed nullable int”—there’s
no such type.

 You can unbox from a boxed value
either to its normal type or to the corre-
sponding nullable type. Unboxing a null
reference will throw a NullReference-
Exception if you unbox to the normal
type, but will unbox to an instance without
a value if you unbox to the appropriate
nullable type. This behavior is shown in
the following listing.

Nullable<int> nullable = 5;

object boxed = nullable;
Console.WriteLine(boxed.GetType());

int normal = (int)boxed;
Console.WriteLine(normal);

nullable = (Nullable<int>)boxed;
Console.WriteLine(nullable);

nullable = new Nullable<int>();

Listing 4.2 Boxing and unboxing behavior of nullable types

Boxes nullable 
with value

Unboxes to non-
nullable variable

Unboxes to 
nullable variable

Boxes nullable 

false

hasValue

0

false

0
value

null reference

true

hasValue

5

value

Boxing

Nullable<int>

5

Boxed int
reference

Boxing

Nullable<int>

Figure 4.2 Results of boxing an instance 
without a value (top) and with a value (bottom)
boxed = nullable; without value
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Console.WriteLine(boxed == null);

nullable = (Nullable<int>)boxed;
Console.WriteLine(nullable.HasValue);

The output of listing 4.2 shows the type of the boxed value as System.Int32 (not
System.Nullable<System.Int32>). This confirms that you can retrieve the value by
unboxing to either int or to Nullable<int>. Finally, the output demonstrates that
you can box from a nullable instance without a value to a null reference and success-
fully unbox again to another valueless nullable instance. If you’d tried unboxing the
last value of boxed to a non-nullable int, the program would’ve blown up with a Null-
ReferenceException.

 Now that you understand the behavior of boxing and unboxing, we can begin to
tackle the behavior of Nullable<T>.Equals. 

4.2.3 Equality of Nullable<T> instances

Nullable<T> overrides object.Equals(object) but doesn’t introduce any equality
operators or provide an Equals(Nullable<T>) method. Because the framework has
supplied the basic building blocks, languages can add extra functionality on top,
including making existing operators work as you’d expect them to. You’ll see the
details of that in section 4.3.3, but the basic equality, as defined by the vanilla Equals
method, follows these rules for a call to first.Equals(second):

 If first has no value and second is null, they’re equal.
 If first has no value and second isn’t null, they aren’t equal.
 If first has a value and second is null, they aren’t equal.
 Otherwise, they’re equal if first’s value is equal to second.

Note that you don’t have to consider the case where second is another Nullable<T>
because the rules of boxing prohibit that situation. The type of second is object, so in
order to be a Nullable<T>, it would have to be boxed, and as you’ve just seen, boxing
a nullable instance creates a box of the non-nullable type or returns a null reference.
Initially, the first rule may appear to be breaking the contract for object

.Equals(object), which insists that x.Equals(null) returns false—but that’s only
when x is a non-null reference. Again, due to the boxing behavior, Nullable<T>’s
implementation will never be called via a reference.

 The rules are mostly consistent with the rules of equality elsewhere in .NET, so you
can use nullable instances as keys for dictionaries and any other situations where you
need equality. Just don’t expect equality to differentiate between a non-nullable
instance and a nullable instance with a value—it’s been carefully set up so that those
two cases are treated the same way as each other.

 That covers the Nullable<T> structure itself, but it has a shadowy partner: the
Nullable class. 

Unboxes to nullable variable
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4.2.4 Support from the nongeneric Nullable class

The System.Nullable<T> struct does almost everything you want it to, but it gets help
from the System.Nullable class. This is a static class—it only contains static methods,
and you can’t create an instance of it.2 In fact, everything it does could’ve been done
equally well by other types, and if Microsoft had shown more foresight, the Nullable
class might not have even existed—which would’ve saved some confusion over what
the two types are there for. But this accident of history has three methods to its name,
and they’re still useful.

 The first two are comparison methods:

public static int Compare<T>(Nullable<T> n1, Nullable<T> n2)
public static bool Equals<T>(Nullable<T> n1, Nullable<T> n2)

Compare uses Comparer<T>.Default to compare the two underlying values (if they
exist), and Equals uses EqualityComparer<T>.Default. When presented with
instances with no values, the results returned from each method comply with the .NET
conventions of nulls comparing equal to each other and less than anything else.

 Both of these methods could happily be part of Nullable<T> as static but nonge-
neric methods. The one small advantage of having them as generic methods in a non-
generic type is that generic type inference can be applied, so you’ll rarely need to
explicitly specify the type parameter.

 The final method of System.Nullable isn’t generic—it couldn’t be. Its signature is
as follows:

public static Type GetUnderlyingType(Type nullableType)

If the parameter is a nullable type, the method returns its underlying type; otherwise
it returns null. The reason this couldn’t be a generic method is that if you knew the
underlying type to start with, you wouldn’t have to call it.

 You’ve now seen what the framework and the CLR provide to support nullable
types—but C# 2 adds language features to make life a lot more pleasant. 

4.3 C# 2’s syntactic sugar for nullable types
So far you’ve seen nullable types doing their jobs, but the examples haven’t been par-
ticularly pretty to look at. Admittedly it’s clear that you’re using nullable types when
you have to type Nullable<> around the name of the type you’re interested in, but
that makes the nullability more prominent than the underlying type, which is usually
not a good idea.

 In addition, the very name nullable suggests that you should be able to assign null
to a variable of a nullable type, and you haven’t seen that—you’ve always used the
default constructor of the type. In this section, we’ll look at how C# 2 deals with these
issues and others.
2 You’ll learn more about static classes in chapter 7.
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 Before we get into the details of what C# 2 provides as a language, there’s one def-
inition I can finally introduce. The null value of a nullable value type is the value
where HasValue returns false—or an “instance without a value,” as I referred to it in
section 4.2. I didn’t use the term before because it’s specific to C#. The CLI specifica-
tion doesn’t mention it, and the documentation for Nullable<T> itself doesn’t men-
tion it. I’ve honored that difference by waiting until we’re specifically talking about
C# 2 before introducing the term. The term also applies to reference types: the null
value of a reference type is simply the null reference you’re familiar with from C# 1.

NULLABLE TYPE VERSUS NULLABLE VALUE TYPE In the C# language specifica-
tion, nullable type is used to mean any type with a null value—so any reference
type, or any Nullable<T>. You may have noticed that I’ve been using this term
as if it were synonymous with nullable value type (which obviously doesn’t
include reference types). Although I’m usually a huge pedant when it comes
to terminology, if I’d used “nullable value type” everywhere in this chapter, it
would’ve been horrible to read. You should also expect “nullable type” to be
used ambiguously in the real world: it’s probably more common to use it when
describing Nullable<T> than in the sense described in the specification.

With that out of the way, let’s see what features C# 2 gives us, starting by reducing the
clutter in our code.

4.3.1 The ? modifier

There are some elements of syntax that may be unfamiliar at first but that have an
appropriate feel to them. The conditional operator (a ? b : c) is one of them for me—
it asks a question and then has two corresponding answers. In the same way, the ?
modifier for nullable types just feels right.

 The ? modifier is a shorthand way of specifying a nullable type, so instead of using
Nullable <byte>, you can use byte? throughout your code. The two are interchange-
able and compile to exactly the same IL, so you can mix and match them if you want
to—but on behalf of whoever reads your code next, I urge you to pick one way or the
other and use it consistently. The following listing is exactly equivalent to listing 4.2
but uses the ? modifier, as shown in bold.

int? nullable = 5;

object boxed = nullable;
Console.WriteLine(boxed.GetType());

int normal = (int)boxed;
Console.WriteLine(normal);

nullable = (int?)boxed;
Console.WriteLine(nullable);

Listing 4.3 The same code as 4.2 but using the ? modifier
nullable = new int?();
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boxed = nullable;
Console.WriteLine(boxed == null);

nullable = (int?)boxed;
Console.WriteLine(nullable.HasValue);

I won’t go through what the code does or how it does it, because the result is exactly
the same as in listing 4.2. The two listings compile down to the same IL—they simply
use different syntax, just as int is interchangeable with System.Int32. You can use the
shorthand version everywhere, including in method signatures, typeof expressions,
casts, and the like.

 The reason I feel the modifier is well chosen is that it adds an air of uncertainty to
the nature of the variable. Does the variable nullable in listing 4.3 have an integer
value? Well, at any particular time it might, or it might be the null value. 

 From now on, I’ll use the ? modifier in all the examples—it’s neater, and it’s argu-
ably the idiomatic way to use nullable types in C#. But you may feel that it’s too easy to
miss when reading the code, in which case there’s nothing to stop you from using the
longer syntax. You might want to compare the listings in this and the previous section
to see which you find more clear.

 Given that the C# 2 specification defines the null value, it would be odd if we
couldn’t use the null literal that’s already in the language to represent it. Fortunately
we can… 

4.3.2 Assigning and comparing with null

A concise author could cover this whole section in a single sentence: “The C# com-
piler allows the use of null to represent the null value of a nullable type in both com-
parisons and assignments.” I prefer to show you what it means in real code and to
consider why the language has been given this feature.

 You may have felt uncomfortable every time you used the default constructor of
Nullable<T>. It achieves the desired behavior, but it doesn’t express the reason why
you want to do it—it doesn’t leave the right impression with the reader. It should ide-
ally give the same sort of feeling that using null does with reference types. 

 If it seems odd to you that I’ve talked about feelings in both this section and the
previous one, just think about who writes code and who reads it. Sure, the compiler
has to understand the code, and it couldn’t care less about the subtle nuances of style,
but few pieces of code used in production systems are written and then never read
again. Anything you can do to get the reader into the mental process you were going
through when you originally wrote the code is good, and using the familiar null lit-
eral helps to achieve that.

 With that in mind, we’ll switch from using an example that just shows syntax and
behavior to one that gives an impression of how nullable types might be used. We’ll
model a Person class where you need to know a person’s name, date of birth, and date
of death. We’ll only keep track of people who have definitely been born, but some of

those people may still be alive—in which case the date of death will be represented by
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null. The following listing shows some of the possible code. A real class would have
more operations available—we’ll just look at the calculation of age for this example.

class Person
{

DateTime birth;
DateTime? death;
string name;

public TimeSpan Age
{

get
{

if (death == null)
{

return DateTime.Now - birth;
}
else
{

return death.Value - birth;
}

}
}

public Person(string name,
DateTime birth,
DateTime? death)

{
this.birth = birth;
this.death = death;
this.name = name;

}
}
...
Person turing = new Person("Alan Turing ",

new DateTime(1912, 6, 23),
new DateTime(1954, 6, 7));

Person knuth = new Person("Donald Knuth ",
new DateTime(1938, 1, 10),
null);

Listing 4.4 doesn’t produce any output, but the fact that it compiles might have sur-
prised you before reading this chapter. Apart from the use of the ? modifier causing
confusion, you might have found it odd that you could compare a DateTime? with
null or pass null as the argument for a DateTime? parameter.

 Hopefully by now the meaning is intuitive—when you compare the death variable
with null, you’re asking whether its value is the null value or not. Likewise when you use
null as a DateTime? instance, you’re really creating the null value for the type by calling
the default constructor. Indeed, you can see in the generated IL that the code the com-
piler spits out for listing 4.4 really does just call the death.HasValue property B and

Listing 4.4 Part of a Person class including calculation of age

Checks HasValueB

Unwraps for calculationC

Wraps DateTime 
as nullable

D

Specifies null 
date of death

E

create a new instance of DateTime? E using the default constructor (represented in IL



118 CHAPTER 4 Saying nothing with nullable types

as the initobj instruction). The date of Alan Turing’s death D is created by calling the
normal DateTime constructor and then passing the result into the Nullable <Date-
Time> constructor that takes a parameter.

 I mention looking at the IL because that can be a useful way of finding out what
your code is actually doing, particularly if something compiles when you don’t expect
it to. You can use the ildasm tool that comes with the .NET SDK, or one of the many
decompilers now available, such as .NET Reflector, ILSpy, dotPeek, or JustDecompile.
(Whenever I refer to Reflector in this book, it’s solely because that’s the tool I use out
of habit. The others are perfectly fine too, I’m sure.)

 You’ve seen how C# provides shorthand syntax for the concept of a null value,
making the code more expressive once nullable types are understood in the first
place. But one part of listing 4.4 took a bit more work than you might have hoped—
the subtraction at C. Why did you have to unwrap the value? Why couldn’t you just
return death - birth directly? What would you want that expression to mean if death
had been null (excluded in this code by the earlier test)? These questions—and
more—are answered in the next section. 

4.3.3 Nullable conversions and operators

You’ve seen that you can compare instances of nullable types with null, but there are
other comparisons that can be made and other operators that can be used in some
cases. Likewise you’ve seen wrapping and unwrapping, but other conversions can be
used with some types. This section explains what’s available. I’m afraid it’s pretty much
impossible to make this kind of topic genuinely exciting, but carefully designed fea-
tures like these are what make C# a pleasant language to work with in the long run.
Don’t worry if not all of it sinks in the first time through: just remember that the
details are here if you need to refer to them in the middle of a coding session.

 The executive summary is that if there’s an operator or conversion available on a
non-nullable value type, and that operator or conversion only involves other non-
nullable value types, then the nullable value type also has the same operator or con-
version available, usually converting the non-nullable value types into their nullable
equivalents. To give a more concrete example, there’s an implicit conversion from int
to long, and that means there’s also an implicit conversion from int? to long? that
behaves in the obvious manner.

 Unfortunately, although that broad description gives the right general idea, the
exact rules are slightly more complicated. Each rule is simple, but there are quite a
few of them. It’s worth knowing about them because otherwise you might end up star-
ing at a compiler error or warning for a while, wondering why it believes you’re trying
to make a conversion that you never intended in the first place. We’ll start with the
conversions and then look at the operators.



119C# 2’s syntactic sugar for nullable types

CONVERSIONS INVOLVING NULLABLE TYPES

For completeness, let’s start with the conversions you already know about:

 An implicit conversion from the null literal to T?
 An implicit conversion from T to T?
 An explicit conversion from T? to T

Now consider the predefined and user-defined conversions available on types. For
instance, there’s a predefined conversion from int to long. For any conversion like
this, from one non-nullable value type (S) to another (T), the following conversions
are also available:

 S? to T? (explicit or implicit depending on original conversion)
 S to T? (explicit or implicit depending on original conversion)
 S? to T (always explicit)

To carry the example forward, this means that you can convert implicitly from int? to
long? and from int to long? as well as explicitly from int? to long. The conversions
behave in the natural way, with null values of S? converting to null values of T?, and
non-null values using the original conversion. As before, the explicit conversion from
S? to T will throw an InvalidOperationException when converting from a null value
of S?. For user-defined conversions, these extra conversions involving nullable types
are known as lifted conversions.

 So far, so relatively simple. Now let’s consider the operators, where things are
slightly more tricky. 

OPERATORS INVOLVING NULLABLE TYPES

C# allows the following operators to be overloaded:3

 Unary: + ++ - -- ! ~ truefalse
 Binary: + - * / % & | ^ << >>
 Equality: == !=
 Relational: < > <= >=

When these operators are overloaded for a non-nullable value type T, the nullable type
T? has the same operators, with slightly different operand and result types. These are
called lifted operators, whether they’re predefined operators such as addition on
numeric types or user-defined operators such as adding a TimeSpan to a DateTime.
There are a few restrictions as to when they apply:

 The true and false operators are never lifted. They’re incredibly rare in the
first place, though, so it’s no great loss.

 Only operators with non-nullable value types for the operands are lifted.

3 The equality and relational operators are also binary operators, but they behave slightly differently than the

others; hence their separation in this list.
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 For the unary and binary operators (other than equality and relational opera-
tors), the return type has to be a non-nullable value type.

 For the equality and relational operators, the return type has to be bool.
 The & and | operators on bool? have separately defined behavior, which you’ll

see in section 4.3.4.

For all the operators, the operand types become their nullable equivalents. For the
unary and binary operators, the return type also becomes nullable, and a null value is
returned if any of the operands is a null value. The equality and relational operators
keep their non-nullable Boolean return types. For equality, two null values are consid-
ered equal, and a null value and any non-null value are considered different, which is
consistent with the behavior you saw in section 4.2.3. The relational operators always
return false if either operand is a null value. When none of the operands is a null
value, the operator of the non-nullable type is invoked in the obvious way.

 All these rules sound more complicated than they really are—for the most part,
everything works as you probably expect it to. It’s easiest to see what happens with a
few examples, and as int has so many predefined operators (and integers can be so
easily expressed), it’s the natural demonstration type. Table 4.1 shows a number of
expressions, the lifted operator signature, and the result. It’s assumed that there are
variables four, five, and nullInt, each with type int? and with the obvious values.  

Possibly the most surprising line of the table is the last one—that a null value isn’t
deemed less than or equal to another null value, even though they are deemed to be
equal to each other (as per the fifth row)! Very odd, but unlikely to cause problems in
real life, in my experience.

 One aspect of lifted operators and nullable conversion that has caused some con-
fusion is unintended comparisons with null when using a non-nullable value type.
The code that follows is legal, but not useful:

Table 4.1 Examples of lifted operators applied to nullable integers

Expression Lifted operator Result

-nullInt
-five
five + nullInt
five + five
nullInt == nullInt
five == five
five == nullInt
five == four
four < five
nullInt < five
five < nullInt
nullInt < nullInt
nullInt <= nullInt

int? –(int? x)
int? –(int? x)
int? +(int? x, int? y)
int? +(int? x, int? y)
bool ==(int? x, int? y)
bool ==(int? x, int? y)
bool ==(int? x, int? y)
bool ==(int? x, int? y)
bool <(int? x, int? y)
bool <(int? x, int? y)
bool <(int? x, int? y)
bool <(int? x, int? y)
bool <=(int? x, int? y)

null
-5
null
10
true
true
false
false
true
false
false
false
false
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int i = 5;
if (i == null)
{

Console.WriteLine ("Never going to happen");
}

The C# compiler raises warnings on this code, but you may consider it surprising that
it’s allowed at all. What’s happening is that the compiler sees the int expression on
the left side of the ==, sees null on the right side, and knows that there’s an implicit
conversion to int? from each of them. Because a comparison between two int? val-
ues is perfectly valid, the code doesn’t generate an error—just the warning. As a fur-
ther complication, this isn’t allowed in the case where, instead of int, you’re dealing
with a generic type parameter that has been constrained to be a value type—the rules
on generics prohibit the comparison with null in that situation.

 Either way, there’ll be an error or a warning, so as long as you look closely at warn-
ings, you shouldn’t end up with deficient code due to this quirk, and hopefully my
pointing it out to you now will save you from getting a headache trying to work out
exactly what’s going on.

 Now you can answer the question at the end of the previous section—why we used
death.Value - birth in listing 4.4 instead of just death - birth. Applying the previ-
ous rules, you could have used the latter expression, but the result would’ve been a
TimeSpan? instead of a TimeSpan. This would’ve left you with the options of casting
the result to TimeSpan using its Value property, or changing the Age property to
return a TimeSpan?, which just pushes the issue onto the caller. It’s still a bit ugly, but
you’ll see a nicer implementation of the Age property in section 4.3.6.

 In the list of restrictions regarding operator lifting, I mentioned that bool? works
slightly differently than the other types. The next section explains this and pulls the
lens back to see the bigger picture of why all these operators work the way they do. 

4.3.4 Nullable logic

I vividly remember my early electronics lessons at school. They always seemed to
revolve around either working out the voltage across different parts of a circuit using
the V=IxR formula, or applying truth tables—the reference charts for explaining the
difference between NAND gates and NOR gates and so on. The idea is simple—a truth
table maps out every possible combination of inputs into whatever piece of logic
you’re interested in and tells you the output.

 The truth tables we drew for simple, two-input logic gates always had four rows—
each input had two possible values, which means there were four possible combina-
tions. Boolean logic is simple like that, but what happens when you have a tristate log-
ical type? Well, bool? is just such a type—the value can be true, false, or null. That
means that your truth tables now need nine rows for binary operators as there are
nine combinations. The specification only highlights the logical AND and inclusive OR
operators (& and |, respectively) because the other operators—unary logical negation

(!) and exclusive OR (^)—follow the same rules as other lifted operators. There are
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no conditional logical operators (the short-circuiting && and || operators) defined
for bool?, which makes life simpler.

 For the sake of completeness, table 4.2 gives the truth table for all four valid bool?
logical operators.

If you find reasoning about rules easier to understand than looking up values in
tables, the idea is that a null bool? value is in some senses a “maybe.” If you imagine
that each null entry in the input side of the table is a variable instead, you’ll always get
a null value on the output side of the table if the result depends on the value of that
variable. For instance, looking at the third line of the table, the expression true & y
will only be true if y is true, but the expression true | y will always be true whatever
the value of y is, so the nullable results are null and true, respectively.

 When considering the lifted operators and particularly how nullable logic works,
the language designers had two slightly contradictory sets of existing behavior—C# 1
null references and SQL NULL values. In many cases, these don’t conflict at all—C# 1
had no concept of applying logical operators to null references, so there was no prob-
lem in using the SQL-like results given earlier. The definitions you’ve seen may sur-
prise some SQL developers, though, when it comes to comparisons. In standard SQL,
the result of comparing two values (in terms of equality or greater than/less than) is
always unknown if either value is NULL. The result in C# 2 is never null, and in particu-
lar two null values are considered to be equal to each other.

REMINDER: THIS IS C# SPECIFIC! It’s worth remembering that the lifted opera-
tors and conversions, along with the bool? logic described in this section, are
all provided by the C# compiler and not by the CLR or the framework itself. If
you use ildasm on code that evaluates any of these nullable operators, you’ll
find that the compiler has created all the appropriate IL to test for null values
and dealt with them accordingly. This means that different languages can
behave differently on these matters—definitely something to look out for if
you need to port code between different .NET-based languages. For example,
VB treats lifted operators far more like SQL, so the result of x < y is Nothing if

Table 4.2 Truth table for the logical operators AND, inclusive OR, exclusive OR, 
and logical negation, applied to the bool? type

x y x & y x | y x ^ y !x

true
true
true
false
false
false
null
null
null

true
false
null
true
false
null
true
false
null

true
false
null
false
false
false
null
false
null

true
true
true
true
false
null
true
null
null

false
true
null
true
false
null
null
null
null

false
false
false
true
true
true
null
null
null
x or y is Nothing.
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Another familiar operator is now available with nullable value types, and it behaves
exactly as you’d expect it to if you consider your existing knowledge of null references
and just tweak it to be in terms of null values. 

4.3.5 Using the as operator with nullable types

Prior to C# 2, the as operator was only available for reference types. As of C# 2, it can
now be applied to nullable value types as well. The result is a value of that nullable
type—either the null value if the original reference was the wrong type or null, or a
meaningful value otherwise. Here’s a short example:

static void PrintValueAsInt32(object o)
{

int? nullable = o as int?;
Console.WriteLine(nullable.HasValue ?

nullable.Value.ToString() : "null");
}
...
PrintValueAsInt32(5);
PrintValueAsInt32("some string");

This allows you to safely convert from an arbitrary reference to a value in a single
step—although you’d normally check. In C# 1, you’d have had to use the is operator
followed by a cast, which is inelegant: it’s essentially asking the CLR to perform the
same type check twice.

SURPRISING PERFORMANCE TRAP I’d always assumed that doing one check
would be faster than two, but it appears that’s not the case—at least with the
versions of .NET I’ve tested with (up to and including .NET 4.5). When writing
a quick benchmark that summed all the integers within an array of type
object[], where only a third of the values were actually boxed integers, using
is and then a cast ended up being 20 times faster than using the as operator.
The details are beyond the scope of this book, and as always you should test
performance with your actual code and data before deciding on the best
course of action for your specific situation, but it’s worth being aware of.

You now know enough to use nullable types and predict how they’ll behave, but C# 2
has a sort of “bonus track” when it comes to syntax enhancements: the null coalescing
operator. 

4.3.6 The null coalescing operator

Aside from the ? modifier, all of the rest of the C# compiler’s tricks relating to nul-
lable types so far have worked with the existing syntax. But C# 2 introduces a new
operator that can occasionally make code shorter and sweeter. It’s called the null
coalescing operator and appears in code as ?? between its two operands. It’s like the con-
ditional operator but specially tweaked for nulls.

 It’s a binary operator that evaluates first ?? second by going through the follow-

Yields 5
Yields null
ing steps (roughly speaking):
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1 Evaluate first.
2 If the result is non-null, that’s the result of the whole expression.
3 Otherwise, evaluate second; the result then becomes the result of the whole

expression.

I say “roughly speaking” because the formal rules in the specification have to deal with
situations involving conversions between the types of first and second. As ever, these
aren’t important in most uses of the operator, and I don’t intend to go through
them—consult section 7.13 of the specification (“The Null Coalescing Operator”) if
you need the details.

 Importantly, if the type of the second operand is the underlying type of the first
operand (and therefore non-nullable), the overall result is that underlying type. For
example, this code is perfectly valid:

int? a = 5;
int b = 10;
int c = a ?? b;

Note that you’re assigning directly to c even though its type is the non-nullable int
type. You can only do this because b is non-nullable, so you know that you’ll get a non-
nullable result eventually. 

 Obviously that’s a pretty simplistic example; let’s find a more practical use for this
operator by revisiting the Age property from listing 4.4. As a reminder, here’s how it
was implemented back then, along with the relevant variable declarations:

DateTime birth;
DateTime? death;

public TimeSpan Age
{

get
{

if (death == null)
{

return DateTime.Now - birth;
}
else
{

return death.Value - birth;
}

}
}

Note how both branches of the if statement subtract the value of birth from some
non-null DateTime value. The value you’re interested in is the latest time the person
was alive—the time of the person’s death if they have already died, or now otherwise.
To make progress in little steps, let’s try using the normal conditional operator first:

DateTime lastAlive = (death == null ? DateTime.Now : death.Value);
return lastAlive - birth;
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That’s progress of a sort, but arguably the conditional operator has made it harder to
read rather than easier, even though the new code is shorter. The conditional opera-
tor is often like that—how much you use it is a matter of personal preference,
although it’s worth consulting the rest of your team before using it extensively. Let’s
see how the null coalescing operator improves things. You want to use the value of
death if it’s non-null, and DateTime.Now otherwise. You can change the implementa-
tion to the following:

DateTime lastAlive = death ?? DateTime.Now;
return lastAlive - birth;

Note how the type of the result is DateTime rather than DateTime? because you’ve
used DateTime.Now as the second operand. You could shorten the whole thing to one
expression:

return (death ?? DateTime.Now) - birth;

But this is more obscure—in particular, in the two-line version the name of the last-
Alive variable helps the reader to see why you’re applying the null coalescing opera-
tor. I hope you agree that the two-line version is simpler and more readable than
either the original version using the if statement or the version using the normal con-
ditional operator from C# 1. Of course, it relies on the reader understanding what the
null coalescing operator does. In my experience, this is one of the least-known aspects
of C# 2, but it’s useful enough to make it worth trying to enlighten your co-workers
rather than avoiding it.

 There are two further aspects that increase the operator’s usefulness. First, it
doesn’t just apply to nullable value types—it works with reference types too; you just
can’t use a non-nullable value type for the first operand, as that would be pointless.
Also, it’s right associative, which means an expression of the form first ?? second ??
third is evaluated as first ?? (second ?? third)—and so it continues for more oper-
ands. You can have any number of expressions, and they’ll be evaluated in order, stop-
ping with the first non-null result. If all of the expressions evaluate to null, the result
will be null too.

 As a concrete example of this, suppose you have an online ordering system with
the concepts of a billing address, contact address, and shipping address. The business
rules declare that any user must have a billing address, but the contact address is
optional. The shipping address for a particular order is also optional, defaulting to
the billing address. These optional addresses are easily represented as null references
in the code. To determine who should be contacted in the case of a problem with a
shipment, the code in C# 1 might look something like this:

Address contact = user.ContactAddress;
if (contact == null)
{

contact = order.ShippingAddress;
if (contact == null)

{
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contact = user.BillingAddress;
}

}

Using the conditional operator in this case is even more horrible. But using the null
coalescing operator makes the code very straightforward:

Address contact = user.ContactAddress ??
order.ShippingAddress ??
user.BillingAddress;

If the business rules changed to use the shipping address by default instead of the
user’s contact address, the change here would be extremely obvious. It wouldn’t be
particularly taxing with the if/else version, but I know I’d have to stop and think
twice, and verify the code mentally. I’d also be relying on unit tests, so there’d be little
chance of actually getting it wrong, but I’d prefer not to think about things like this
unless I absolutely have to.

EVERYTHING IN MODERATION Just in case you’re thinking that my code is lit-
tered with uses of the null coalescing operator, it’s really not. I tend to con-
sider it when I see defaulting mechanisms involving nulls and possibly the
conditional operator, but it doesn’t come up often. When its use is natural,
though, it can be a powerful tool in the battle for readability.

You’ve seen how nullable types can be used for ordinary properties of objects—cases
where you naturally might not have a value for some particular aspect that’s still best
expressed with a value type. Those are the more obvious uses for nullable types and
indeed the most common ones. A few other patterns aren’t as obvious, but can still be
powerful when you’re used to them. We’ll explore two of these patterns in the next
section. This is more for the sake of interest than as part of learning about the behav-
ior of nullable types themselves—you now have all the tools you need to use them in
your own code. If you’re interested in quirky ideas and perhaps trying something new,
read on… 

4.4 Novel uses of nullable types
Before nullable types became a reality, I saw lots of people effectively asking for them,
usually in relation to database access. That’s not the only use they can be put to,
though. The patterns presented in this section are unconventional but can make code
simpler. If you always stick to normal idioms of C#, that’s fine—this section might not
be for you, and I have a lot of sympathy for that point of view. I usually prefer simple
code over code that’s clever, but if a whole pattern provides benefits, that sometimes
makes the pattern worth learning. Whether you use these techniques is entirely up to
you—you may find that they suggest other ideas to use elsewhere in your code. 

 Without further ado, let’s start with an alternative to the TryXXX pattern men-
tioned in section 3.3.3.
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4.4.1 Trying an operation without using output parameters

The pattern of using a return value to say whether an operation worked and using an
output parameter to return the real result is becoming increasingly common in the
.NET Framework. I have no issues with the aims—the idea that some methods are likely
to fail to perform their primary purpose in non-exceptional circumstances is common
sense. My one problem with it is that I’m not a huge fan of output parameters. There’s
something slightly clumsy about the syntax of declaring a variable on one line, and
then immediately using it as an output parameter.

 Methods returning reference types have often used a pattern of returning null on
failure and non-null on success, but that doesn’t work so well when null is a valid
return value in the success case. Hashtable is an example of both of these statements,
in a slightly ambivalent way: null is a theoretically valid value in a Hashtable, but in
my experience most uses of Hashtable never use null values, which makes it perfectly
acceptable to have code that assumes that a null value means a missing key. 

 One common scenario is to have each value of the Hashtable as a list: the first
time an item is added for a particular key, a new list is created and the item is added to
it. Thereafter, adding another item for the same key involves adding the item to the
existing list. Here’s the code in C# 1:

ArrayList list = hash[key];
if (list == null)
{

list = new ArrayList();
hash[key] = list;

}
list.Add(newItem);

Hopefully you’d use variable names more specific to your situation, but I’m sure you
get the idea and you may well have used the pattern yourself.4 With nullable types, this
pattern can be extended to value types, and it’s safer with value types, because if the
natural result type is a value type, then a null value could only be returned as a result
of failure. Nullable types add that extra Boolean piece of information in a nice gen-
eral way with language support, so why not use them?

 To demonstrate this pattern in practice and in a context other than dictionary
lookups, I’ll use the classic example of the TryXXX pattern—parsing an integer. The
implementation of the TryParse method in the following listing shows the version of
the pattern using an output parameter, but then you see the version using nullable
types in the main part at the bottom.

4 Wouldn’t it be great if Hashtable and Dictionary<TKey,TValue> could take a delegate to call whenever

a new value was required due to looking up a missing key? Situations like this would be a lot simpler.
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static int? TryParse(string text)
{

int ret;
if (int.TryParse(text, out ret))
{

return ret;
}
else
{

return null;
}

}
...
int? parsed = TryParse("Not valid");
if (parsed != null)
{

Console.WriteLine ("Parsed to {0}", parsed.Value);
}
else
{

Console.WriteLine ("Couldn't parse");
}

You may think there’s little to distinguish the two versions here—they’re the same
number of lines, after all. But I believe there’s a difference in emphasis. The nullable
version encapsulates the natural return value and the success or failure into a single
variable. It also separates the doing from the testing, which puts the emphasis in the
right place, in my opinion. Usually, if I call a method in the condition part of an if
statement, that method’s primary purpose is to return a Boolean value. Here, the
return value is in some ways less important than the output parameter. When you’re
reading code, it’s easy to miss an output parameter in a method call and be left won-
dering what’s actually doing all the work and magically giving the answer. With the
nullable version, this is more explicit—the result of the method has all the informa-
tion you’re interested in. I’ve used this technique in a number of places (often with
more method parameters, at which point output parameters become even harder to
spot), and I believe it has improved the general feel of the code. Of course, this only
works for value types.

 Another advantage of this pattern is that it can be used in conjunction with the
null coalescing operator—you can try to understand several pieces of input, stopping
at the first valid one. The normal TryXXX pattern allows this using the short-circuiting
operators, but the meaning isn’t nearly as clear when you use the same variable for
two different output parameters in the same statement.

ALTERNATIVELY, USE A TUPLE… Another alternative to using a nullable result
is to use a return type with two very clearly separate members, one of which is
responsible for indicating success or failure and another of which is responsi-

Listing 4.5 An alternative implementation of the TryXXX pattern

Classic call with 
output parameter

Nullable call
ble for indicating the value on success. Nullable<T> is convenient because it
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gives you a Boolean property and another of type T, but the meaning of the
return value could perhaps be more explicit. .NET 4 includes the Tuple family
of types: arguably a Tuple<int, bool> might be cleaner than int? here. Even
cleaner would be a custom type to represent the result of a parse operation:
ParseResult<T>, for example. In this case, you could hand the value around
to other code without any fear that its meaning will be confused, and you can
add extra information such as the cause of any parsing failure.

The next pattern is an answer to a specific pain point—the irritation and fluff that can
be present when writing multitiered comparisons. 

4.4.2 Painless comparisons with the null coalescing operator

I suspect you dislike writing the same code over and over again as much as I do. Refac-
toring can often get rid of duplication, but some cases resist refactoring surprisingly
effectively. Code for Equals and Compare often falls firmly into this category.

 Suppose you’re writing an e-commerce site and have a list of products. You might
want to sort them by popularity (descending), then price, then name—so that the
five-star-rated products come first, but the cheapest five-star products come before the
more expensive ones. If there are multiple products with the same price, products
beginning with A are listed before products beginning with B. This isn’t a problem
specific to e-commerce sites—sorting data by multiple criteria is a fairly common
requirement in computing.

 Assuming you have a suitable Product type, you could write the comparison with
code like this in C# 1:

public int Compare(Product first, Product second)
{

// Reverse comparison of popularity to sort descending
int ret = second.Popularity.CompareTo(first.Popularity);
if (ret != 0)
{

return ret;
}
ret = first.Price.CompareTo(second.Price);
if (ret != 0)
{

return ret;
}
return first.Name.CompareTo(second.Name);

}

This assumes that you won’t be asked to compare null references and that all of the
properties will return non-null references too. You could use some up-front null com-
parisons and Comparer<T>.Default to handle those cases, but that would make the
code even longer and more involved. The code could be shorter (and avoid returning
from the middle of the method) if you rearranged it slightly, but the fundamental
“compare, check, compare, check” pattern would still be present, and it wouldn’t be

as obvious that once you have a nonzero answer you’re done.
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 Ah…that last sentence is reminiscent of something else: the null coalescing opera-
tor. As you saw in section 4.3, if you have a lot of expressions separated by ??, then the
operator will be repeatedly applied until it hits a non-null expression. Now all you
have to do is work out a way of returning null instead of zero from a comparison. This
is easy to do in a separate method that can also encapsulate the use of the default com-
parer. You can even have an overload to use a specific comparer if you want. You can
also deal with the case where either of the Product references you’re passed is null. 

 First, let’s look at the class implementing the helper methods, as shown in the fol-
lowing listing.

public static class PartialComparer
{

public static int? Compare<T>(T first, T second)
{

return Compare(Comparer<T>.Default, first, second);
}

public static int? Compare<T>(IComparer<T> comparer,
T first, T second)

{
int ret = comparer.Compare(first, second);
return ret == 0 ? new int?() : ret;

}

public static int? ReferenceCompare<T>(T first, T second)
where T : class

{
return first == second ? 0

: first == null ? -1
: second == null ? 1
: new int?();

}
}

The Compare methods in listing 4.6 are almost pathetically simple—when a comparer
isn’t specified, the default comparer for the type is used, and all that happens to the
comparison’s return value is that zero is translated to the null value.

NULL VALUES AND THE CONDITIONAL OPERATOR You may have been surprised to
see me use new int?() rather than null to return the null value in the sec-
ond Compare method. The conditional operator requires that its second and
third operands either be of the same type, or that there be an implicit conver-
sion from one to the other, and that wouldn’t be the case with null, because
the compiler wouldn’t know what type the value was meant to be. The lan-
guage rules don’t take the overall aim of the statement (returning from a
method with a return type of int?) into account when examining subexpres-
sions. Other options include casting either operand to int? explicitly or
using default(int?) for the null value. Basically, the important thing is to

Listing 4.6  Helper class for providing partial comparisons
make sure that one of the operands is known to be an int? value.
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The ReferenceCompare method uses another conditional operator—three of them, in
fact. You may find this less readable than the (rather longer) equivalent code using
if/else blocks—it depends on how comfortable you are with the conditional opera-
tor. I like it because it makes the order of the comparisons clear. Also, this could easily
have been a nongeneric method with two object parameters, but this form prevents
you from accidentally using the method to compare value types via boxing. The
method really is only useful with reference types, which is indicated by the type param-
eter constraint.

 Even though this class is simple, it’s remarkably useful. You can now replace the
previous product comparison with a neater implementation:

public int Compare(Product first, Product second)
{

return PC.ReferenceCompare(first, second) ??
// Reverse comparison of popularity to sort descending
PC.Compare(second.Popularity, first.Popularity) ??
PC.Compare(first.Price, second.Price) ??
PC.Compare(first.Name, second.Name) ??
0;

}

As you may have noticed, I’ve used PC rather than PartialComparer—this is solely for
the sake of being able to fit the lines on the printed page. In real code, I’d use the full
type name and still have one comparison per line. Of course, if you wanted short lines
for some reason, you could specify a using directive to make PC an alias for Partial-
Comparer—I just wouldn’t recommend it.

 The final 0 indicates that if all of the earlier comparisons have passed, the two
Product instances are equal. You could just use Comparer<string>.Default.Compare
(first.Name, second.Name) as the final comparison, but that would hurt the symme-
try of the method.

 This comparison plays nicely with nulls, it’s easy to modify, it forms an easy pattern
to use for other comparisons, and it only compares as far as it needs to—if the prices
are different, the names won’t be compared.

 You may be wondering whether the same technique could be applied to equality
tests, which often have similar patterns. There’s much less point in the case of equal-
ity, because after the nullity and reference equality tests, you can just use && to provide
the desired short-circuiting functionality for Booleans. A method returning a bool?
can be used to obtain an initial definitely equal, definitely not equal, or unknown result
based on the references, though. The complete code of PartialComparer on this
book’s website contains the appropriate utility method and examples of its use. 

4.5 Summary
When faced with a problem, developers tend to take the easiest short-term solution,
even if it’s not particularly elegant. That’s often the right decision—you don’t want to
be guilty of overengineering, after all. But it’s always nice when a good solution is also

the easiest solution.
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 Nullable types solve a specific problem that only had somewhat ugly solutions
before C# 2. The features provided are a better-supported version of a solution that
was feasible but time consuming in C# 1. The combination of generics (to avoid code
duplication), CLR support (to provide suitable boxing and unboxing behavior), and
language support (to provide concise syntax along with convenient conversions and
operators) makes the solution far more compelling than it was previously.

 It just so happens that in providing nullable types, the C# and framework designers
have made some other patterns available that weren’t worth the effort before. We’ve
looked at some of them in this chapter, and I wouldn’t be surprised to see more of
them appearing over time.

 So far generics and nullable types have addressed areas where in C# 1 you occa-
sionally had to hold your nose due to unpleasant code smells. This pattern continues
in the next chapter, where we’ll discuss the enhancements to delegates. These form
an important part of the subtle change of direction of both the C# language and the
.NET Framework toward a slightly more functional viewpoint. This emphasis is made
even clearer in C# 3, so although we’re not looking at those features quite yet, the del-
egate enhancements in C# 2 act as a bridge between the familiarity of C# 1 and the
style of idiomatic C# 3, which can often be radically different from earlier versions.



Fast-tracked delegates
The journey of delegates in C# and .NET has been an interesting one, showing
remarkable foresight (or really good luck) on the part of the designers. The con-
ventions suggested for event handlers in .NET 1.0/1.1 didn’t make a lot of sense—
until C# 2 showed up. Likewise, the effort put into delegates for C# 2 seems in some
ways out of proportion to how widely used they are—until you see how pervasive
they are in idiomatic C# 3 code. In other words, it’s as if the language and platform
designers had a vision of at least the rough direction they’d be taking, years before
the destination itself became clear.

 Of course, C# 3 isn’t a final destination in itself—generic delegates get a bit
more flexibility in C# 4, C# 5 makes it easy to write asynchronous delegates, and we
may see even more advances in the future—but the differences between C# 1 and

This chapter covers
 Long-winded C# 1 syntax

 Simplified delegate construction

 Covariance and contravariance

 Anonymous methods

 Captured variables
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C# 3 in this area are the most startling ones. (The primary change in C# 3 supporting
delegates is in lambda expressions, which you’ll meet in chapter 9.)

 C# 2 is a sort of stepping stone in terms of delegates. Its new features pave the way
for the dramatic changes of C# 3, keeping developers reasonably comfortable while still
providing useful benefits. I’m reliably informed that language designers were aware
that the combined feature set of C# 2 would open up whole new ways of looking at
code, but they didn’t necessarily know where those paths would lead. So far, their
instincts have proved remarkably beneficial in the area of delegates.

 Delegates play a more prominent part in .NET 2.0 than in earlier versions,
although they’re not as common as they are in .NET 3.5. In chapter 3 you saw how
they can be used to convert from one type of list to another, and way back in chapter 1
you sorted a list of products using the Comparison delegate instead of the IComparer
interface. Although the framework and C# keep a respectful distance from each other
where possible, I believe that the language and platform drove each other in this case:
the inclusion of more delegate-based API calls supports the improved syntax available
in C# 2, and vice versa.

 In this chapter, we’ll look at how C# 2 includes two small changes that make life
easier when creating delegate instances from normal methods, and then we’ll look at
the biggest change: anonymous methods, which allow you to specify a delegate
instance’s action inline at the point of its creation. The largest section of the chapter is
devoted to the most complicated part of anonymous methods—captured variables—
which provide delegate instances with a richer environment to play in. We’ll cover the
topic in significant detail due to its importance and complexity. Once you’ve come to
grips with anonymous methods, lambda expressions are easy to understand.

 First, though, let’s review the pain points of C# 1’s delegate facilities.

5.1 Saying goodbye to awkward delegate syntax
The syntax for delegates in C# 1 doesn’t sound too bad—the language already has syn-
tactic sugar around Delegate.Combine, Delegate.Remove, and the invocation of dele-
gate instances. It makes sense to specify the delegate type when creating a delegate
instance; after all, it’s the same syntax used to create instances of other types.

 This is all true, but for some reason it also sucks. It’s hard to say exactly why the del-
egate creation expressions of C# 1 raise hackles, but they do—at least for me. When
hooking up a bunch of event handlers, it just looks ugly to have to write new Event-
Handler (or whatever is required) all over the place, when the event itself has speci-
fied which delegate type it’ll use. Beauty is in the eye of the beholder, of course, and
you could argue that there’s less call for guesswork when reading event handler wiring
code in the C# 1 style, but the extra text just gets in the way and distracts from the
important part of the code: the method you want to handle the event.

 Life becomes more black and white when you consider covariance and contravari-
ance as applied to delegates. Suppose you have an event handling method that saves

the current document, or logs that it’s been called, or performs any number of other
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actions that may not need to know details of the event. The event itself shouldn’t
mind that your method is capable of working with only the information provided by
the EventHandler signature, even though the event is declared to pass in mouse event
details. Unfortunately, in C# 1 you need to have a different method for each different
event handler signature.

 Likewise it’s undeniably ugly to write methods that are so simple that their imple-
mentation is shorter than their signature, solely because delegates need to have an
action to execute in the form of a method. It adds an extra layer of indirection
between the code creating the delegate instance and the code that should execute
when it’s invoked. Extra layers of indirection are often welcome—that option hasn’t
been removed in C# 2—but at the same time it frequently makes the code harder to
read and pollutes the class with a bunch of methods that are only used for delegates.

 Unsurprisingly, all of these issues are improved greatly in C# 2. The syntax can still
be wordier than you might like (until you get lambda expressions in C# 3), but the dif-
ference is significant. To illustrate the pain, we’ll start with some code in C# 1 and
improve it in the next couple of sections. The following listing builds a (very) simple
form with a button and then subscribes to three of the button’s events.

static void LogPlainEvent(object sender, EventArgs e)
{

Console.WriteLine("LogPlain");
}

static void LogKeyEvent(object sender, KeyPressEventArgs e)
{

Console.WriteLine("LogKey");
}

static void LogMouseEvent(object sender, MouseEventArgs e)
{

Console.WriteLine("LogMouse");
}
...
Button button = new Button();
button.Text = "Click me";
button.Click += new EventHandler(LogPlainEvent);
button.KeyPress += new KeyPressEventHandler(LogKeyEvent);
button.MouseClick += new MouseEventHandler(LogMouseEvent);

Form form = new Form();
form.AutoSize = true;
form.Controls.Add(button);
Application.Run(form);

The output lines in the three event handling methods are there to prove that the code
is working: if you press the spacebar with the button highlighted, you’ll see that the
Click and KeyPress events are both raised. Pressing Enter just raises the Click event;

Listing 5.1 Subscribing to three of a button’s events
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clicking on the button raises the Click and MouseClick events. In the following sec-
tions, we’ll improve this code using some of the C# 2 features.

 Let’s start by asking the compiler to make a pretty obvious deduction—which dele-
gate type you want to use when subscribing to an event. 

5.2 Method group conversions
In C# 1, if you want to create a delegate instance, you need to specify both the dele-
gate type and the action. Chapter 2 defined the action as the method to call and (for
instance methods) the target as the object it’s called on. 

 For example, in listing 5.1, this expression was used to create a KeyPressEvent-
Handler:

new KeyPressEventHandler(LogKeyEvent)

As a standalone expression, it doesn’t look too bad. Even used in a simple event sub-
scription it’s tolerable. It becomes uglier when used as part of a longer expression,
though. A common example of this is starting a new thread:

Thread t = new Thread(new ThreadStart(MyMethod));

What you want to do is start a new thread that’ll execute MyMethod. As ever, you want
to express yourself as simply as possible, and C# 2 allows you to do this by means of an
implicit conversion from a method group to a compatible delegate type. A method
group is simply the name of a method, optionally with a target—exactly the same kind
of expression you used in C# 1 to create delegate instances. (Indeed, the expression
was called a method group back then—it’s just that the conversion wasn’t available.) If
the method is generic, the method group may also specify type arguments—although
this is rarely used, in my experience. The new implicit conversion allows you to turn
your event subscription into

button.KeyPress += LogKeyEvent;

Likewise, the thread-creation code becomes simply

Thread t = new Thread(MyMethod);

The readability differences between the original and the streamlined versions aren’t
huge for a single line, but in the context of a significant amount of code, they can
reduce the clutter considerably. To make it seem less like magic, let’s briefly look at
what this conversion is doing.

 First, let’s consider the expressions LogKeyEvent and MyMethod as they appear in
the examples. The reason they’re classified as method groups is because more than
one method may be available, due to overloading. The implicit conversions available
will convert a method group to any delegate type with a compatible signature. So, if
you had two method signatures like these,

void MyMethod()
void MyMethod(object sender, EventArgs e)
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you could use MyMethod as the method group in an assignment to either a Thread-
Start or an EventHandler, as follows:

ThreadStart x = MyMethod;
EventHandler y = MyMethod;

But you couldn’t use it as the parameter to a method that itself was overloaded to take
either a ThreadStart or an EventHandler—the compiler would complain that the
call was ambiguous. Likewise, you unfortunately can’t use an implicit method group
conversion to convert to the plain System.Delegate type, because the compiler
doesn’t know which specific delegate type to create an instance of. This is a pain, but
you can still be slightly briefer than in C# 1 by making the conversion explicit. Here’s
an example:

Delegate invalid = SomeMethod;
Delegate valid = (ThreadStart)SomeMethod;

For local variables this usually isn’t a problem, but it’s somewhat more annoying when
you’re using an API that has a parameter of type Delegate, such as Control.Invoke.
There are a few solutions here: using a helper method, casting, or using an intermedi-
ate variable. Here’s an example using the MethodInvoker delegate type, which takes
no parameters and doesn’t return anything:

static void SimpleInvoke(Control control,
MethodInvoker invoker)

{
control.Invoke(invoker);

}
...
SimpleInvoke(form, UpdateUI);
form.Invoke((MethodInvoker)UpdateUI);
MethodInvoker invoker = UpdateUI;
form.Invoke(invoker);

Different situations will encourage different solutions; none of these is particularly
appealing, but they’re not awful either.1

 As with generics, the precise rules of conversion validity are slightly complicated,
and the just-try-it approach works well; if the compiler complains that it doesn’t have
enough information, just tell it what conversion to use, and all should be well. If it
doesn’t complain, you should be fine. For the exact details, consult the language spec-
ification, section 6.6 (“Method group conversions”). Speaking of possible conversions,
there may be more than you expect, as you’ll see in the next section. 

5.3 Covariance and contravariance
We’ve already talked a lot about the concepts of covariance and contravariance in dif-
ferent contexts, usually bemoaning their absence, but delegate construction is the
one area in which they’re available in C# prior to version 4. If you want to refresh

1 Extension methods (discussed in chapter 10) make the helper method approach somewhat more appealing

Invokes with a helper method

Invokes with a cast

Invokes with a local variable
if you’re using C# 3.
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yourself about the meaning of the terms at a relatively detailed level, refer back to sec-
tion 2.2.2, but the gist of the topic with respect to delegates is that if it would be valid
(in a static typing sense) to call a method and use its return value everywhere that you
could invoke an instance of a particular delegate type and use its return value, then
that method can be used to create an instance of that delegate type. That’s wordy—it’s
a lot simpler with examples.

DIFFERENT TYPES OF VARIANCE IN DIFFERENT VERSIONS You may already be
aware that C# 4 offers generic covariance and contravariance for delegates and
interfaces. This is entirely different from the variance we’re looking at here—
we’re only dealing with creating new instances of delegates at the moment.
The generic variance in C# 4 uses reference conversions, which don’t create new
objects—they just view the existing object as a different type.

We’ll look at contravariance first, and then covariance.

5.3.1 Contravariance for delegate parameters

Let’s consider the event handlers in the little Windows Forms application in
listing 5.1. The signatures of the three delegate types are as follows:2

void EventHandler(object sender, EventArgs e)
void KeyPressEventHandler(object sender, KeyPressEventArgs e)
void MouseEventHandler(object sender, MouseEventArgs e)

Consider that KeyPressEventArgs and MouseEventArgs both derive from EventArgs
(as do a lot of other types—MSDN lists 403 types that derive directly from EventArgs
in .NET 4). If you have a method with an EventArgs parameter, you could always call it
with a KeyPressEventArgs argument instead. It therefore makes sense to be able to
use a method with the same signature as EventHandler to create an instance of Key-
PressEventHandler, and that’s exactly what C# 2 does. This is an example of contra-
variance of parameter types.

 To see that in action, think back to listing 5.1 and suppose that you don’t need to
know which event was firing—you just want to write out the fact that an event has hap-
pened. Using method group conversions and contravariance, the code becomes a lot
simpler, as shown in the following listing.

static void LogPlainEvent(object sender, EventArgs e)
{

Console.WriteLine("An event occurred");
}
...
Button button = new Button();
button.Text = "Click me";
button.Click += LogPlainEvent;

Listing 5.2 Demonstration of method group conversions and delegate contravariance

Handles 
all eventsB

Uses method 
group conversion

C

2 I’ve removed the public delegate part for reasons of space.
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button.KeyPress += LogPlainEvent;
button.MouseClick += LogPlainEvent;

Form form = new Form();
form.AutoSize = true;
form.Controls.Add(button);
Application.Run(form);

The two handler methods that dealt specifically with key and mouse events have
been completely removed, and you’re now using one event handling method for
everything B. Of course, this isn’t terribly useful if you want to do different things for
different types of events, but sometimes all you need to know is that an event occurred
and, potentially, the source of the event. The subscription to the Click event C only
uses the implicit conversion we discussed in the previous section because it has a sim-
ple EventArgs parameter, but the other event subscriptions D involve the conversion
and contravariance due to their different parameter types.

 I mentioned earlier that the .NET 1.0/1.1 event handler convention didn’t make
much sense when it was first introduced. This example shows exactly why the guide-
lines are more useful with C# 2. The convention dictates that event handlers should
have a signature with two parameters, the first of which is of type object and is the ori-
gin of the event, and the second of which carries any extra information about the
event in a type deriving from EventArgs. Before contravariance became available, this
wasn’t useful—there was no benefit to making the informational parameter derive
from EventArgs, and sometimes there wasn’t much use for the origin of the event. It
was often more sensible to pass the relevant information directly in the form of nor-
mal parameters with appropriate types, just like any other method. Now you can use a
method with the EventHandler signature as the action for any delegate type that hon-
ors the convention.

 So far we’ve looked at the values entering a method or delegate—what about the
value coming out?

5.3.2 Covariance of delegate return types

Demonstrating covariance is harder, as relatively few of the delegates available in .NET
2.0 are declared with a nonvoid return type, and those that are tend to return value
types. There are some available, but it’s easier to declare your own delegate type that
uses Stream as its return type. For simplicity, we’ll make it parameterless:3

delegate Stream StreamFactory();

You can now use this with a method that’s declared to return a specific type of stream,
as shown in the following listing. You declare a method that always returns a Memory-
Stream with some sequential data (bytes 0, 1, 2, and so on up to 15), and then use that
method as the action for a StreamFactory delegate instance.

3 Return type covariance and parameter type contravariance can be used at the same time, but you’re unlikely

Uses conversion 
and contravariance

D

to come across situations where that would be useful.
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delegate Stream StreamFactory();

static MemoryStream GenerateSampleData()
{

byte[] buffer = new byte[16];
for (int i = 0; i < buffer.Length; i++)
{

buffer[i] = (byte) i;
}
return new MemoryStream(buffer);

}
...
StreamFactory factory = GenerateSampleData;

using (Stream stream = factory())
{

int data;
while ((data = stream.ReadByte()) != -1)
{

Console.WriteLine(data);
}

}

The generation and display of the data in listing 5.3 is only present to give the code
something to do. The important points are the annotated lines. You declare that the
delegate type has a return type of Stream B, but the GenerateSampleData method
has a return type of MemoryStream C. The line creating the delegate instance D per-
forms the conversion you saw earlier and uses covariance of return types to allow
GenerateSampleData to be used as the action for StreamFactory. By the time you
invoke the delegate instance E, the compiler no longer knows that a MemoryStream
will be returned—if you changed the type of the stream variable to MemoryStream,
you’d get a compilation error.

 Covariance and contravariance can also be used to construct one delegate instance
from another. For instance, consider these two lines of code (which assume an appro-
priate HandleEvent method):

EventHandler general = new EventHandler(HandleEvent);
KeyPressEventHandler key = new KeyPressEventHandler(general);

The first line is valid in C# 1, but the second isn’t—in order to construct one delegate
from another in C# 1, the signatures of the two delegate types involved have to match.
For instance, you could create a MethodInvoker from a ThreadStart, but you couldn’t
create a KeyPressEventHandler from an EventHandler as shown in the second line.
You’re using contravariance to create a new delegate instance from an existing one
with a compatible delegate type signature, where compatibility is defined in a less
restrictive manner in C# 2 than in C# 1.

 All of this is positive, except for one small fly in the ointment. 

Listing 5.3 Demonstration of covariance of return types for delegates

Declares delegate type returning StreamB

Declares method 
returning 
MemoryStreamC

Converts method group 
with covariance

D

Invokes delegate to 
obtain streamE
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5.3.3 A small risk of incompatibility

This new flexibility in C# 2 creates one of the few cases where existing valid C# 1 code
may produce different results when compiled under C# 2. Suppose a derived class
overloads a method declared in its base class, and you try to create an instance of a
delegate using a method group conversion. A conversion that previously only
matched the base class method could match the derived class method due to covari-
ance or contravariance in C# 2, in which case that derived class method would be cho-
sen by the compiler. The following listing gives an example of this.

delegate void SampleDelegate(string x);

public void CandidateAction(string x)
{

Console.WriteLine("Snippet.CandidateAction");
}

public class Derived : Snippet
{

public void CandidateAction(object o)
{

Console.WriteLine("Derived.CandidateAction");
}

}
...
Derived x = new Derived();
SampleDelegate factory = new SampleDelegate(x.CandidateAction);
factory("test");

Remember that Snippy4 will be generating all of this code within a class called
Snippet, which the nested type derives from. Under C# 1, listing 5.4 would print
Snippet.CandidateAction because the method taking an object parameter wasn’t
compatible with SampleDelegate. Under C# 2, the method is compatible, and it’s the
method chosen due to being declared in a more derived type, so the result is that
Derived.CandidateAction is printed. 

 Fortunately, the C# 2 compiler knows that this is a breaking change and issues an
appropriate warning. I’ve included this section because you ought to be aware of the
possibility of such a problem, but I’m sure it’s rarely encountered in real life.

 Enough doom and gloom about potential breakage. We’ve still got to see the most
important new feature regarding delegates: anonymous methods. They’re a bit more
complicated than the topics we’ve covered so far, but they’re also very powerful—and
a large step toward C# 3. 

Listing 5.4 Demonstration of breaking change between C# 1 and C# 2

4 In case you skipped the first chapter, Snippy is a tool I’ve built to create short but complete code samples. See

section 1.8.1 for more details.
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5.4 Inline delegate actions with anonymous methods
Back in C# 1, it was common to implement a delegate with a particular signature,
even though you already had a method with exactly the right behavior but a slightly
different set of parameters. Likewise, you’d often want a delegate to do just one
teeny, tiny thing—but that meant you needed a whole extra method. The new
method would represent behavior that was only relevant within the original method,
but it was now exposed to the whole class, creating noise in IntelliSense and generally
getting in the way.

 All this was intensely frustrating. The covariance and contravariance features
we’ve just talked about can sometimes help with the first problem, but often they don’t.
Anonymous methods, which are also new in C# 2, can pretty much always help with
these issues.

 Informally, anonymous methods allow you to specify the action for a delegate
instance inline as part of the delegate instance creation expression. They also provide
some far more powerful behavior in the form of closures, but we’ll come to those in
section 5.5. For the moment, let’s stick with relatively simple stuff.

 First we’ll look at examples of anonymous methods that take parameters but don’t
return any values; then we’ll explore the syntax involved in providing return values and
a shortcut available when you don’t need to use the parameter values passed to you.

5.4.1 Starting simply: acting on a parameter

.NET 2.0 introduced a generic delegate type called Action<T>, which we’ll use for our
examples. Its signature is simple (aside from the fact that it’s generic):

public delegate void Action<T>(T obj)

In other words, an Action<T> does something with a value of type T; for example, an
Action<string> could reverse the string and print it out, an Action<int> could print
out the square root of the number passed to it, and an Action<IList<double>> could
find the average of all the numbers given to it and print that out. By complete coinci-
dence, these examples are all implemented using anonymous methods in the follow-
ing listing.

Action<string> printReverse = delegate(string text)
{

char[] chars = text.ToCharArray();
Array.Reverse(chars);
Console.WriteLine(new string(chars));

};

Action<int> printRoot = delegate(int number)
{

Console.WriteLine(Math.Sqrt(number));
};

Listing 5.5 Anonymous methods used with the Action<T> delegate type

Uses anonymous 
method to create 
Action<string>

B
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Action<IList<double>> printMean = delegate(IList<double> numbers)
{

double total = 0;
foreach (double value in numbers)
{

total += value;
}
Console.WriteLine(total / numbers.Count);

};

printReverse("Hello world");
printRoot(2);
printMean(new double[] { 1.5, 2.5, 3, 4.5 });

Listing 5.5 shows a few of the different features of anonymous methods. First, there’s
the syntax of anonymous methods: use the delegate keyword, followed by the param-
eters (if there are any), followed by the code for the action of the delegate instance, in
a block. The string-reversal code B shows that the block can contain local variable
declarations, and the list-averaging code C demonstrates looping within the block.
Basically, you can do (almost) anything in an anonymous method that you can do in a
normal method body. Likewise, the result of an anonymous method is a delegate
instance that can be used like any other one D. But be warned that contravariance
doesn’t apply to anonymous methods; you have to specify the parameter types that
match the delegate type exactly.

A COUPLE OF RESTRICTIONS… One slight oddity is that if you’re writing an
anonymous method in a value type, you can’t reference this from within it.
There’s no such restriction within a reference type. Additionally, in the
Microsoft C# 2 and 3 compiler implementations, accessing a base member
within an anonymous method via the base keyword resulted in a warning that
the resulting code was unverifiable. This has been fixed in the C# 4 compiler.

In terms of implementation, you’re still creating a method in IL for each anonymous
method in the source code. The compiler will generate a method within the existing
class and use that as the action when it creates the delegate instance, just as if it were a
normal method.5 The CLR neither knows nor cares that an anonymous method was
used. You can see the extra methods within the compiled code using ildasm or Reflec-
tor. (Reflector knows how to interpret the IL to display anonymous methods in the
method that uses them, but the extra methods are still visible.) These methods have
unspeakable names—ones that are valid in IL, but invalid in C#. This stops you from
attempting to refer to them directly in your C# code and avoids the possibility of nam-
ing collisions. Many of the features of C# 2 and later versions are implemented in a
similar way; one easy way to spot them is that they usually contain angle brackets. For
example, an anonymous method in a Main method might cause a method called
<Main>b__0 to be created. It’s entirely implementation-specific, though. Microsoft

5 You’ll see in section 5.5.4 that although there’s always a new method, it’s not always created where you might

Uses loop in 
anonymous 
method

C

Invokes delegates as normalD
expect.
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could change its private conventions in a future version, for example. This shouldn’t
break anything, as nothing should be relying on these names.

 It’s worth pointing out at this stage that listing 5.5 is exploded compared with how
anonymous methods normally look in real code. You’ll often see them used as argu-
ments to another method (rather than assigned to a variable of the delegate type) and
with few line breaks—compactness is part of the reason for using them, after all. To
demonstrate this, we’ll use the List<T>.ForEach method that takes an Action<T> as a
parameter and performs that action on each element. The following listing shows an
extreme example, applying the same square-rooting action you used in listing 5.5, but
in a compact form.

List<int> x = new List<int>();
x.Add(5);
x.Add(10);
x.Add(15);
x.Add(20);
x.Add(25);

x.ForEach(delegate(int n){Console.WriteLine(Math.Sqrt(n));});

That’s pretty horrendous—especially when the last six characters appear to be
ordered almost at random. There’s a happy medium, of course. I tend to break my
usual “braces on a line on their own” rule for anonymous methods (as I do for trivial
properties), but I still allow a decent amount of whitespace. I might well write the last
line of listing 5.6 in one of these two forms:

x.ForEach(delegate(int n)
{ Console.WriteLine(Math.Sqrt(n)); }

);

x.ForEach(delegate(int n) {
Console.WriteLine(Math.Sqrt(n));

});

Even just adding spaces to listing 5.6 would’ve helped. In each of these formats, the
parentheses and braces are now less confusing, and the what-it-does part stands out
appropriately. Of course, how you space out your code is entirely your own business,
but I encourage you to actively think about where you want to strike the balance, and
talk about it with your teammates to try to achieve some consistency. Consistency
doesn’t always lead to the most readable code, though—sometimes keeping every-
thing on one line is the most straightforward format.

 So far the only interaction you’ve had with the calling code is through parameters.
What about return values?

Listing 5.6 Extreme example of code compactness. Warning: unreadable code ahead!
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5.4.2 Returning values from anonymous methods

The Action<T> delegate has a void return type, so you haven’t had to return anything
from your anonymous methods yet. To demonstrate how you can do so when you need
to, we’ll use the Predicate<T> delegate type from .NET 2.0, which has this signature:

public delegate bool Predicate<T>(T obj)

The following listing shows an anonymous method creating an instance of
Predicate<T> to return whether the argument passed in is odd or even. Predicates
are usually used in filtering and matching—you could use the code in this listing to fil-
ter a list for just the even elements, for instance.

Predicate<int> isEven = delegate(int x) { return x % 2 == 0; };

Console.WriteLine(isEven(1));
Console.WriteLine(isEven(4));

The new syntax is almost certainly what you’d have expected—you return the appro-
priate value as if the anonymous method were a normal method. You may have
expected to see a return type declared near the delegate keyword, but there’s no
need. The compiler checks that all the possible return values are compatible with the
declared return type of the delegate type it’s trying to convert the anonymous
method into.

JUST WHAT ARE YOU RETURNING FROM? When you return a value from an
anonymous method, it really is only returning from the anonymous
method—it’s not returning from the method creating the delegate instance.
It’s easy to look down some code, see the return keyword, and think that it’s
an exit point from the current method, so be careful.

As I mentioned before, relatively few delegates in .NET 2.0 return values, although as
you’ll see in part 3 of this book, .NET 3.5 uses this idea much more often, particularly
with LINQ. There’s another reasonably common delegate type in .NET 2.0 though:
Comparison<T>, which can be used when sorting collections. It’s the delegate equiva-
lent of the IComparer<T> interface. Often you only need a particular sort order in one
situation, so it makes sense to be able to specify that order inline, rather than expos-
ing it as a method within the rest of the class. The following listing demonstrates this,
printing out the files within the C:\ directory, ordering them first by name and then
(separately) by size.

static void SortAndShowFiles(string title, Comparison<FileInfo> sortOrder)
{

FileInfo[] files = newDirectoryInfo(@"C:\").GetFiles();

Listing 5.7 Returning a value from an anonymous method

Listing 5.8 Using anonymous methods to sort files simply
Array.Sort(files, sortOrder);
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Console.WriteLine(title);
foreach (FileInfo file in files)
{

Console.WriteLine (" {0} ({1} bytes)", file.Name, file.Length);
}

}
...
SortAndShowFiles("Sorted by name:", delegate(FileInfo f1, FileInfo f2)

{ return f1.Name.CompareTo(f2.Name); }
);

SortAndShowFiles("Sorted by length:", delegate(FileInfo f1, FileInfo f2)
{ return f1.Length.CompareTo(f2.Length); }

);

If you weren’t using anonymous methods, you’d need a separate method for each sort
order. Instead, listing 5.8 makes it clear what you’ll sort by in each case right where
you call SortAndShowFiles. (Sometimes you’ll be calling Sort directly at the point
where the anonymous method is called for. In listing 5.8, you’re performing the same
fetch/sort/display sequence twice, just with different sort orders, so I encapsulated
those steps in their own method.)

 One special syntactic shortcut is sometimes applicable. If you don’t care about the
parameters of a delegate, you don’t have to declare them at all. Let’s see how that
works. 

5.4.3 Ignoring delegate parameters

Occasionally, you want to implement a delegate that doesn’t depend on its parameter
values. You might want to write an event handler whose behavior is only appropriate
for one event and doesn’t depend on the event arguments—saving the user’s work,
for instance. The event handlers from the example in listing 5.1 fit this criterion per-
fectly. In this case, you can leave out the parameter list entirely, just using the
delegate keyword and then a block of code as the action for the method. The follow-
ing listing is equivalent to listing 5.1 but uses the shorter syntax.

Button button = new Button();
button.Text = "Click me";
button.Click += delegate { Console.WriteLine("LogPlain"); };
button.KeyPress += delegate { Console.WriteLine("LogKey"); };
button.MouseClick += delegate { Console.WriteLine("LogMouse"); };

Form form = new Form();
form.AutoSize = true;
form.Controls.Add(button);
Application.Run(form);

Normally you’d have to write each subscription as something like this:

button.Click += delegate(object sender, EventArgs e) { ... };

Listing 5.9 Subscribing to events with anonymous methods that ignore parameters
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That wastes a lot of space for little reason—you don’t need the values of the parame-
ters, so the compiler lets you get away with not specifying them at all. 

 I’ve found this shortcut most useful when it comes to implementing my own
events. For example, I get sick of having to perform a nullity check before raising an
event. One way of getting around this is to make sure that the event starts off with a
handler, which is then never removed. As long as the handler doesn’t do anything, all
you lose is a tiny bit of performance. Before C# 2, you had to explicitly create a
method with the right signature, which usually wasn’t worth the benefit, but now you
can write code like this:

public event EventHandler Click = delegate {};

From then on, you can just call Click without any nullity tests.
 You should be aware of one trap related to this parameter wildcarding feature—if

the anonymous method could be converted to multiple delegate types (for example,
to call different method overloads), the compiler needs more help. To show you what
I mean, let’s take the same troublesome example we looked at with method group
conversions: starting a new thread. There are four thread constructors in .NET 2.0:

public Thread(ParameterizedThreadStart start)
public Thread(ThreadStart start)
public Thread(ParameterizedThreadStart start, int maxStackSize)
public Thread(ThreadStart start, int maxStackSize)

These are the two delegate types involved:

public delegate void ThreadStart()
public delegate void ParameterizedThreadStart(object obj)

Now, consider the following three attempts to create a new thread:

new Thread(delegate() { Console.WriteLine("t1"); } );
new Thread(delegate(object o) { Console.WriteLine("t2"); } );
new Thread(delegate { Console.WriteLine("t3"); } );

The first and second lines contain parameter lists—the compiler knows that it can’t
convert the anonymous method in the first line into a ParameterizedThreadStart or
convert the anonymous method in the second line into a ThreadStart. Those lines
compile because there’s only one applicable constructor overload in each case. The
third line, though, is ambiguous—the anonymous method can be converted into
either delegate type, so both of the single parameter constructor overloads are appli-
cable. In this situation, the compiler throws its hands up and issues an error. You can
solve this either by specifying the parameter list explicitly or casting the anonymous
method to the right delegate type.

 Hopefully what you’ve seen of anonymous methods so far will have provoked some
thought about your own code and made you consider where you could use these tech-
niques to good effect. Indeed, even if anonymous methods could only do what you’ve
already seen, they’d be very useful. But there’s more to anonymous methods than just

avoiding the inclusion of an extra method in your code. Anonymous methods are
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C# 2’s implementation of a feature known elsewhere as closures by way of captured vari-
ables. The next section explains both of these terms and shows how anonymous meth-
ods can be extremely powerful—and confusing if you’re not careful. 

5.5 Capturing variables in anonymous methods
I don’t like having to give warnings, but I think it makes sense to include one here: if
this topic is new to you, then don’t start this section until you’re feeling reasonably
awake and have a bit of time to spend on it. I don’t want to alarm you unnecessarily,
and you should feel confident that there’s nothing here so insanely complicated that
you won’t be able to understand it with a little effort. It’s just that captured variables
can be somewhat confusing to start with, partly because they overturn some of your
existing knowledge and intuition.

 Stick with it, though! The payback can be massive in terms of code simplicity and
readability. This topic will also be crucial when we look at lambda expressions and
LINQ in C# 3, so it’s worth the investment. 

 Let’s start with a few definitions.

5.5.1 Defining closures and different types of variables

The concept of closures is an old one, first implemented in Scheme, but it’s been gain-
ing more prominence in recent years as more mainstream languages have taken it on
board. The basic idea is that a function6 is able to interact with an environment
beyond the parameters provided to it. That’s all there is to it in abstract terms, but to
understand how it applies to C# 2, we need a couple more terms:

 An outer variable is a local variable or parameter (excluding ref and out param-
eters) whose scope includes an anonymous method. The this reference also
counts as an outer variable of any anonymous method within an instance mem-
ber of a class.

 A captured outer variable (usually shortened to captured variable) is an outer vari-
able that’s used within an anonymous method. To go back to closures, the func-
tion part is the anonymous method, and the environment it can interact with is
the set of variables captured by it.

That’s all very dry and may be hard to imagine, but the main thrust is that an anony-
mous method can use local variables defined in the same method that declares it. This
may not sound like a big deal, but in many situations it’s enormously handy—you can
use contextual information that you have on hand rather than having to set up extra
types just to store data you already know. We’ll look at some useful concrete examples
soon, I promise—but first it’s worth looking at some code to clarify these definitions.

 Listing 5.10 provides an example with a number of local variables, and it’s a single
method, so it can’t be run on its own. I’m not going to explain how it would work or
6 This is general computer science terminology, not C# terminology.
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what it would do yet; I just want to discuss how the different variables are classified.
Again, we’ll use the MethodInvoker delegate type for simplicity.

void EnclosingMethod()
{

int outerVariable = 5;
string capturedVariable = "captured";

if (DateTime.Now.Hour == 23)
{

int normalLocalVariable = DateTime.Now.Minute;
Console.WriteLine(normalLocalVariable);

}

MethodInvoker x = delegate()
{

string anonLocal = "local to anonymous method";
Console.WriteLine(capturedVariable + anonLocal);

};
x();

}

Let’s go through all the variables from the simplest to the most complicated:

 normalLocalVariable D isn’t an outer variable because there are no anony-
mous methods within its scope. It behaves exactly the way that local variables
always have.

 anonLocal E isn’t an outer variable either, but it’s local to the anonymous
method, not to EnclosingMethod. It’ll only exist (in terms of being present in
an executing stack frame) when the delegate instance is invoked.

 outerVariable B is an outer variable because the anonymous method is
declared within its scope. But the anonymous method doesn’t refer to it, so it’s
not captured.

 capturedVariable C is an outer variable because the anonymous method is
declared within its scope, and it’s captured by virtue of being used at F.

Okay, you now understand the terminology, but we’re not a lot closer to seeing what
captured variables do. I suspect you could guess the output if you ran the method
from listing 5.10, but there are some other cases that would probably surprise you.
We’ll start off with a simple example and build up to more complex ones. 

5.5.2 Examining the behavior of captured variables

When a variable is captured, it really is the variable that’s captured by the anonymous
method, not its value at the time the delegate instance was created. You’ll see later
that this has far-reaching consequences, but first you need to understand what that
means for a relatively straightforward situation. 

Listing 5.10 Examples of variable kinds with respect to anonymous methods

Outer variable 
(uncaptured)

B

Outer variable captured 
by anonymous methodC

Local variable of 
normal methodD

Local variable of 
anonymous method

E

Capture of 
outer variableF
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 The following listing has a captured variable and an anonymous method that both
prints out and changes the variable. You’ll see that changes to the variable from out-
side the anonymous method are visible within the anonymous method, and vice versa.

string captured = "before x is created";

MethodInvoker x = delegate
{

Console.WriteLine(captured);
captured = "changed by x";

};

captured = "directly before x is invoked";
x();

Console.WriteLine(captured);

captured = "before second invocation";
x();

The output of listing 5.11 is as follows:

directly before x is invoked
changed by x
before second invocation

Let’s look at how this happens. First, you declare the variable captured and set its
value with a perfectly normal string literal. So far, there’s nothing special about the
variable. You then declare x and set its value using an anonymous method that cap-
tures captured. The delegate instance will always print out the current value of
captured and then set it to “changed by x.” Don’t forget that creating this delegate
instance doesn’t execute it.

 To make it absolutely clear that just creating the delegate instance doesn’t read the
variable and stash its value away somewhere, you now change the value of captured to
“directly before x is invoked.” You then invoke x for the first time. It reads the value of
captured and prints it out—the first line of output. It sets the value of captured to
“changed by x” and returns. When the delegate instance returns, the normal method
continues in the usual way. It prints out the current value of captured, giving the sec-
ond line of output.

 The normal method then changes the value of captured yet again (this time to
“before second invocation”) and invokes x for the second time. The current value of
captured is printed out, giving the last line of output. The delegate instance changes
the value of captured to “changed by x” and returns, at which point the normal
method has run out of code and it’s done.

 That’s a lot of detail about how a short piece of code works, but there’s really only
one crucial idea in it: the captured variable is the same one that the rest of the method uses. For
some people, that’s hard to grasp; for others it comes naturally. Don’t worry if it’s

Listing 5.11 Accessing a variable both inside and outside an anonymous method
tricky to start with—it’ll get easier over time. 
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 Even if you’ve understood everything easily so far, you may be wondering why you’d
want to do any of this. It’s about time we had an example that was actually useful. 

5.5.3 What’s the point of captured variables?

To put it simply, captured variables eliminate the need to write extra classes just to
store the information a delegate needs to act on, beyond what it’s passed via parame-
ters. Before ParameterizedThreadStart existed, if you wanted to start a new (non-
threadpool) thread and give it some information—the URL of a page to fetch, for
instance—you had to create an extra type to hold the URL and put the action of the
ThreadStart delegate instance in that type. Even with ParameterizedThreadStart,
your method had to accept a parameter of type object and cast it to the type you
really wanted. It was an ugly way of achieving something that should’ve been simple.

 As another example, suppose you had a list of people and wanted to write a
method that would return a second list containing all the people who were under a
given age. List<T> has a method called FindAll that returns another list of every-
thing matching the specified predicate. Before anonymous methods and captured
variables, it wouldn’t have made much sense for List<T>.FindAll to exist, because of
all the hoops you’d have to go through in order to create the right delegate to start
with. It would’ve been simpler to do all the iteration and copying manually. With C# 2,
though, you can do it all very easily:

List<Person> FindAllYoungerThan(List<Person> people, int limit)
{

return people.FindAll(delegate (Person person)
{ return person.Age < limit; }

);
}

Here you’re capturing the limit parameter within the delegate instance—if you’d
had anonymous methods but not captured variables, you could’ve performed a test
against a hardcoded limit, but not one that was passed into the method as a parame-
ter. I hope you’ll agree that this approach is neat: it expresses exactly what you want to
do with much less fuss about exactly how it should happen than you’d have seen in a
C# 1 version. (It’s even neater in C# 3, admittedly…)7 It’s relatively rare that you come
across a situation where you need to write to a captured variable, but again that can
have its uses.

 Still with me? Good. So far, you’ve only used the delegate instance within the
method that creates it. That doesn’t raise many questions about the lifetime of the
captured variables—but what would happen if the delegate instance escaped into the
big bad world? How would it cope after the method that created it had finished?
7 In case you’re wondering: return people.Where(person => person.Age < limit);
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5.5.4 The extended lifetime of captured variables

The simplest way of tackling this topic is to state a rule, give an example, and then
think about what would happen if the rule weren’t in place. Here we go:

A captured variable lives for at least as long as any delegate instance referring to it.

Don’t worry if it doesn’t make a lot of sense yet—that’s what the example is for. The
following listing shows a method that returns a delegate instance. That delegate
instance is created using an anonymous method that captures an outer variable. So,
what’ll happen when the delegate is invoked after the method has returned?

static MethodInvoker CreateDelegateInstance()
{

int counter = 5;

MethodInvoker ret = delegate
{

Console.WriteLine(counter);
counter++;

};
ret();
return ret;

}
...
MethodInvoker x = CreateDelegateInstance();
x();
x();

The output of listing 5.12 consists of the numbers 5, 6, and 7 on separate lines. The
first line of output comes from the invocation of the delegate instance within Create-
DelegateInstance, so it makes sense that the value of counter is available at that
point. But what about after the method has returned? Normally you’d consider
counter to be on the stack, so when the stack frame for CreateDelegateInstance is
destroyed, you’d expect counter to effectively vanish…and yet subsequent invocations
of the returned delegate instance seem to keep using it.

 The secret is to challenge the assumption that counter is on the stack in the first
place. It isn’t. The compiler has actually created an extra class to hold the variable.
The CreateDelegateInstance method has a reference to an instance of that class so it
can use counter, and the delegate has a reference to the same instance, which lives on
the heap in the normal way. That instance isn’t eligible for garbage collection until
the delegate is ready to be collected. 

 Some aspects of anonymous methods are very compiler-specific (different compil-
ers could achieve the same semantics in different ways), but it’s hard to see how the
specified behavior could be achieved without using an extra class to hold the captured
variable. Note that if you only capture this, no extra types are required—the com-
piler just creates an instance method to act as the delegate’s action. As I mentioned

Listing 5.12 Demonstration of a captured variable having its lifetime extended
before, you probably shouldn’t worry about the stack and heap details too much, but
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it’s worth knowing what the compiler is capable of doing, just in case you get confused
as to how the specified behavior is even possible.

 Okay, so local variables can live on even after a method has returned. You may be
wondering what I could possibly throw at you next—how about multiple delegates
capturing different instances of the same variable? It sounds crazy, so it’s just the kind
of thing you should be expecting by now. 

5.5.5 Local variable instantiations

On a good day, captured variables act exactly the way I expect them to at a glance. On
a bad day, I’m still surprised when I’m not careful. When there are problems, it’s
almost always due to my forgetting how many “instances” of local variables I’m actually
creating. A local variable is said to be instantiated each time execution enters the scope
where it’s declared. 

 Here’s a simple example comparing two very similar bits of code:

In the good old days, it was reasonable to say that pieces of code like this were seman-
tically identical. Indeed, they’d usually compile to the same IL—and they still will, if
there aren’t any anonymous methods involved. All the space for local variables is allo-
cated on the stack at the start of the method, so there’s no cost to redeclaring the vari-
able for each iteration of the loop.8 In our new terminology, the single variable will
be instantiated only once, but the multiple variable will be instantiated 10 times—it’s
as if there were 10 local variables, all called multiple, which were created one after
another.

 I’m sure you can see where I’m going—when a variable is captured, it’s the rele-
vant “instance” of the variable that’s captured. If you captured multiple inside the
loop, the variable captured in the first iteration would be different from the variable
captured the second time round, and so on. The following listing shows exactly this
effect.

List<MethodInvoker> list = new List<MethodInvoker>();

for (int index = 0; index < 5; index++)
{

int counter = index * 10;

int single;
for (int i = 0; i < 10; i++)
{

single = 5;
Console.WriteLine(single + i);

}

for (int i = 0; i < 10; i++)
{

int multiple = 5;
Console.WriteLine(multiple + i);

}

8 In my view, it’s also cleaner to redeclare the variable unless you explicitly need to maintain its value between

Listing 5.13 Capturing multiple variable instantiations with multiple delegates

Instantiates counterB
iterations.
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list.Add(delegate
{

Console.WriteLine(counter);
counter++;

});
}

foreach (MethodInvoker t in list)
{

t();
}
list[0]();
list[0]();
list[0]();

list[1]();

Listing 5.13 creates five different delegate instances C—one for each time you go
around the loop. Invoking the delegate will print out the value of counter and then
increment it. Because counter is declared inside the loop, it’s instantiated for each
iteration B, and each delegate captures a different variable. When you go through
and invoke each delegate D, you see the different values initially assigned to counter:
0, 10, 20, 30, 40. Just to hammer the point home, when you then go back to the first
delegate instance and execute it three more times E, it keeps going from where that
instance’s counter variable had left off: 1, 2, 3. Finally you execute the second dele-
gate instance F, and that keeps going from where that instance’s counter variable had
left off: 11.

 As you can see, each of the delegate instances has captured a different variable.
Before we leave this example, I should point out what would’ve happened if you’d
captured index—the variable declared by the for loop—instead of counter. In this
case, all the delegates would have shared the same variable. The output would’ve been
the numbers 5 to 13; 5 first because the last assignment to index before the loop ter-
minates would’ve set it to 5, and then incrementing the same variable regardless of
which delegate was involved. You’d see the same behavior with a foreach loop (in
C# 2–4): the variable declared by the initial part of the loop is only instantiated once.
It’s easy to get this wrong! If you want to capture the value of a loop variable for that
particular iteration of the loop, introduce another variable within the loop, copy the
loop variable’s value into it, and capture that new variable—effectively what you did in
listing 5.13 with the counter variable. 

THIS CHANGES IN C# 5… Though the behavior in a for loop is reasonable—
the variable does appear to be declared just once, after all—it’s more surpris-
ing in the foreach case. In fact, it’s almost always wrong to capture a foreach
iteration variable in an anonymous method that’s going to exist beyond the
immediate iteration. (It’s fine if the delegate instance is only used within that
iteration.) This has caused problems for so many developers that the C# team
has changed the semantics of foreach for C# 5 to make it act more natu-
rally—as if each iteration had its own separate variable. See section 16.1 for

Prints and increments 
captured variable

C

Executes all five 
delegate instances

D

Executes first one 
three more timesE

Executes second one againF
more details.
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For our final example, let’s look at something really nasty—sharing some captured
variables but not others. 

5.5.6 Mixtures of shared and distinct variables

Let me say before I show you this next example that it’s not code I’d recommend. In
fact, the whole point of presenting it is to show how if you try to use captured variables
in too complicated a fashion, things can get tricky really fast. The following listing cre-
ates two delegate instances that each capture “the same” two variables. But the story
gets more convoluted when you look at what’s actually captured. 

MethodInvoker[] delegates = new MethodInvoker[2];

int outside = 0;

for (int i = 0; i < 2; i++)
{

int inside = 0;

delegates[i] = delegate
{

Console.WriteLine ("({0},{1})", outside, inside);
outside++;
inside++;

};
}

MethodInvoker first = delegates[0];
MethodInvoker second = delegates[1];

first();
first();
first();

second();
second();

How long would it take you to predict the output from listing 5.14 (even with the
annotations)? Frankly, it would take me a while—longer than I like to spend under-
standing code. Just as an exercise, though, let’s look at what happens.

 First consider the outside variable B. The scope it’s declared in is only entered
once, so it’s a straightforward case—there’s only ever one of it, effectively. The inside
variable C is a different matter—each loop iteration instantiates a new one. That
means that when you create the delegate instance D, the outside variable is shared
between the two delegate instances, but each of them has its own inside variable.

 After the loop has ended, you call the first delegate instance you created three
times. Because it’s incrementing both of its captured variables each time, and both of
them started off as 0, you see (0,0), then (1,1), and then (2,2). The difference
between the two variables in terms of scope becomes apparent when you execute the

Listing 5.14 Capturing variables in different scopes. Warning: nasty code ahead!

Instantiates variable onceB

Instantiates variable multiple timesC

Captures 
variables with 
anonymous 
methodD
second delegate instance. It has a different inside variable, so that still has its initial
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value of 0, but the outside variable is the one you’ve already incremented three times.
The output from calling the second delegate twice is therefore (3,0), and then (4,1).

 Just for the sake of interest, let’s think about how this is implemented—at least
with Microsoft’s C# 2 compiler. What happens is that one extra class is generated to
hold the outside variable, and another one is generated to hold an inside variable
and a reference to the first extra class. Essentially, each scope that contains a captured vari-
able gets its own type, with a reference to the next scope out that contains a captured
variable. In this example, there were two instances of the type holding inside, and
they both referred to the same instance of the type holding outside. Other imple-
mentations may vary, but this is the most obvious way of doing things. Figure 5.1 shows
the values after listing 5.14 has executed. (The names in the figure aren’t the ones
that the compiler would generate, but they’re close enough. Note that the delegate
instances would also have other members in reality—only the target is interesting
here, though.)

 Even after you understand this code fully, it’s still a good template for experiment-
ing with other elements of captured variables. As I noted earlier, certain elements of
variable capture are implementation-specific, and it’s often useful to refer to the spec-
ification to see what’s guaranteed. But it’s also important to play with code to see what
happens.

 It’s possible that there are situations where code like listing 5.14 would be the sim-
plest and clearest way of expressing the desired behavior, but I’d have to see it to believe
it, and I’d certainly want comments in the code to explain what would happen. So,
when is it appropriate to use captured variables, and what do you need to look out for?

5.5.7 Captured variable guidelines and summary

Hopefully this section has convinced you to be very careful with captured variables.
They make good logical sense (and almost any change to make them simpler would

inside

<>_outside

first

inside

<>_outside

second

outside

3 2

5

first

target

ref

second

target

ref

ref ref

Figure 5.1 Snapshot of 
multiple captured variable 
<>_Generated1 <>_Generated1<>_Generated2 scopes in memory



157Capturing variables in anonymous methods

probably make them either less useful or less logical), but they also make it easy to
produce horribly complicated code.

 Don’t let that discourage you from using them sensibly, though—they can save you
masses of tedious code, and when they’re used appropriately they can be the most
readable way of getting the job done. But what counts as sensible?

 Here are some suggestions for using captured variables:

 If code that doesn’t use captured variables is just as simple as code that does,
don’t use them.

 Before capturing a variable declared by a for or foreach statement, consider
whether your delegate is going to live beyond the loop iteration, and whether
you want it to see the subsequent values of that variable. If not, create another
variable inside the loop that just copies the value you do want. (In C# 5 you
don’t need to worry about foreach statements, but you still need to take care in
for statements.)

 If you create multiple delegate instances (whether in a loop or explicitly) that
capture variables, put thought into whether you want them to capture the same
variable.

 If you capture a variable that doesn’t actually change (either in the anonymous
method or the enclosing method body), you don’t need to worry as much.

 If the delegate instances you create never escape from the method—in other
words, they’re never stored anywhere else, or returned, or used for starting
threads—life is a lot simpler.

 Consider the extended lifetime of any captured variables in terms of garbage
collection. This is normally not an issue, but if you capture an object that’s
expensive in terms of memory, it may be significant.

The first point is the golden rule. Simplicity is a good thing, so any time the use of a
captured variable makes your code simpler after you’ve factored in the additional
inherent complexity of forcing your code’s maintainers to understand what the cap-
tured variable does, use it. You need to include that extra complexity in your consider-
ations, that’s all—don’t just go for minimal line count.

 We’ve covered a lot of ground in this section, and I’m aware that it can be hard to
take in. I’ve listed the most important things to remember next, so that if you need to
come back to this section later, you can jog your memory without having to read
through the whole thing again:

 The variable is captured—not its value at the point of delegate instance 
creation.

 Captured variables have lifetimes extended to at least that of the capturing 
delegate.

 Multiple delegates can capture the same variable…
 …but within loops, the same variable declaration can effectively refer to differ-
ent variable “instances.”
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 for loop declarations create variables that live for the duration of the loop—
they’re not instantiated on each iteration. The same is true for foreach state-
ments before C# 5.

 Extra types are created, where necessary, to hold captured variables.
 Be careful! Simple is almost always better than clever.

You’ll see more variables being captured when we look at C# 3 and its lambda expres-
sions, but for now you may be relieved to hear that we’ve finished our rundown of the
new C# 2 delegate features.

5.6 Summary
C# 2 has radically changed the ways in which delegates can be created, and in doing
so it’s opened up the framework to a more functional style of programming. There
are more methods in .NET 2.0 that take delegates as parameters than there were in
.NET 1.0/1.1, and this trend continues in .NET 3.5. The List<T> type is the best exam-
ple of this, and it’s a good test bed for checking your skills with using anonymous
methods and captured variables. Programming in this way requires a slightly different
mind-set—you must be able to take a step back and consider what the ultimate aim is,
and whether it’s best expressed in the traditional C# manner, or whether a functional
approach makes things clearer.

 All the changes to delegate handling are useful, but they add complexity to the
language, particularly when it comes to captured variables. Closures are always tricky
in terms of determining exactly how the available environment is shared, and C# is no
different in this respect. The reason the concept has lasted so long, though, is that it
can make code simpler to understand and more immediate. The balancing act
between complexity and simplicity is always a difficult one, and it’s worth being cau-
tious to start with. But over time you should expect to get better at working with cap-
tured variables and understanding how they behave. LINQ encourages their use even
further, and a great deal of modern, idiomatic C# code uses closures frequently.

 Anonymous methods aren’t the only change in C# 2 that involves the compiler cre-
ating extra types behind the scenes and doing devious things with variables that
appear to be local. You’ll see a lot more of this in the next chapter, where the com-
piler effectively builds a whole state machine for you, in order to make it easier for you
to implement iterators.



Implementing iterators
the easy way
The iterator pattern is an example of a behavioral pattern—a design pattern that sim-
plifies communication between objects. It’s one of the simplest patterns to under-
stand, and it’s incredibly easy to use. In essence, it allows you to access all the
elements in a sequence of items without caring about what kind of sequence it is—
an array, a list, a linked list, or none of the above. This can be effective for building
a data pipeline, where an item of data enters the pipeline and goes through a num-
ber of different transformations or filters before coming out the other end. Indeed,
this is one of the core patterns of LINQ, as you’ll see in part 3 of the book.

 In .NET, the iterator pattern is encapsulated by the IEnumerator and IEnumerable
interfaces and their generic equivalents. (The naming is unfortunate—the pattern
is normally called iteration to avoid confusing it with other meanings of the word enu-
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meration. I’ve used iterator and iterable throughout this chapter.) If a type implements



160 CHAPTER 6 Implementing iterators the easy way

IEnumerable, that means it can be iterated over; calling the GetEnumerator method will
return the IEnumerator implementation, which is the iterator itself. You can think of
the iterator as being like a database cursor: a position within the sequence. The iterator
can only move forward within the sequence, and there can be many iterators operating
on the same sequence at the same time.

 As a language, C# 1 has built-in support for consuming iterators using the foreach
statement. This makes it easy to iterate over collections—easier than using a straight
for loop—and it’s nicely expressive. The foreach statement compiles down to calls to
the GetEnumerator and MoveNext methods and the Current property, with support
for disposing of the iterator afterward if IDisposable has been implemented. It’s a
small but useful piece of syntactic sugar.

 In C# 1, though, implementing an iterator is a relatively difficult task. C# 2 makes
this much simpler, which can sometimes lead to the iterator pattern being worth
implementing in cases where previously it would’ve caused more work than it saved.

 In this chapter, we’ll look at what’s required to implement an iterator and at the
support given by C# 2. After we’ve looked at the syntax in detail, we’ll examine a few
examples from the real world, including an exciting (if slightly off-the-wall) use of the
iteration syntax in a concurrency library from Microsoft. I’ve held off providing the
examples until the end of the description, because there isn’t very much to learn, and
the examples will be a lot clearer when you can understand what the code is doing. If
you really want to read the examples first, they’re in sections 6.3 and 6.4.

 As in other chapters, let’s start off by looking at what life was like before C# 2. We’ll
implement an iterator the hard way.

6.1 C# 1: The pain of handwritten iterators
You’ve already seen one example of an iterator implementation in section 3.4.3, when
we looked at what happens when you iterate over a generic collection. In some ways,
that was harder than a real C# 1 iterator implementation would’ve been, because you
implemented the generic interfaces as well—but it was also easier in other ways
because it wasn’t actually iterating over anything useful.

 To put the C# 2 features into context, we’ll first implement an iterator that’s about
as simple as it can be while still providing real functionality. Suppose you wanted a
new type of collection based on a circular buffer. In this example, you’ll implement
IEnumerable so that users of your new class can easily iterate over all the values in the
collection. We’ll ignore the guts of the collection here and just concentrate on the
iteration side. Your collection will store its values in an array (object[]—no generics
here), and the collection will have the interesting feature that you can set its logical
starting point—so if the array had five elements, you could set the start point to 2 and
expect elements 2, 3, 4, 0, and then 1 to be returned. I won’t show the full circular
buffer code here, but it’s in the downloadable code.

 To make the class easy to demonstrate, you’ll provide both the values and the start-
ing point in the constructor, so you should be able to write code such as the following

to iterate over the collection.
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object[] values = {"a", "b", "c", "d", "e"};
IterationSample collection = new IterationSample(values, 3);
foreach (object x in collection)
{

Console.WriteLine (x);
}

Running listing 6.1 should (eventually) produce output of d, e, a, b, and finally c
because you specified a starting point of 3. Now that you know what you need to
achieve, let’s look at the skeleton of the class, as shown in the following listing.

using System;
using System.Collections;

public class IterationSample : IEnumerable
{

object[] values;
int startingPoint;

public IterationSample(object[] values, int startingPoint)
{

this.values = values;
this.startingPoint = startingPoint;

}

public IEnumerator GetEnumerator()
{

throw new NotImplementedException();
}

}

You haven’t implemented GetEnumerator yet, but the rest of the code is ready to go.
And how do you go about writing the GetEnumerator code? The first thing to under-
stand is that you need to store some state somewhere. One important aspect of the
iterator pattern is that you don’t return all of the data in one go—the client asks for
one element at a time. That means you need to keep track of how far you’ve already
gone through your array. The stateful nature of iterators will be important when we
look at what the C# 2 compiler does, so keep a close eye on the state required in this
example.

 Where should this state live? Suppose you tried to put it in the IterationSample
class, making that implement IEnumerator as well as IEnumerable. At first glance, this
looks like a good plan—after all, the data is in the right place, including the starting
point. Your GetEnumerator method could just return this. But there’s a big problem
with this approach: if GetEnumerator is called several times, several independent itera-
tors should be returned. For instance, you should be able to use two foreach state-
ments, one inside another, to get all possible pairs of values. The two iterators need

Listing 6.1 Code using the (as yet unimplemented) new collection type

Listing 6.2 Skeleton of the new collection type, with no iterator implementation
to be independent, which suggests you need to create a new object each time
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GetEnumerator is called. You could still implement the functionality directly within
IterationSample, but then you’d have a class that didn’t have a single clear responsi-
bility—it would be pretty confusing.

 Instead, let’s create another class to implement the iterator itself. You can use the
fact that in C# a nested type has access to its enclosing type’s private members, which
means you can store a reference to the parent IterationSample, along with the state
of how many iterations you’ve performed so far. This is shown in the following listing.

class IterationSampleIterator : IEnumerator
{

IterationSample parent;
int position;

internal IterationSampleIterator(IterationSample parent)
{

this.parent = parent;
position = -1;

}

public bool MoveNext()
{

if (position != parent.values.Length)
{

position++;
}
return position < parent.values.Length;

}

public object Current
{

get
{

if (position == -1 ||
position == parent.values.Length)

{
throw new InvalidOperationException();

}
int index = position + parent.startingPoint;
index = index % parent.values.Length;
return parent.values[index];

}
}

public void Reset()
{

position = -1;
}

}

What a lot of code to perform such a simple task! You remember the original collec-
tion of values you’re iterating over B and keep track of where you’d be in a simple

Listing 6.3 Nested class implementing the collection’s iterator

Collection you’re 
iterating over

B

How far 
you’ve 
iteratedC

Starts before first elementD

Increments position if still goingE

Prevents access 
before first or 
after last element

F

Implements 
wraparound

G

Moves back to before 
first element

H

zero-based array C. To return an element, you offset that index by the starting
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point G. In keeping with the interface, you consider your iterator to start logically
before the first element D, so the client will have to call MoveNext before using the
Current property for the first time. The conditional increment at E makes the test
at F simple and correct even if MoveNext is called again after it’s first reported that no
more data is available. To reset the iterator, you set the logical position back to before
the first element H.

 Most of the logic involved is fairly straightforward, although there’s plenty of room
for off-by-one errors; my first implementation failed its unit tests for precisely that rea-
son. The good news is that it works, and that you only need to implement IEnumerable
in IterationSample to complete the example:

public IEnumerator GetEnumerator()
{

return new IterationSampleIterator(this);
}

I won’t reproduce the combined code here, but it’s available on the book’s website,
including listing 6.1, which now produces the expected output.

 It’s worth bearing in mind that this is a relatively simple example—there’s not a lot
of state to keep track of, and there’s no attempt to check whether the collection has
changed between iterations. With such a large burden involved to implement a simple
iterator, you shouldn’t be surprised at how rarely this pattern was implemented in
C# 1. Developers were generally happy to use foreach on the collections provided by
the framework, but more direct (and collection-specific) access when it came to their
own collections.

 It took about 40 lines of code to implement the iterator in C# 1. Let’s see if C# 2
can do any better. 

6.2 C# 2: Simple iterators with yield statements
I’ve always been the kind of person who likes to stay up until midnight on Christmas
Eve so I can open a present as soon as Christmas Day arrives. In the same way, I’d find
it almost impossible to wait any significant amount of time before showing you how
neat the solution is in C# 2.

6.2.1 Introducing iterator blocks and yield return

This chapter wouldn’t exist if C# 2 didn’t have a powerful feature that cuts down the
amount of code you have to write to implement iterators. In some other topics
the amount of code has only been reduced slightly, or the changes have just made
something more elegant. In this case, though, the amount of code required is
reduced massively. The following listing shows the complete implementation of the
GetEnumerator method in C# 2.
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public IEnumerator GetEnumerator()
{

for (int index = 0; index < values.Length; index++)
{

yield return values[(index + startingPoint) % values.Length];
}

}

Four lines of implementation, two of which are just braces. To be clear, that replaces
the whole of the IterationSampleIterator class. Completely. At least in the source
code…Later on you’ll see what the compiler has done behind the scenes and some of
the quirks of the implementation it’s provided, but for the moment let’s look at the
source code.

 The method looks perfectly normal until you see the use of yield return. That’s
what tells the C# compiler that this isn’t a normal method, but one implemented with
an iterator block. The method is declared to return an IEnumerator, and you can only
use iterator blocks to implement methods1 that have a return type of IEnumerable,
IEnumerator, or one of the generic equivalents. The yield type of the iterator block is
object if the declared return type of the method is a nongeneric interface, or it’s the
type argument of the generic interface otherwise. For instance, a method declared to
return IEnumerable<string> would have a yield type of string.

 No normal return statements are allowed within iterator blocks—only yield
return. All yield return statements in the block must try to return a value compati-
ble with the yield type of the block. In the previous example, you couldn’t write yield
return 1; in a method declared to return IEnumerable<string>.

RESTRICTIONS ON YIELD RETURN There are a few further restrictions on yield
statements. You can’t use yield return inside a try block if it has any catch
blocks, and you can’t use yield return or yield break (which we’ll come to
shortly) in a finally block. That doesn’t mean you can’t use try/ catch or
try/finally blocks inside iterators—it just restricts what you can do in them.
If you want to know more about why these restrictions exist, Eric Lippert has a
whole series of blog posts about these and other design decisions involving
iterators: see http://mng.bz/EJ97.

The big idea that you need to get your head around when it comes to iterator blocks is
that although you’ve written a method that looks like it executes sequentially, what
you’ve actually asked the compiler to do is create a state machine for you. This is neces-
sary for exactly the same reason you had to put so much effort into implementing the
iterator in C# 1—the caller only wants to see one element at a time, so you need to
keep track of what you were doing when you last returned a value.

Listing 6.4 Iterating through the sample collection with C# 2 and yield return
1 Or properties, as you’ll see later on. You can’t use an iterator block in an anonymous method, though.

http://mng.bz/EJ97
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 When the compiler encounters an iterator block, it creates a nested type for the
state machine. This type remembers exactly where you are within the block and the
values of local variables (including parameters). The generated class is somewhat simi-
lar to the longhand implementation you wrote earlier, in that it keeps all the necessary
state as instance variables. Let’s think about what this state machine has to do in order
to implement the iterator:

 It has to have some initial state.
 Whenever MoveNext is called, it has to execute code from the GetEnumerator

method until you’re ready to provide the next value (in other words, until you
hit a yield return statement).

 When the Current property is used, it has to return the last value you yielded.
 It has to know when you’ve finished yielding values so that MoveNext can return

false.

The second point in this list is the tricky one, because the state machine always needs
to restart the code from the point it had previously reached. Keeping track of the local
variables (as they appear in the method) isn’t too hard—they’re represented by
instance variables in the state machine. The restarting aspect is trickier, but the good
news is that unless you’re writing a C# compiler yourself, you needn’t care about how
it’s achieved: the result from a black-box point of view is that it just works. You can
write perfectly normal code within the iterator block, and the compiler is responsible
for making sure that the flow of execution is exactly as it would be in any other
method. The difference is that a yield return statement appears to only temporarily
exit the method—you could think of it as being paused, effectively.

 Next we’ll examine the flow of execution in more detail and in a more visual way. 

6.2.2 Visualizing an iterator’s workflow

It may help to think about how iterators execute in terms of a sequence diagram.
Rather than drawing the diagram by hand, the following listing prints it out. The iter-
ator provides a sequence of numbers (0, 1, 2, -1) and then finishes. The interesting
part isn’t the numbers provided so much as the flow of the code.

static readonly string Padding = new string(' ', 30);

static IEnumerable<int> CreateEnumerable()
{

Console.WriteLine("{0}Start of CreateEnumerable()", Padding);

for (int i=0; i < 3; i++)
{

Console.WriteLine("{0}About to yield {1}", Padding, i);
yield return i;
Console.WriteLine("{0}After yield", Padding);

}

Listing 6.5 Showing the sequence of calls between an iterator and its caller
Console.WriteLine("{0}Yielding final value", Padding);
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yield return -1;

Console.WriteLine("{0}End of CreateEnumerable()", Padding);
}
...
IEnumerable<int> iterable = CreateEnumerable();
IEnumerator<int> iterator = iterable.GetEnumerator();
Console.WriteLine("Starting to iterate");
while (true)
{

Console.WriteLine("Calling MoveNext()...");
bool result = iterator.MoveNext();
Console.WriteLine("... MoveNext result={0}", result);
if (!result)
{

break;
}
Console.WriteLine("Fetching Current...");
Console.WriteLine("... Current result={0}", iterator.Current);

}

Listing 6.5 isn’t pretty, particularly around the iteration side of things. In the normal
course of events, you could just use a foreach loop, but to show exactly what’s hap-
pening when, I had to break the use of the iterator out into pieces. This code broadly
does what foreach does, although foreach also calls Dispose at the end. This is
important for iterator blocks, as we’ll discuss shortly. As you can see, there’s no differ-
ence in the syntax within the iterator method, even though this time you’re returning
IEnumerable<int> instead of IEnumerator<int>. Usually you’ll only want to return
IEnumerator<T> in order to implement IEnumerable<T>; if you want to just yield a
sequence from a method, return IEnumerable<T> instead.

 Here’s the output from listing 6.5:

Starting to iterate
Calling MoveNext()...

Start of CreateEnumerable()
About to yield 0

... MoveNext result=True
Fetching Current...
... Current result=0
Calling MoveNext()...

After yield
About to yield 1

... MoveNext result=True
Fetching Current...
... Current result=1
Calling MoveNext()...

After yield
About to yield 2

... MoveNext result=True
Fetching Current...
... Current result=2
Calling MoveNext()...
After yield
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Yielding final value
... MoveNext result=True
Fetching Current...
... Current result=-1
Calling MoveNext()...

End of CreateEnumerable()
... MoveNext result=False

There are several important things to note in this output:

 None of the code in CreateEnumerable is called until the first call to MoveNext.
 It’s only when you call MoveNext that any real work gets done. Fetching Current

doesn’t run any of your code.
 The code stops executing at yield return and picks up again just afterward at

the next call to MoveNext.
 You can have multiple yield return statements in different places in the

method.
 The code doesn’t end at the last yield return. Instead, the call to MoveNext

that causes you to reach the end of the method is the one that returns false.

The first point is particularly important, because it means you can’t use an iterator
block for any code that has to be executed immediately when the method is called,
such as code for argument validation. If you put normal checking into a method
implemented with an iterator block, it won’t behave nicely. You’ll almost certainly fall
foul of this at some point—it’s an extremely common error, and hard to understand
until you think about what the iterator block is doing. You’ll see the solution to the
problem in section 6.3.3.

 There are two things you haven’t seen yet—an alternative way of halting the itera-
tion, and how finally blocks work in this somewhat odd form of execution. Let’s take
a look at them now. 

6.2.3 Advanced iterator execution flow

In normal methods, the return statement has two effects. First, it supplies the value
the caller sees as the return value. Second, it terminates the execution of the method,
executing any appropriate finally blocks on the way out. You’ve seen that the yield
return statement temporarily exits the method, but only until MoveNext is called
again, and we haven’t examined the behavior of finally blocks at all. How can you
really stop the method, and what happens to all of those finally blocks? We’ll start
with a fairly simple construct—the yield break statement.

ENDING AN ITERATOR WITH YIELD BREAK

You can always find a way to give a method a single exit point, and many people work
hard to achieve this.2 The same techniques can be applied in iterator blocks. But

2 I find that the hoops you have to jump through to achieve this often make the code much harder to read than
having multiple return points, especially as try/finally is available for cleanup and you need to account

for the possibility of exceptions occurring anyway. The point is that it can be done.
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should you wish to have an early out, the yield break statement is your friend. This
effectively terminates the iterator, making the current call to MoveNext return false.

 The following listing demonstrates this by counting up to 100 but stopping early if
it runs out of time. This code also demonstrates the use of a method parameter in an
iterator block and proves that the name of the method is irrelevant.3

static IEnumerable<int> CountWithTimeLimit(DateTime limit)
{

for (int i = 1; i <= 100; i++)
{

if (DateTime.Now >= limit)
{

yield break;
}
yield return i;

}
}
...
DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{

Console.WriteLine("Received {0}", i);
Thread.Sleep(300);

}

Typically when you run listing 6.6, you’ll see about seven lines of output. The foreach
loop terminates perfectly normally—as far as it’s concerned, the iterator has just run
out of elements to iterate over. The yield break statement behaves much like a
return statement in a normal method.

 So far, so simple. There’s one last aspect of execution flow to explore: how and
when finally blocks are executed. 

EXECUTION OF FINALLY BLOCKS

You’re used to finally blocks executing whenever you leave the relevant scope. Itera-
tor blocks don’t behave quite like normal methods, though. As you’ve seen, a yield
return statement effectively pauses the method rather than exiting it. Following that
logic, you wouldn’t expect any finally blocks to be executed at that point, and they
aren’t. But appropriate finally blocks are executed when a yield break statement is
hit, just as you’d expect them to be when returning from a normal method.4

 The most common use of finally in an iterator block is to dispose of resources,
typically with a convenient using statement. You’ll see a real-world example of this in
section 6.3.2, but for now we’re just trying to see how and when finally blocks are

Listing 6.6 Demonstration of yield break

3 Note that methods taking ref or out parameters can’t be implemented with iterator blocks.
4 finally blocks also work as expected when execution leaves the relevant scope without reaching either a
yield return or a yield break statement. I’m only focusing on the behavior of the two yield statements

Stops if the time is up
here because that’s where the flow of execution is new and different.
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executed. The following listing shows this in action—it’s the same code as in listing 6.6,
but with a finally block. The changes are shown in bold.

static IEnumerable<int> CountWithTimeLimit(DateTime limit)
{ 
   try 
   {

for (int i = 1; i <= 100; i++)
{

if (DateTime.Now >= limit)
{

yield break;
}
yield return i;

}
} 

   finally 
   { 
      Console.WriteLine("Stopping!");  
   }
}
...
DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{

Console.WriteLine("Received {0}", i);
Thread.Sleep(300);

}

The finally block in listing 6.7 is executed whether the iterator block finishes by
counting to 100 or due to the time limit being reached. (It would also execute if the
code threw an exception.) But there are other ways you might try to avoid the finally
block from being called…Let’s try to be sneaky.

 You’ve seen that code in the iterator block is only executed when MoveNext is
called. So what happens if you never call MoveNext? Or if you call it a few times and
then stop? Let’s consider changing the calling part of listing 6.7 to this:

DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{

Console.WriteLine ("Received {0}", i);
if (i > 3)
{

Console.WriteLine("Returning");
return;

}
Thread.Sleep(300);

}

Here you’re not stopping early in the iterator code—you’re stopping early in the code

Listing 6.7 Demonstration of yield break working with try/finally

Executes however the loop ends
using the iterator. The output is perhaps surprising:



170 CHAPTER 6 Implementing iterators the easy way

Received 1
Received 2
Received 3
Received 4
Returning
Stopping!

You can see that code is being executed after the return statement in the foreach
loop. That doesn’t normally happen unless a finally block is involved—and in this
case there are two! You already know about the finally block in the iterator method,
but the question is what’s causing it to be executed. 

 I gave a hint about this earlier—foreach calls Dispose on the iterator returned by
GetEnumerator in its own finally block (just like the using statement). When you
call Dispose on an iterator created with an iterator block before it’s finished iterating,
the state machine executes any finally blocks that are in the scope where the code is
currently “paused.” That’s a complicated and somewhat detailed explanation, but the
result is simpler to express: as long as callers use a foreach loop, finally works within
iterator blocks in the way you want it to.

 You can easily prove that it’s the call to Dispose that triggers this by using the itera-
tor manually:

DateTime stop = DateTime.Now.AddSeconds(2);
IEnumerable<int> iterable = CountWithTimeLimit(stop);
IEnumerator<int> iterator = iterable.GetEnumerator();

iterator.MoveNext();
Console.WriteLine("Received {0}", iterator.Current);

iterator.MoveNext();
Console.WriteLine("Received {0}", iterator.Current);

This time the stopping line is never printed. If you explicitly add a call to Dispose,
you’ll see the extra line in the output again. It’s relatively rare that you’ll want to ter-
minate an iterator before it’s finished, and it’s relatively rare that you’ll be iterating
manually instead of using foreach, but if you do, remember to wrap the iterator in a
using statement.

 We’ve now covered most of the behavior of iterator blocks, but before we end
this section, it’s worth considering a few oddities to do with the current Microsoft
implementation. 

6.2.4 Quirks in the implementation

If you compile iterator blocks with the Microsoft C# 2 compiler and look at the result-
ing IL in either ildasm or Reflector, you’ll see the nested type that the compiler has
generated for you behind the scenes. In my case, when compiling listing 6.4, it was
called IterationSample.<GetEnumerator>d__0 (where the angle brackets make it an
unspeakable name—nothing to do with generics). I won’t go through exactly what’s
generated in detail here, but it’s worth looking at it in Reflector to get a feel for what’s

going on, preferably with the language specification next to you, open at section 10.14
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(“Iterators”); the specification defines different states the type can be in, and this
description makes the generated code easier to follow. The bulk of the work is per-
formed in MoveNext, which is generally a big switch statement.

 Fortunately, as developers we don’t need to care much about the hoops the com-
piler has to jump through. But there are a few quirks about the implementation that
are worth knowing about:

 Before MoveNext is called the first time, the Current property will always return
the default value for the yield type of the iterator.

 After MoveNext has returned false, the Current property will always return the
final value yielded.

 Reset always throws an exception instead of resetting like your manual imple-
mentation did. This is required behavior, laid down in the specification.

 The nested class always implements both the generic and nongeneric forms
of IEnumerator (and the generic and nongeneric IEnumerable, where
appropriate).

Failing to implement Reset is reasonable—the compiler can’t work out what you’d
need to do in order to reset the iterator, or even whether it’s feasible. Arguably Reset
shouldn’t have been in the IEnumerator interface to start with, and I can’t remember
the last time I called it. Many collections don’t support it, so callers can’t generally rely
on it anyway.

 Implementing extra interfaces does no harm either. It’s interesting that if your
method returns IEnumerable, you end up with one class implementing five interfaces
(including IDisposable). The language specification explains it in detail, but the
upshot is that as a developer you don’t need to worry. The fact that it implements both
IEnumerable and IEnumerator is slightly unusual—the compiler goes to some pains
to make sure that the behavior is correct whatever you do with it, but it also manages
to create a single instance of the nested type in the common case where you just iter-
ate through the collection in the same thread that created it.

 The behavior of Current is odd—in particular, keeping hold of the last item after
supposedly moving off it could keep it from being garbage collected. It’s possible that
this may be fixed in a later release of the C# compiler, but it’s unlikely, as it could
break existing code (the Microsoft C# compilers shipping with .NET 3.5, 4, and 4.5
behave in the same way). Strictly speaking, it’s correct from the point of view of the
C# 2 language specification—the behavior of the Current property is undefined in
this situation. It’d be nicer, though, if it implemented the property in the way that the
framework documentation suggests, throwing exceptions at appropriate times.

 Those are a few tiny drawbacks of using the autogenerated code, but sensible callers
won’t have any problems—and let’s face it, you’ve saved a lot of code in order to come
up with the implementation. This means it makes sense to use iterators more widely
than you might’ve done in C# 1. The next section provides some sample code so you
can check your understanding of iterator blocks and see how they’re useful in real life

rather than in theoretical scenarios. 
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6.3 Real-life iterator examples
Have you ever written some code that’s really simple in itself but that makes your proj-
ect much neater? It happens to me every so often, and it usually makes me happier
than it probably ought to—enough to get strange looks from colleagues, anyway. That
sort of childlike delight is particularly strong when it comes to using a new language
feature in a way that’s clearly nicer and you’re not just doing it for the sake of playing
with new toys.

 Even now, after using iterators for a few years, I still come across situations where a
solution using iterator blocks presents itself, and the resulting code is brief, clean, and
easy to understand. In this section I’ll share three such scenarios with you.

6.3.1 Iterating over the dates in a timetable

While working on a project involving timetables, I came across a few loops, all of
which started like this:

for (DateTime day = timetable.StartDate;
day <= timetable.EndDate;
day = day.AddDays(1))

I was working on this area of code a lot, and I always hated that loop, but it was only
when I was reading the code out loud to another developer as pseudocode that I real-
ized I was missing a trick. I said something like, “For each day within the timetable…”
In retrospect, it’s obvious that what I really wanted was a foreach loop. (This may have
been obvious to you from the start—apologies if this is the case. Fortunately I can’t see
you looking smug.) The loop is much nicer when rewritten as follows:

foreach (DateTime day in timetable.DateRange)

In C# 1, I might’ve looked at that as a fond dream but not bothered implementing it;
you’ve seen how messy it is to implement an iterator by hand, and the end result only
made a few for loops neater in this case. In C# 2, though, it was easy. Within the class
representing the timetable, I simply added a property:

public IEnumerable<DateTime> DateRange
{

get
{

for (DateTime day = StartDate;
day <= EndDate;
day = day.AddDays(1))

{
yield return day;

}
}

}

This moved the original loop into the timetable class, but that’s okay—it’s much nicer
for it to be encapsulated there, in a property that just loops through the days, yielding

them one at a time, than to be in business code that was dealing with those days. If I
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ever wanted to make it more complex (skipping weekends and public holidays, for
instance), I could do it in one place and reap the rewards everywhere.

 This one small change made a massive improvement to the readability of the code
base. As it happens, I stopped refactoring at that point in the commercial code. I
thought about introducing a Range<T> type to represent a general-purpose range, but
as I only needed it in this one situation, it didn’t make sense to expend any more
effort on the problem. It turns out that was a wise move. In the first edition of this
book, I created just such a type—but it had some shortcomings that were hard to
address in a book-friendly manner. I redesigned it significantly for my utility library,
but I still have a few misgivings. Types like this often sound simpler than they really
are, and soon you end up with a corner case to be handled at every turn. The details
of the difficulties I encountered don’t really belong in this book—they’re more points
about general design than C#—but they’re interesting in their own right, so I’ve writ-
ten them up as an article on the book’s website (see http://mng.bz/GAmS).

 The next example is one of my favorites—it demonstrates everything I love about
iterator blocks. 

6.3.2 Iterating over lines in a file

How often have you read a text file line by line? It’s an incredibly common task. As of
.NET 4, the framework finally provides a method to make this easier in File.Read-
Lines, but if you’re using an earlier version of the framework, you can write your own
version really easily, as I’ll show in the next couple of pages.

 I dread to think how often I’ve written code like this:

using (TextReader reader = File.OpenText(filename))
{

string line;
while ((line = reader.ReadLine()) != null)
{

// Do something with line
}

}

We have four separate concepts here:

 How to obtain a TextReader
 Managing the lifetime of the TextReader
 Iterating over the lines returned by TextReader.ReadLine
 Doing something with each of those lines

Only the first and last of these are generally specific to the situation—the lifetime
management and the mechanism for iterating are just boilerplate code. (At least, the
lifetime management is simple in C#. Thank goodness for using statements!) There
are two ways you could improve things. You could use a delegate—write a utility
method that would take a reader and a delegate as parameters, call the delegate for

each line in the file, and close the reader at the end. That’s often used as an example

http://mng.bz/GAmS
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of closures and delegates, but there’s an alternative that I find more elegant and that
fits in much better with LINQ. Instead of passing your logic into a method as a dele-
gate, you can use an iterator to return a single line at a time from the file, so you can
use the normal foreach loop.

 You can achieve this using a whole type implementing IEnumerable<string> (I
have a LineReader class in my MiscUtil library for this purpose), but a standalone
method in another class will work fine, too. It’s really simple, as the next listing proves.

static IEnumerable<string> ReadLines(string filename)
{

using (TextReader reader = File.OpenText(filename))
{

string line;
while ((line = reader.ReadLine()) != null)
{

yield return line;
}

}
}
...
foreach (string line in ReadLines("test.txt"))
{

Console.WriteLine(line);
}

The body of the method is pretty much exactly what you had before, except that what
you’re doing with the line is yielding it to the caller when it iterates over the collec-
tion. As before, you open the file, read a line at a time, and then close the reader
when you’ve finished…although the concept of “when you’ve finished” is more inter-
esting in this case than with a using statement in a normal method, where the flow
control is more obvious.

 This is why it’s important that the foreach loop dispose of the iterator—because
that’s what makes sure the reader gets cleaned up. The using statement in the iterator
method is acting as a try/finally block; that finally block will execute if either you
get to the end of the file or you call Dispose on the IEnumerator<string> when you’re
part of the way through. It’d be possible for calling code to abuse the IEnumerator
<string> returned by ReadLines(...).GetEnumerator() and end up with a resource
leak, but that’s usually the case with IDisposable—if you don’t call Dispose, you may
leak resources. It’s rarely a problem though, as foreach does the right thing. It’s
important to be aware of this potential abuse—if you relied on some sort of try/
finally block in an iterator to grant some permission and then remove it again later,
that really would be a security hole.

 This method encapsulates the first three of the four concepts I listed earlier, but
it’s a bit restrictive. It’s reasonable to lump together the lifetime management and iter-

Listing 6.8 Looping over the lines in a file using an iterator block
ation aspects, but what if you want to read text from a network stream instead? Or if
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you want to use an encoding other than UTF-8? You need to put the first part back in
the control of the caller, and the most obvious approach would be to change the
method signature to accept a TextReader, like this:

static IEnumerable<string> ReadLines(TextReader reader)

This is a bad idea, though. You want to take ownership of the reader so that you can
clean it up conveniently for the caller, but the fact that you take responsibility for the
cleanup means you have to clean it up, as long as the caller uses the result sensibly.
The problem is, if something happens before the first call to MoveNext(), you’re
never going to have any chance to clean up: none of your code will run. The
IEnumerable<string> itself isn’t disposable, and yet it would’ve stored this piece of
state, which required disposal. Another problem would occur if GetEnumerator()
were called twice: that ought to generate two independent iterators, but they’d both
be using the same reader. You could mitigate this somewhat by changing the return
type to IEnumerator<string>, but that would mean the result couldn’t be used in a
foreach loop, and you still wouldn’t get to run any cleanup code if you never got as
far as the first MoveNext() call. Fortunately, there’s a way around this.

 Just as the code doesn’t get to run immediately, you don’t need the reader immedi-
ately. What you need is a way of getting the reader when you need it. You could use an
interface to represent the idea of “I can provide a TextReader when you want one,” but
the idea of a single method interface should usually make you reach for a delegate.
Instead, I’m going to cheat slightly by introducing a delegate that’s part of .NET 3.5. It’s
overloaded by different numbers of type parameters, but you only need one:

public delegate TResult Func<TResult>()

As you can see, this delegate has no parameters, but it returns a result of the same type
as the type parameter. It’s a classic provider or factory signature. In this case, you want
to get a TextReader, so you can use Func<TextReader>. The changes to the method
are simple:

static IEnumerable<string> ReadLines(Func<TextReader> provider)
{

using (TextReader reader = provider())
{

string line;
while ((line = reader.ReadLine()) != null)
{

yield return line;
}

}
}

Now the resource is acquired just before you need it, and by that point you’re in the
context of IDisposable, so you can release the resource at the appropriate time. Fur-
thermore, if GetEnumerator() is called multiple times on the returned value, each
call will result in an independent TextReader being created.
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 You can easily use anonymous methods to add overloads to open files, optionally
specifying an encoding:

static IEnumerable<string> ReadLines(string filename)
{

return ReadLines(filename, Encoding.UTF8);
}

static IEnumerable<string> ReadLines(string filename, Encoding encoding)
{

return ReadLines(delegate {
return File.OpenText(filename, encoding);

});
}

This example uses generics, an anonymous method (which captures parameters), and
an iterator block. All that’s missing is nullable value types and you’d have the full
house of C# 2’s major features. I’ve used this code on a number of occasions, and it’s
always much cleaner than the cumbersome code we started off with. As I mentioned
earlier, if you’re using a recent version of .NET, you’ve got all this available in
File.ReadLines anyway, but it’s still a neat example of just how useful iterator blocks
can be.

 As a final example, let’s get a first taste of LINQ—even though we’ll only use C# 2. 

6.3.3 Filtering items lazily using an iterator block and a predicate

Even though we haven’t started to look at LINQ properly yet, I’m sure you have some
idea of what it’s about: it allows you to query data in a simple and powerful way across
multiple data sources, such as in-memory collections and databases. C# 2 doesn’t have
any of the language integration for query expressions, nor the lambda expressions
and extension methods that can make it so concise, but you can still achieve some of
the same effects.

 One of the core features of LINQ is filtering with the Where method. You provide a
collection and a predicate, and the result is a lazily evaluated query that’ll yield only the
items in the collection that match the predicate. This is a little like List<T>.FindAll,
but it’s lazy and works with any IEnumerable<T>. One of the beautiful things about
LINQ5 is that the cleverness is in the design. It’s quite simple to implement LINQ to
Objects as we’ll prove now, at least for the Where method. Ironically, even though most
of the language features that make LINQ shine are part of C# 3, these are almost all
about how you can access methods such as Where, rather than how they’re implemented.

 The following listing shows a full example, including simple argument validation,
and uses the filter to display all the using directives in the source file that contains the
sample code itself.
5 Or to be more precise, LINQ to Objects. LINQ providers for databases and the like are far more complex.
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public static IEnumerable<T> Where<T>(IEnumerable<T> source,
Predicate<T> predicate)

{
if (source == null || predicate == null)
{

throw new ArgumentNullException();
}
return WhereImpl(source, predicate);

}

private static IEnumerable<T> WhereImpl<T>(IEnumerable<T> source,
Predicate<T> predicate)

{
foreach (T item in source)
{

if (predicate(item))
{

yield return item;
}

}
}
...
IEnumerable<string> lines = LineReader.ReadLines("../../FakeLinq.cs");
Predicate<string> predicate = delegate(string line)

{ return line.StartsWith("using"); };
foreach (string line in Where(lines, predicate))
{

Console.WriteLine(line);
}

This example splits the implementation into two parts: argument validation and the
real business logic of filtering. It’s slightly ugly but entirely necessary for sensible error
handling. Suppose you put everything in the same method—what would happen
when you called Where<string>(null, null)? The answer is nothing…or, at least, the
desired exception wouldn’t be thrown. This is due to the lazy semantics of iterator
blocks: none of the code in the body of the method runs until the first call to Move-
Next(), as you saw in section 6.2.2. Typically you want to check the preconditions to
the method eagerly—there’s no point in delaying the exception, and it just makes
debugging harder. 

 The standard workaround for this is to split the method in half, as in listing 6.9.
First you check the arguments B in a normal method, and then you call the method
implemented using an iterator block to lazily process the data as and when it’s
requested C.

 The iterator block itself is mind-numbingly straightforward: for each item in the
original collection, you test the predicate D and yield the value if it matches. If it
doesn’t match, you try the next item, and so on until you find something that does
match, or you run out of items. It’s straightforward, but a C# 1 implementation

Listing 6.9 Implementing LINQ’s Where method using iterator blocks

Eagerly checks argumentsB

Lazily processes dataC

Tests current item against predicateD
would’ve been much harder to follow (and couldn’t have been generic, of course).
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 The final piece of code to demonstrate the method in action uses the previous
example to provide the data—in this case, the source code of the implementation.
The predicate simply tests a line to see whether it begins with “using”—it could con-
tain far more complicated logic, of course. I’ve created separate variables for the data
and the predicate just to make the formatting clearer, but it could all have been writ-
ten inline. It’s important to note the principal difference between this example and
the equivalent that could’ve been achieved using File.ReadAllLines and Array
.FindAll<string>. This implementation is entirely lazy and streaming. Only a single
line from the source file is ever required in memory at a time. Of course, that
wouldn’t matter in this particular case where the file is small—but if you imagine a
multigigabyte log file, you can see the benefits of this approach.

 I hope these examples have given you an inkling of why iterator blocks are so
important—as well as perhaps a desire to hurry on and find out more about LINQ.
Before that, I’d like to mess with your mind a bit and introduce you to a thoroughly
bizarre (but really neat) use of iterators. 

6.4 Pseudo-synchronous code with the Concurrency 
and Coordination Runtime
The Concurrency and Coordination Runtime (CCR) is a library developed by Microsoft to
offer an alternative way of writing asynchronous code that’s amenable to complex
coordination. At the time of this writing, it’s only available as part of the Microsoft
Robotics Studio (see http://www.microsoft.com/robotics). Microsoft has been put-
ting a lot of resources into concurrency in various projects, most notably the Task Par-
allel Library introduced in .NET 4, and the asynchronous language features in C# 5
(supported by a lot of asynchronous APIs). But I wanted to use the CCR to show you
how iterator blocks can change the whole execution model. Indeed, it’s no coinci-
dence that this early foray into an alternative approach to concurrency uses iterator
blocks to change the execution model; the similarities between the state machines
generated for iterator blocks and those used for asynchronous functions in C# 5 are
striking.

 The sample code does work (against dummy services) but the ideas are more
important than the details.

 Suppose you’re writing a server that needs to handle lots of requests. As part of
dealing with those requests, you need to first call a web service to fetch an authentica-
tion token, and then use that token to get data from two independent data sources
(say, a database and another web service). You then process that data and return the
result. Each of the fetch stages could take a while—perhaps a few seconds. Normally
you might consider the simple synchronous route or the stock asynchronous
approach. The synchronous version might look something like this:

HoldingsValue ComputeTotalStockValue(string user, string password)
{

Token token = AuthService.Check(user, password);

Holdings stocks = DbService.GetStockHoldings(token);

http://www.microsoft.com/robotics
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StockRates rates = StockService.GetRates(token);
return ProcessStocks(stocks, rates);

}

That’s easy to understand, but if each request takes 2 seconds, the whole operation
will take 6 seconds and tie up a thread for the whole time it’s running. If you want to
scale up to hundreds of thousands of requests running in parallel, you’re in trouble. 

 Now let’s consider a fairly simple asynchronous version, which avoids tying up a
thread when nothing’s happening6 and uses parallel calls where possible:

void StartComputingTotalStockValue(string user, string password)
{

AuthService.BeginCheck(user, password, AfterAuthCheck, null);
}

void AfterAuthCheck(IAsyncResult result)
{

Token token = AuthService.EndCheck(result);
IAsyncResult holdingsAsync = DbService.BeginGetStockHoldings

(token, null, null);
StockService.BeginGetRates(token, AfterGetRates, holdingsAsync);

}

void AfterGetRates(IAsyncResult result)
{

IAsyncResult holdingsAsync = (IAsyncResult)result.AsyncState;
StockRates rates = StockService.EndGetRates(result);
Holdings stocks = DbService.EndGetStockHoldings(holdingsAsync);
OnRequestComplete(ProcessStocks(stocks, rates));

}

This is much harder to read and understand—and that’s only a simple version. The
coordination of the two parallel calls is only achievable in a simple way because you
don’t need to pass any other state around, and even so it’s not ideal. If the stock ser-
vice call completes quickly, you’ll still block a thread-pool thread waiting for the data-
base call to complete. More importantly, it’s far from obvious what’s going on, because
the code jumps between different methods.

 By now you may be asking yourself where iterators come into the picture. Well, the
iterator blocks provided by C# 2 effectively allow you to pause current execution at
certain points of the flow through the block and then come back to the same place,
with the same state. The clever folks designing the CCR realized that that’s exactly
what’s needed for a continuation-passing style of coding. You need to tell the system that
there are certain operations you need to perform—including starting other opera-
tions asynchronously—but that you’re then happy to wait until the asynchronous
operations have finished before you continue. You do this by providing the CCR with
an implementation of IEnumerator<ITask> (where ITask is an interface defined by
the CCR). Here’s some code to achieve the same results using this style:
6 Well, mostly. It might still be inefficient, as you’ll see in a moment.
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static IEnumerator<ITask> ComputeTotalStockVal.(str.user,str.pass)
{

string token = null;
yield return Arbiter.Receive(false, AuthService.CcrCheck(user, pass),

delegate(string t) { token = t; });

IEnumerable<Holding> stocks = null;
IDictionary<string,decimal> rates = null;
yield return Arbiter.JoinedReceive(false,

DbService.CcrGetStockHoldings(token),
StockService.CcrGetRates(token),
delegate(IEnumerable<Holding> s, IDictionary<string,decimal> r)

{ stocks = s; rates = r; });

OnRequestComplete(ComputeTotal(stocks, rates));
}

Confused? I certainly was when I first saw it, but now I’m in awe of how neat it is. The
CCR calls into your code (with a call to MoveNext on the iterator), and you execute
until and including the first yield return statement. The CcrCheck method within
AuthService kicks off an asynchronous request, and the CCR waits (without using a
dedicated thread) until it has completed, calling the supplied delegate to handle the
result. It then calls MoveNext again, and your method continues. This time you kick off
two requests in parallel and ask the CCR to call another delegate with the results of
both operations when they’ve both finished. After that, MoveNext is called for a final
time, and you get to complete the request processing.

 Although it’s obviously more complicated than the synchronous version, it’s still all
in one method, it gets executed in the order written, and the method itself can hold
the state (in the local variables, which become state in the extra type generated by the
compiler). It’s fully asynchronous, using as few threads as it can get away with. I
haven’t shown any error handling, but that’s also available in a sensible fashion that
forces you to think about the issue at appropriate places.

 I’ve deliberately not gone into the details of the Arbiter class, the ITask interface,
and so forth here. I’m not trying to promote the CCR in this section, although it’s fas-
cinating to read about and experiment with; I suspect that asynchronous functions in
C# 5 will have much more impact on mainstream developers. My point here has been
to show that iterators can be used in radically different contexts that have little to do
with traditional collections. At the heart of this use of them is the idea of a state
machine: two of the tricky aspects of asynchronous development are handling state
and effectively pausing until something interesting happens. Iterator blocks are a nat-
ural fit for both of these problems, although you’ll see in chapter 15 how more tar-
geted language support makes things much cleaner. 

6.5 Summary
C# supports many patterns indirectly, in terms of it being feasible to implement them
in C#. But relatively few patterns are directly supported in terms of language features

being specifically targeted at a particular pattern. In C# 1, the iterator pattern was
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directly supported from the point of view of the calling code, but not from the per-
spective of the collection being iterated over. Writing a correct implementation of
IEnumerable was time consuming and error-prone, without being interesting. In C# 2,
the compiler does all the mundane work for you, building a state machine to cope
with the callback nature of iterators.

 It should be noted that iterator blocks have one aspect in common with the anony-
mous methods you saw in chapter 5, even though the actual features are very differ-
ent. In both cases, extra types may be generated, and a potentially complicated code
transformation is applied to the original source. Compare this with C# 1, where most
of the transformations for syntactic sugar (lock, using, and foreach being the most
obvious examples) were straightforward. You’ll see this trend toward smarter compila-
tion continuing with almost every aspect of C# 3.

 I’ve shown you one piece of LINQ-related functionality in this chapter: filtering a
collection. IEnumerable<T> is one of the most important types in LINQ, and if you
ever want to write your own LINQ operators on top of LINQ to Objects,7 you’ll be eter-
nally grateful to the C# team for including iterator blocks in the language.

 In addition to seeing some real-life examples of the use of iterators, we’ve looked
at how one particular library has used them in a fairly radical way that has little to do
with what likely comes to mind when you think about iteration over a collection. It’s
worth bearing in mind that many languages have also looked at this sort of problem
before—in computer science, the term coroutine is applied to concepts of this nature,
and that’s how they’re referred to in the Unity 3D game development toolset, where
again they’re used for asynchrony. Different languages have historically supported
them to a greater or lesser extent, with tricks being applicable to simulate them some-
times. For example, Simon Tatham has an excellent article on how even C can express
coroutines if you’re willing to bend coding standards somewhat (see his “Coroutines
in C” article at http://mng.bz/H8YX). You’ve seen that C# 2 makes coroutines easy to
write and use.

 Now that you’ve seen some major and sometimes mind-warping language changes
focused around a few key features, the next chapter will be a change of pace. It
describes a number of small changes that make C# 2 more pleasant to work with than
its predecessor. The designers learned from the little niggles of the past and produced
a language that has fewer rough edges, more scope for dealing with awkward
backward-compatibility cases, and a better story around working with generated code.
Each feature is relatively straightforward, but there are quite a few of them.

7 This is less daunting and more fun than it sounds. We’ll look at a few guidelines around this topic in chap-

ter 12.

http://mng.bz/H8YX


Concluding C# 2:
the final features
So far we’ve looked at the four biggest new features in C# 2: generics, nullable
types, delegate enhancements, and iterator blocks. Each addresses a fairly complex
requirement, which is why we’ve gone into them in some depth. The remaining
new features of C# 2 knock a few rough edges off C# 1. They’re little niggles that
the language designers decided to correct—either areas where the language
needed a bit of improvement for its own sake, or where the experience of working
with code generation and native code could be made more pleasant.

This chapter covers
 Partial types

 Static classes

 Separate getter/setter property access

 Namespace aliases

 Pragma directives

 Fixed-size buffers

 Friend assemblies
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 Over time, Microsoft has received a lot of feedback from the C# community (and
its own developers, no doubt) about areas where C# hasn’t gleamed quite as brightly
as it might. Several smaller changes made it into C# 2 along with the larger ones, alle-
viating some of these small pain points.

 None of the features in this chapter is particularly difficult, and we’ll go through
them fairly quickly. Don’t underestimate how important they are, though. Just
because a topic can be explored in a few pages doesn’t mean it’s useless. You’re likely
to use some of these features on a frequent basis. Here’s a quick rundown of the fea-
tures covered in this chapter and their uses, so you know what to expect:

 Partial types—The ability to write the code for a type in multiple source files.
This is particularly handy for types where part of the code is autogenerated and
the rest is written manually.

 Static classes—For tidying up utility classes so that the compiler can spot when
you’re trying to use them inappropriately, and making your intentions clearer.

 Separate getter/setter property access—Finally, the ability to have a public getter and
a private setter for properties! (That’s not the only combination available, but
it’s the most common.)

 Namespace aliases—Ways out of sticky situations where type names aren’t unique.
 Pragma directives—Compiler-specific instructions for actions such as suppressing

specific warnings for a particular section of code.
 Fixed-size buffers—More control over how structs handle arrays in unsafe code.
 InternalsVisibleToAttribute (friend assemblies)—A feature spanning language,

framework, and runtime, this allows selected assemblies more access when
required.

You may be itching to get on to the sexy stuff from C# 3 by this point, and I don’t
blame you. Nothing in this chapter is going to set the world on fire—but each of these
features can make your life more pleasant, or dig you out of a hole in some cases. Hav-
ing dampened your expectations somewhat, the first feature is actually pretty nifty.

7.1 Partial types
The first change we’ll look at is in response to the power struggle that was usually
involved when using code generators with C# 1. For Windows Forms, the designer in
Visual Studio required its own regions of code that couldn’t be touched by developers,
within the same file that developers had to edit for user interface functionality. This
was clearly a brittle situation.

 In other cases, code generators create source that’s compiled alongside manually
written code. In C# 1, adding extra functionality involved deriving new classes from
the autogenerated ones, which is ugly. There are plenty of other scenarios where hav-
ing an unnecessary link in the inheritance chain can cause problems or reduce encap-
sulation. For instance, if two different parts of your code want to call each other, you
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need virtual methods for the parent type to call the child, and protected methods for
the reverse situation, where normally you’d use two private nonvirtual methods.

 C# 2 allows more than one file to contribute to a type, and IDEs can extend this
notion so that some of the code used for a type may not even be visible as C# source
code at all. Types built from multiple source files are called partial types.

 In this section we’ll also discuss partial methods, which are only relevant in partial
types and allow a rich but efficient way of adding manually written hooks into auto-
generated code. This is actually a C# 3 feature (this time based on feedback about
C# 2), but it’s more logical to discuss it when we examine partial types than to wait
until the next part of the book. 

7.1.1 Creating a type with multiple files

Creating a partial type is a cinch—you just need to include the partial contextual
keyword in the declaration for the type in each file it occurs in. A partial type can be
declared within as many files as you like, although all the examples in this section
use two.

 The compiler effectively combines all the source files together before compiling.
This means that code in one file can call code in another and vice versa, as shown in
figure 7.1—there’s no need for forward references or other tricks.

 You can’t write half of a member in one file and half of it in another—each individ-
ual member has to be completely contained within its own file. You can’t start a method
in one file and finish it in another, for example.1 There are a few obvious restrictions
about the declarations of the type—the declarations have to be compatible. Any file can
specify interfaces to be implemented (and they don’t have to be implemented in that
file), any file can specify the base type, and any file can specify constraints on a type
parameter. But if multiple files specify a base type, those base types have to be the same,
and if multiple files specify type constraints, the constraints have to be identical. The

partial class Example 
{ 
   void FirstMethod()

 {
      SecondMethod();

 }

   void ThirdMethod()
 {
 }

}

partial class Example 
{ 
   void SecondMethod()

 {
      ThirdMethod();

 }
}

Example2.csExample1.cs

Figure 7.1 Code in partial types is able to see all of the members of the type, 
regardless of which file each member is in.
1 There’s an exception here: partial types can contain nested partial types spread across the same set of files.
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following listing shows an example of the flexibility afforded (while not doing anything
even remotely useful).

// Example1.cs
using System;

partial class Example<TFirst, TSecond>
: IEquatable<string>
where TFirst : class

{
public bool Equals(string other)
{

return false;
}

}

// Example2.cs
using System;

partial class Example<TFirst, TSecond>
: EventArgs, IDisposable

{
public void Dispose()
{
}

}

I stress that this listing is solely for the purpose of talking about what’s legal in a decla-
ration—the types involved were only picked for convenience and familiarity. You can
see that both declarations (B and D) contribute to the list of interfaces that must be
implemented. In this example, each file implements the interfaces it declares, and
that’s a common scenario, but it would be legal to move the implementation of
IDisposable E to Example1.cs and the implementation of IEquatable<string> C
to Example2.cs. I’ve used the ability to specify interfaces separately from the imple-
mentation myself, encapsulating methods with the same signature generated for mul-
tiple different types into an interface. The code generator doesn’t know about the
interface, so it doesn’t know to declare that the type implements it.

 Only the first declaration B specifies any type constraints, and only the second D
specifies a base class. If the first declaration B had specified a base class, it would have
to be EventArgs, and if the second declaration had specified any type constraints,
they’d have to be exactly as in the first. In particular, you can’t specify a type constraint
for TSecond in the second declaration, even though it’s not mentioned in the first.
Both types have to have the same access modifier, if any—you can’t make one declara-
tion internal and the other public, for example. Essentially, the rules around com-
bining files allow flexibility in most cases while encouraging consistency.

 In single file types, the initialization of member and static variables is guaranteed
to occur in the order they appear in the file, but there’s no guaranteed order when

Listing 7.1 Demonstration of mixing declarations of a partial type

Specifies interface 
and type parameter 
constraint

B

Implements 
IEquatable<string>

C

Specifies base class 
and interface

D

Implements IDisposableE
multiple files are involved. Relying on the order of declaration within the file is brittle
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to start with—it leaves your code open to subtle bugs if a developer decides to “harm-
lessly” move things around—so it’s worth avoiding this situation where you can. You
should particularly avoid it with partial types.

 Now that you know what you can and can’t do, let’s take a closer look at why you’d
want to do it. 

7.1.2 Uses of partial types

As I mentioned earlier, partial types are primarily useful in conjunction with designers
and other code generators. If a code generator has to modify a file that’s owned by a
developer, there’s always a risk of things going wrong. With the partial types model, a
code generator can own the file where it’ll work and completely overwrite the whole
file every time it wants to.

 Some code generators may choose not to generate a C# file at all until the build is
well under way. For instance, Snippy has Extensible Application Markup Language
(XAML) files that describe the user interface. When the project is built, each XAML
file is converted into a C# file in the obj directory (the filenames end with .g.cs to show
they’ve been generated) and compiled along with the partial class providing extra
code for that type (typically event handlers and extra construction code). This com-
pletely prevents developers from tweaking the generated code, at least without going
to the extreme lengths of hacking the build file.

 I’ve been careful to use the phrase code generator instead of designer because there
are plenty of code generators around other than designers. For instance, in Visual Stu-
dio, web service proxies are generated as partial classes, and you may have your own
tools that generate code based on other data sources. One reasonably common exam-
ple of this is object-relational mapping (ORM)—some ORM tools use database entity
descriptions from a configuration file (or straight from the database) and generate
partial classes representing those entities. Likewise my .NET port of the Google Proto-
col Buffers serialization framework generates partial classes—a feature that has
proven useful even within the implementation itself.

 This makes it straightforward to add behavior to the type—overriding virtual meth-
ods of the base class, adding new members with business logic, and so forth. It’s a
great way of letting the developer and the tool work together, rather than constantly
squabbling about who’s in charge.

 One scenario that’s occasionally useful is for one file to be generated containing
multiple partial types, and then some of those types are enhanced in other files, with
one manually generated file per type. To return to the ORM example, the tool could
generate a single file containing all the entity definitions, and some of those entities
could have extra code provided by the developer, using one file per entity. This keeps
the number of automatically generated files low, but still provides good visibility of the
manual code involved.
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Figure 7.2 shows how the uses of partial types for XAML and entities are similar, but
with slightly different timing involved when it comes to creating the autogenerated
C# code.

 A somewhat different use of partial types is as an aid to refactoring. Sometimes a
type gets too big and assumes too many responsibilities. One first step to dividing the
bloated type into smaller, more coherent types can be to split it into a partial type over
two or more files. This can be done with no risk and in an experimental manner, mov-
ing methods between files until each file addresses a single concern. Although the
next step of splitting the type up is still far from automatic, it should be a lot easier to
see the end goal.

 One final use to mention: unit testing. Often the set of unit tests for a class can end
up being much larger than the implementation itself. One way to split the tests into
more understandable chunks is to use partial types. You can still easily run all the tests
for a type in one go (since you still have a single test class), but you can easily see the
tests for different areas of functionality in different files. By hand-editing the project
file, you can even have the same parent/child expansion in Solution Explorer as you
see when partial types are used for Visual Studio’s generated code. This won’t be to
everyone’s taste, but I’ve found it to be a useful way of managing tests.

 When partial types first appeared in C# 2, no one knew exactly how they’d be used.
One feature that was almost immediately requested was a way to provide optional
extra code for generated methods to call. This need has been addressed by C# 3 with
partial methods. 

GuiPage.xaml.cs 
(Handwritten C#)

GuiPage.xaml 
(XAML)

GuiPage.g.cs 
(C#)

GuiPage type 
(Part of an assembly)

XAML to C# 
converter 

(Build time)

Customer.cs 
(Handwritten C#)

Schema/model 
(Database, XML, etc.)

GeneratedEntities.cs 
(C#  — includes partial 

Customer class)

Customer type 
(Part of an assembly)

Code generator 
(Prebuild)

Using XAML for declarative UI design Prebuilding partial classes for database entities

C# compilation C# compilation

Figure 7.2 Comparison between XAML precompilation and autogenerated entity classes
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7.1.3 Partial methods—C# 3 only!

To reiterate my previous explanation, the rest of this part of the book just deals with
C# 2 features, but partial methods don’t fit with any of the other C# 3 features and
they do fit in well when describing partial types. Apologies for any confusion this may
cause.

 Back to the feature: sometimes you want to be able to specify behavior in a manu-
ally created file and use that behavior from an automatically generated file. For
instance, in a class that has lots of automatically generated properties, you might want
to be able to specify code to be executed to validate a new value for some of those
properties. Another common scenario is for a code generator to include construc-
tors—manually written code may want to hook into object construction to set default
values, perform some logging, and so forth.

 In C# 2, these requirements can only be met either by using events that the manu-
ally generated code can subscribe to, or by making the automatically generated code
assume that the handwritten code will include methods of a particular name—making
all the code fail to compile unless the relevant methods are provided. Alternatively,
the generated code can provide a base class with virtual methods that do nothing by
default. The manually generated code can then derive from the class and override
some or all of the methods.

 All of these solutions are somewhat messy. C# 3’s partial methods effectively pro-
vide optional hooks that have no cost whatsoever if they’re not implemented—any calls
to the unimplemented partial methods are removed by the compiler. This allows tools
to be very generous in terms of the hooks they provide. In the compiled code, you
only pay for what you use. 

 It’s easiest to understand this with an example. The following listing shows a par-
tial type specified in two files, with the constructor in the automatically generated
code calling two partial methods, one of which is implemented in the manually gen-
erated code.

// Generated.cs
using System;
partial class PartialMethodDemo
{

public PartialMethodDemo()
{

OnConstructorStart();
Console.WriteLine("Generated constructor");
OnConstructorEnd();

}

partial void OnConstructorStart();
partial void OnConstructorEnd();

}

Listing 7.2 A partial method called from a constructor
// Handwritten.cs
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using System;
partial class PartialMethodDemo
{

partial void OnConstructorEnd()
{

Console.WriteLine("Manual code");
}

}

As shown in listing 7.2, partial methods are declared just like abstract methods: by pro-
viding the signature without any implementation but using the partial modifier. Sim-
ilarly, the actual implementations just have the partial modifier but are otherwise
like normal methods.

 Calling the parameterless constructor of PartialMethodDemo would result in
Generated constructor and then Manual code being printed out. If you examined
the IL for the constructor, you wouldn’t see a call to OnConstructorStart because it
no longer exists—there’s no trace of it anywhere in the compiled type.

 Because the method may not exist, partial methods must have a return type of
void, and they can’t take out parameters. They have to be private, but they can be
static and/or generic. If the method isn’t implemented in one of the files, the whole
statement calling it is removed, including any argument evaluations. 

 If evaluating any of the arguments has a side effect that you want to occur whether
or not the partial method is implemented, you should perform the evaluation sepa-
rately. For instance, suppose you have the following code:

LogEntity(LoadAndCache(id));

Here LogEntity is a partial method, and LoadAndCache loads an entity from the data-
base and inserts it into the cache. You might want to use this instead:

MyEntity entity = LoadAndCache(id);
LogEntity(entity);

That way, the entity is loaded and cached regardless of whether an implementation
has been provided for LogEntity. Of course, if the entity can be loaded equally
cheaply later on, and may not even be required, you should leave the statement in the
first form and avoid an unnecessary load in some cases.

 To be honest, unless you’re writing your own code generators, you’re more likely
to be implementing partial methods than declaring and calling them. If you’re only
implementing them, you don’t need to worry about the argument evaluation side of
things.

 In summary, partial methods in C# 3 allow generated code to interact with hand-
written code in a rich manner without any performance penalties for situations where
the interaction is unnecessary. This is a natural continuation of the C# 2 partial types
feature, which enables a much more productive relationship between code generators
and developers.
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 The next feature is entirely different. It’s a way of telling the compiler more about
the intended nature of a type so that it can perform more checking on both the type
itself and any code using it. 

7.2 Static classes
The second new feature is in some ways completely unnecessary—it just makes things
tidier and more elegant when you write utility classes.

 Everyone has utility classes. I haven’t seen a significant project in either Java or C#
that didn’t have at least one class consisting solely of static methods. The classic exam-
ple in developer code is a type with string helper methods, doing anything from escap-
ing, reversing, smart replacing—you name it. An example from the framework is the
System.Math class. 

 The key features of a utility class are as follows:

 All members are static (except a private constructor).
 The class derives directly from object.
 Typically there’s no state at all, unless some caching or a singleton is involved.
 There are no visible constructors.
 The class is sealed if the developer remembers to do so.

The last two points are optional, and if there are no visible constructors (including
protected ones), the class is effectively sealed anyway. Both of them help make the pur-
pose of the class more obvious, though.

 The following listing gives an example of a C# 1 utility class. Then we’ll look at how
C# 2 improves matters.

public sealed class NonStaticStringHelper
{

private NonStaticStringHelper()
{
}

public static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}
}

The class is sealed B so that no one tries to derive from it. Inheritance is supposed to
be about specialization, and there’s nothing to specialize here, as all the members are
static D except the private constructor C. That constructor may seem odd at first
sight—why have it at all if it’s private and never going to be used? The reason is that if
you don’t supply any constructors for a class, the C# 1 compiler will always provide a

Listing 7.3 A typical C# 1 utility class

Seals class to 
prevent derivationB

Prevents instantiation 
from other codeC

All methods 
are staticD
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default constructor that’s public and parameterless. In this case, you don’t want any visi-
ble constructors, so you have to provide a private one.

 This pattern works reasonably well, but C# 2 makes it explicit and actively prevents
the type from being misused. First, we’ll look at what changes are needed to turn list-
ing 7.3 into a proper static class, as defined in C# 2. As you can see in the following list-
ing, little action is required.

using System;

public static class StringHelper
{

public static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}
}

You use the static modifier in the class declaration this time instead of sealed, and
you don’t include a constructor at all—those are the only code differences. The C# 2
compiler knows that a static class shouldn’t have any constructors, so it doesn’t pro-
vide a default one. 

 In fact, the compiler enforces a number of constraints on the class definition:

 It can’t be declared as abstract or sealed, although it’s implicitly both.
 It can’t specify any implemented interfaces.
 It can’t specify a base type.
 It can’t include any nonstatic members, including constructors.
 It can’t include any operators.
 It can’t include any protected or protected internal members.

It’s worth noting that although all the members must be static, you have to explicitly
make them static. Although nested types are implicitly static members of the enclos-
ing class, the nested type itself can be a nonstatic type if that’s required.

 The compiler doesn’t just put constraints on the definition of static classes—it also
guards against their misuse. Because it knows that there can never be any instances of
the class, it prevents any use that would require one. For instance, all of the following
are invalid when StringHelper is a static class:

StringHelper variable = null;
StringHelper[] array = null;
public void Method1(StringHelper x) {}
public StringHelper Method1() { return null; }
List<StringHelper> x = new List<StringHelper>();

Listing 7.4 The same utility class as in listing 7.3, but converted into a C# 2 static class
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None of these is prevented if the class follows the C# 1 pattern, but all of them are
essentially useless. In short, static classes in C# 2 don’t allow you to do anything you
couldn’t do before, but they prevent you from doing things that you shouldn’t have
been doing anyway. They also explicitly state your intentions. By making a class static,
you’re saying that you definitely don’t want any instances to be created. It’s not just a
quirk of the implementation; it’s a design choice.

 The next feature on the list has a more positive feel. It’s aimed at a specific—
although widely encountered—situation, and allows a solution that’s neither ugly nor
breaks encapsulation, which was the choice available in C# 1. 

7.3 Separate getter/setter property access
I’ll admit to being bemused when I first saw that C# 1 didn’t allow you to have a public
getter and a private setter for properties. This isn’t the only combination of access
modifiers that’s prohibited by C# 1, but it’s the most commonly desired one. In fact, in
C# 1 both the getter and the setter need to have the same accessibility—it’s declared
as part of the property declaration rather than as part of the getter or setter.

 There are perfectly good reasons to want different accessibility for the getter and
the setter. Often you may want some validation, logging, locking, or other code to be
executed when changing a variable that backs the property, but you don’t want to
make the property writable to code outside the class. In C# 1 the alternatives were
either to break encapsulation by making the property publicly writable against your
better judgment or to write a SetXXX() method in the class to do the setting, which
frankly looks ugly when you’re used to real properties.

 C# 2 fixes the problem by allowing either the getter or the setter to explicitly have
more restrictive access than that declared for the property itself. This is most easily
seen with an example:

string name;

public string Name
{

get { return name; }
private set
{

  // Validation, logging etc here
  name = value;

}
}

In this case, the Name property is effectively read-only to all other types,2 but you can
use the familiar property syntax for setting the property within the type itself. The
same syntax is also available for indexers as well as properties. You could make the set-
ter more public than the getter (a protected getter and a public setter, for example),
but that’s a pretty rare situation, in the same way that write-only properties are few and
far between compared with read-only properties.
2 Except nested types, which always have access to private members of their enclosing types.
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TRIVIA: THE ONLY PLACE WHERE “PRIVATE” IS REQUIRED Everywhere else in C#,
the default access modifier in any given situation is the most private one possi-
ble. For example, if something can be declared to be private, it will default to
private if you don’t specify any access modifiers. This is a nice element of lan-
guage design, because it’s hard to get it wrong accidentally; if you want some-
thing to be more public than it is, you’ll notice when you try to use it. But if
you accidentally make something too public, the compiler can’t help you spot
the problem. Specifying the access of a property getter or setter is the one
exception to this rule—if you don’t specify anything, the default is to give the
getter or setter the same access as the overall property itself.

Note that you can’t declare the property itself to be private and make the getter pub-
lic—you can only make a particular getter or setter more private than the property.
Also, you can’t specify an access modifier for both the getter and the setter—that
would be silly, as you could declare the property itself to be whichever is the more
public of the two modifiers.

 This aid to encapsulation is extremely welcome. There’s still nothing in C# 2 to
stop other code in the same class from bypassing the property and going directly to
whatever fields are backing it, unfortunately. As you’ll see in the next chapter, C# 3
fixes this in one particular case, but not in general.

 We’ll now move from a feature you may want to use regularly to one that you’ll
want to avoid most of the time—it allows your code to be absolutely explicit in terms
of which types it’s referring to, but at a significant cost to readability. 

7.4 Namespace aliases
Namespaces are primarily intended as a means of organizing types into a useful hier-
archy. They also allow you to keep fully qualified names of types distinct even when the
unqualified names may be the same. This shouldn’t be seen as an invitation to reuse
unqualified type names without good cause, but there are times when it’s the natural
thing to do.

 An example of this is the unqualified name Button. There are two classes with that
name in the .NET 2.0 Framework: System.Windows.Forms.Button and System.Web.UI
.WebControls.Button. Although they’re both called Button, it’s easy to tell them apart
by their namespaces. This mirrors real life closely—you may know several people
called Jon, but you’re unlikely to know anyone else called Jon Skeet. If you’re talking
with friends in a particular context, you may be able to use just the name Jon without
specifying which one you’re talking about, but in other contexts you may need to pro-
vide more exact information.

 The using directive of C# 1 (not to be confused with the using statement that calls
Dispose automatically) was available in two flavors: one created an alias for a
namespace or type (for example, using Out = System.Console;) and the other intro-
duced a namespace into the list of contexts the compiler would search when looking
for a type (for example, using System.IO;). By and large, this was adequate, but there
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were a few situations that the language couldn’t cope with. In some other cases, auto-
matically generated code would have to go out of its way to make absolutely sure that
the right namespaces and types were being used whatever happened.

 C# 2 fixes these problems, bringing additional expressiveness to the language. You
can now write code that’s guaranteed to mean what you want it to regardless of which
other types, assemblies, and namespaces are introduced. These extreme measures are
rarely needed outside automatically generated code, but it’s nice to know that they’re
there when you need them. 

 In C# 2 there are three types of aliases: the namespace aliases of C# 1, the global
namespace alias, and extern aliases. We’ll start off with the one type of alias that was
already present in C# 1, but we’ll introduce a new way of using aliases to ensure that
the compiler knows to treat it as an alias rather than checking to see whether it’s the
name of another namespace or type. 

7.4.1 Qualifying namespace aliases

Even in C# 1, it was a good idea to avoid namespace aliases wherever possible. Every so
often you might find that one type name clashed with another—as with the previous
Button example—so you either had to specify the full name including the namespace
every time you used it, or you needed an alias that distinguished the two, in some ways
acting like a shortened form of the namespace. The following listing shows an exam-
ple where the two types of Button are used, qualified by an alias.

using System;
using WinForms = System.Windows.Forms;
using WebForms = System.Web.UI.WebControls;

class Test
{

static void Main()
{

Console.WriteLine(typeof(WinForms.Button));
Console.WriteLine(typeof(WebForms.Button));

}
}

Listing 7.5 compiles without any errors or warnings, although it’s still not as pleasant
as it would be if you only needed to deal with one kind of Button to start with. There’s
a problem, though—what if someone were to introduce a type or namespace called
WinForms or WebForms? The compiler wouldn’t know what WinForms.Button meant
and would use the type or namespace in preference to the alias. You want to be able to
tell the compiler that you need it to treat WinForms as an alias, even though it’s avail-
able elsewhere. 

 C# 2 introduces the ::namespace alias qualifier syntax to do this, as shown in the fol-
lowing listing.

Listing 7.5 Using aliases to distinguish between different Button types
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using System;
using WinForms = System.Windows.Forms;
using WebForms = System.Web.UI.WebControls;

class WinForms {}

class Test
{

static void Main()
{

Console.WriteLine(typeof(WinForms::Button));
Console.WriteLine(typeof(WebForms::Button));

}
}

Instead of WinForms.Button, listing 7.6 uses WinForms::Button, and the compiler is
happy. If you change the :: back to . you’ll get a compilation error. 

 So if you use :: everywhere you use an alias, you’ll be fine, right? Well, not quite... 

7.4.2 The global namespace alias

There’s one part of the namespace hierarchy that you can’t define your own alias for:
the root of it, or the global namespace. Suppose you have two classes, both named
Configuration—one within a namespace of MyCompany and the other with no
namespace specified at all. How can you refer to the root Configuration class from
within the MyCompany namespace? You can’t use a normal alias, and if you just specify
Configuration, the compiler will use MyCompany.Configuration.

 In C# 1, there was no way of getting around this. Again, C# 2 comes to the rescue,
allowing you to use global::Configuration to tell the compiler exactly what you
want. The following listing demonstrates both the problem and the solution.

using System;

class Configuration {}

namespace Chapter7
{

class Configuration {}

class Test
{

static void Main()
{

Console.WriteLine(typeof(Configuration));
Console.WriteLine(typeof(global::Configuration));
Console.WriteLine(typeof(global::Chapter7.Test));

}
}

}

Listing 7.6 Using :: to tell the compiler to use aliases

Listing 7.7 Use of the global namespace alias to specify the desired type exactly
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Most of listing 7.7 just sets up the situation—the three lines within Main are the inter-
esting ones. The first line prints Chapter7.Configuration as the compiler resolves
Configuration to that type before moving out to the namespace root. The second
line indicates that the type has to be in the global namespace, so it simply prints
Configuration. I included the third line to demonstrate that by using the global alias,
you can still refer to types within namespaces, but you have to specify the fully quali-
fied name.

 At this point, you can get to any uniquely named type, using the global namespace
alias if necessary. If you ever write a code generator where the code doesn’t need to be
readable, you might want to use this feature liberally to make sure that you always
refer to the correct type regardless of any other types that are present by the time the
code is compiled. But what do you do if the type’s name isn’t unique even when you
include its namespace? The plot thickens... 

7.4.3 Extern aliases

At the start of this section, I referred to human names as examples of namespaces and
contexts. I specifically said that you’re unlikely to know more than one person called
Jon Skeet. But I know that there is more than one person with my name, and it’s not
beyond the realm of possibility that you might know two or more of us. In this case, in
order to specify which one you mean, you’d have to provide some more information
beyond just the full name—the reason you know the particular person, or the country
they live in, or something similarly distinctive.

 C# 2 lets you specify that extra information in the form of an extern alias—a name
that exists not only in your source code, but also in the parameters you pass to the
compiler. For the Microsoft C# compiler, this means specifying the assembly that
contains the types in question. Suppose that two assemblies—First.dll and
Second.dll—both contain a type called Demo.Example. You can’t just use the fully
qualified name to distinguish them, as they both have the same fully qualified name.
Instead, you can use extern aliases to specify which you mean. The following listing
shows an example of the C# code involved, along with the command line needed to
compile it.

// Compile with
// csc Test.cs /r:FirstAlias=First.dll /r:SecondAlias=Second.dll

extern alias FirstAlias;
extern alias SecondAlias;

using System;
using FD = FirstAlias::Demo;

class Test
{

Listing 7.8 Working with different types of the same type in different assemblies

Specifies two extern aliasesB

Refers to extern alias 
with namespace aliasC
static void Main()
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{
Console.WriteLine(typeof(FD.Example));
Console.WriteLine(typeof(SecondAlias::Demo.Example));

}
}

The code in listing 7.8 is straightforward. The first thing you have to do is introduce
the two extern aliases B. After that, you can use them either via namespace aliases (C
and D) or directly E. In fact, a normal using directive without an alias (such as
using FirstAlias::Demo;) would’ve allowed you to use the name Example without
any further qualification at all. One extern alias can cover multiple assemblies, and
several extern aliases can all refer to the same assembly, although I’d think carefully
before using either of these features, and particularly before combining them. 

 To specify an extern alias in Visual Studio, just select the assembly reference within
Solution Explorer and modify the Aliases value in the Properties window, as shown in
figure 7.3.

 Hopefully I don’t need to persuade you to
avoid this kind of situation whenever you can. It
can be necessary to work with assemblies from dif-
ferent third parties who happen to have used the
same fully qualified type names, at which point
you’d otherwise be stuck. Where you have more
control over the naming, though, make sure that
your names never lead you into this territory.

 The next feature is almost a metafeature. The
exact functionality it provides depends on which
compiler you’re using, because its purpose is to
enable control over compiler-specific features.
We’ll concentrate on the Microsoft compiler. 

7.5 Pragma directives
Describing pragma directives in general is extremely easy: a pragma directive is a pre-
processing directive represented by a line beginning with #pragma. The rest of the line
can contain any text at all. The result of a pragma directive can’t change the behavior
of the program to contravene anything within the C# language specification, but it
can do anything outside the scope of the specification. If the compiler doesn’t under-
stand a particular pragma directive, it can issue a warning, but not an error.

 That’s basically everything the specification has to say on the subject. The Micro-
soft C# compiler understands two pragma directives: warnings and checksums. 

7.5.1 Warning pragmas

Occasionally, the C# compiler issues warnings that are justifiable but annoying. The
correct response to a compiler warning is almost always to fix your code—it's rarely

Uses namespace aliasD

Uses extern 
alias directlyE

Figure 7.3 Part of the Properties 
window of Visual Studio 2010, showing 
an extern alias of FirstAlias for the 
First.dll reference
made any worse by fixing the cause of the warning, and usually it’s improved.
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 But sometimes there’s a good reason to ignore a warning, and that’s what warn-
ing pragmas are available for. As an example, you’ll create a private field that’s never
read from or written to. It’s almost always going to be useless...unless you happen to
know that it’ll be used by reflection. The following listing is a complete class demon-
strating this.

public class FieldUsedOnlyByReflection
{

int x;
}

If you try to compile listing 7.9, you’ll get a warning message like this:

FieldUsedOnlyByReflection.cs(3,9): warning CS0169:
The private field 'FieldUsedOnlyByReflection.x' is never used

That’s the output from the command-line compiler. In the Error List window of Visual
Studio, you can see the same information (plus the project it’s in) except that you don’t
get the warning number (CS0169). To find the number, you need to either select the
warning and bring up the help related to it, or look in the Output window, where the
full text is shown. You need the number in order to make the code compile without
warnings, as shown in the following listing.

public class FieldUsedOnlyByReflection
{
#pragma warning disable 0169

int x;
#pragma warning restore 0169
}

Listing 7.10 is self-explanatory—the first pragma disables the specified warning, and
the second one restores it. It’s good practice to disable warnings for as short a time as
you can, so that you don’t miss any warnings you genuinely ought to fix. If you want
to disable or restore multiple warnings in a single line, just use a comma-separated list
of warning numbers. If you don’t specify any warning numbers at all, the result is to
disable or restore all warnings in one fell swoop, but that’s a bad idea in almost every
imaginable scenario. 

7.5.2 Checksum pragmas

You’re unlikely to need the second form of pragma recognized by the Microsoft com-
piler. It supports the debugger by allowing it to check that it’s found the right source
file. Normally when a C# file is compiled, the compiler generates a checksum from
the file and includes it in the debugging information. When the debugger needs to
locate a source file and finds multiple potential matches, it can generate the check-

Listing 7.9 Class containing an unused field

Listing 7.10 Disabling (and restoring) warning CS0169
sum itself for each of the candidate files and see which is correct.
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 When an ASP.NET page is converted into C#, the generated file is what the C# com-
piler sees. The generator calculates the checksum of the .aspx page and uses a check-
sum pragma to tell the C# compiler to use that checksum instead of calculating one
from the generated page.

 The syntax of the checksum pragma is

#pragma checksum "filename" "{guid}" "checksum bytes"

The GUID indicates which hashing algorithm has been used to calculate the check-
sum. The documentation for the CodeChecksumPragma class gives GUIDs for SHA-1 and
MD5, should you ever wish to implement your own dynamic compilation framework
with debugger support.

 It’s possible that future versions of the C# compiler will include more pragma
directives, and other compilers (such as the Mono compiler, mcs) could have their
own support for different features. Consult your compiler documentation for the
most up-to-date information.

 The next feature is another one that you may never use, but if you ever do, it’s
likely to make your life somewhat simpler. 

7.6 Fixed-size buffers in unsafe code
When calling into native code with P/Invoke, it’s not unusual to find yourself dealing
with a structure that’s defined to have a buffer of a particular length within it. Prior to
C# 2, such structures were difficult to handle directly, even with unsafe code. Now you
can declare a buffer of the right size to be embedded directly with the rest of the data
for the structure.

 This capability isn’t just available for calling native code, although that’s its primary
use. You could use it to easily populate a data structure directly corresponding to a file
format, for instance. The syntax is simple, and once again we’ll demonstrate it with an
example. To create a field that embeds an array of 20 bytes within its enclosing struc-
ture, you’d use

fixed byte data[20];

This would allow data to be used as if it were a byte* (a pointer to byte data),
although the implementation used by the C# compiler is to create a new nested type
within the declaring type and apply the new FixedBuffer attribute to the variable
itself. The CLR then takes care of allocating the memory appropriately.

 One downside of this feature is that it’s only available within unsafe code: the enclos-
ing structure has to be declared in an unsafe context, and you can only use the fixed-
size buffer member within an unsafe context. This limits the situations in which it’s use-
ful, but it can still be a nice trick to have up your sleeve. Also, fixed-size buffers are only
applicable to primitive types and can’t be members of classes (only structures).

 There are remarkably few Windows APIs where this feature is directly useful.
Numerous situations call for a fixed array of characters—the TIME_ZONE_INFORMATION
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structure, for example—but unfortunately fixed-size buffers of characters appear to
be handled poorly by P/Invoke, with the marshaler getting in the way.

 The following listing shows one example, though—a console application that dis-
plays the colors available in the current console window. It uses an API function, Get-
ConsoleScreenBufferEx, that was introduced in Windows Vista and Windows Server
2008 and that retrieves extended console information. The following listing displays
all 16 colors in hexadecimal format (bbggrr).

using System;
using System.Runtime.InteropServices;

struct COORD
{

public short X, Y;
}

struct SMALL_RECT
{

public short Left, Top, Right, Bottom;
}

unsafe struct CONSOLE_SCREEN_BUFFER_INFOEX
{

public int StructureSize;
public COORD ConsoleSize, CursorPosition;
public short Attributes;
public SMALL_RECT DisplayWindow;
public COORD MaximumWindowSize;
public short PopupAttributes;
public int FullScreenSupported;
public fixed int ColorTable[16];

}

static class FixedSizeBufferDemo
{

const int StdOutputHandle = -11;

[DllImport("kernel32.dll")]
static extern IntPtr GetStdHandle(int nStdHandle);

[DllImport("kernel32.dll")]
static extern bool GetConsoleScreenBufferInfoEx

(IntPtr handle, ref CONSOLE_SCREEN_BUFFER_INFOEX info);

unsafe static void Main()
{

IntPtr handle = GetStdHandle(StdOutputHandle);
CONSOLE_SCREEN_BUFFER_INFOEX info;
info = new CONSOLE_SCREEN_BUFFER_INFOEX();
info.StructureSize = sizeof(CONSOLE_SCREEN_BUFFER_INFOEX);
GetConsoleScreenBufferInfoEx(handle, ref info);

for (int i=0; i < 16; i++)

Listing 7.11 Demonstration of fixed-size buffers to obtain console color information
{
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Console.WriteLine ("{0:x6}", info.ColorTable[i]);
}

}
}

Listing 7.11 uses fixed-size buffers for the table of colors. Before fixed-size buffers, you
could have used the API either with a field for each color table entry or by marshaling
a normal array as UnmanagedType.ByValArray. But this would’ve created a separate
array on the heap instead of keeping the information all within the structure. That’s
not a problem here, but in some high-performance situations it’s nice to be able to
keep lumps of data together. On a different performance note, if the buffer is part of
a data structure on the managed heap, you have to pin it before accessing it. If you do
this a lot, it can significantly affect the garbage collector. Stack-based structures don’t
have this problem, of course.

 I don’t claim that fixed-size buffers are a hugely important feature in C# 2—at
least, not to most people. I’ve included them here for completeness, and doubtless
someone, somewhere, will find them invaluable. 

 The final feature we’ll look at can barely be called a C# 2 language feature at all,
but it just about counts. 

7.7 Exposing internal members to selected assemblies
Some features are obviously in the language—iterator blocks, for example. Some fea-
tures obviously belong to the runtime, such as JIT compiler optimizations. Some
clearly sit in both camps, such as generics. This last feature has a toe in both but is suf-
ficiently odd that it doesn’t merit a mention in either specification. In addition, it uses
a term that has different meanings in C++ and VB.NET, adding a third meaning to the
mix. To be fair, all the terms are used in the context of access permissions, but they
have different effects.

7.7.1 Friend assemblies in the simple case

In .NET 1.1 it was entirely accurate to say that something defined to be internal
(whether a type, a method, a property, a variable, or an event) could only be accessed
within the same assembly in which it was declared.3 In .NET 2.0 that’s still mostly true,
but there’s a new attribute that lets you bend the rules slightly: InternalsVisible-
ToAttribute, usually referred to as just InternalsVisibleTo. (When applying an attri-
bute whose name ends with Attribute, the C# compiler will apply the suffix
automatically.)

InternalsVisibleTo can only be applied to an assembly (not a specific member),
and you can apply it multiple times to the same assembly. I’ll call the assembly con-
taining the attribute the source assembly, although this is unofficial terminology. When
you apply the attribute, you have to specify another assembly, known as the friend
assembly. The result is that the friend assembly can see all the internal members of the
3 Using reflection when running with suitable permissions doesn’t count.
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source assembly as if they were public. This may sound alarming, but it can be useful,
as you’ll see in a minute.

 The following listing shows this with three classes in three different assemblies.

// Compiled to Source.dll
using System.Runtime.CompilerServices;
[assembly:InternalsVisibleTo("FriendAssembly")]
public class Source
{

internal static void InternalMethod() {}

public static void PublicMethod() {}
}

// Compiled to FriendAssembly.dll
public class Friend
{

static void Main()
{

Source.InternalMethod();
Source.PublicMethod();

}
}

// Compiled to EnemyAssembly.dll
public class Enemy
{

static void Main()
{

// Source.InternalMethod();
Source.PublicMethod();

}
}

In listing 7.12, a special relationship exists between FriendAssembly.dll and Source.dll,
although it only operates one way: Source.dll has no access to internal members of
FriendAssembly.dll. If you were to uncomment the line at B, the Enemy class would
fail to compile.

 Why on earth would you want to open up your well-designed assembly to certain
assemblies to start with?

7.7.2 Why use InternalsVisibleTo?

I rarely use InternalsVisibleTo between two production assemblies. I can see how it
could be useful, and I’ve certainly used it for extra access when writing tools, but my
primary use of it has always been unit testing.

 Some say you should only test the public interface to code. Personally I’m happy to
test whatever I can in the simplest manner possible. Friend assemblies make that a lot
easier: suddenly it’s trivial to test code that only has internal access without taking the

Listing 7.12 Demonstration of friend assemblies

Grants 
additional 
access

Uses additional 
access within 
FriendAssembly

EnemyAssembly has 
no special access

B

Access public 
method as normal
dubious step of making members public just for the sake of testing or including the
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test code within the production assembly. (It does occasionally mean making mem-
bers internal for the sake of testing where they might otherwise be private, but that’s
less worrying.)

 The only downside to this is that the name of your test assembly lives on in your
production assembly. In theory, this could represent a security attack vector if your
assemblies aren’t signed and if your code normally operates under a restricted set of
permissions. (Anyone with full trust could use reflection to access the members in the
first place. You could do that yourself for unit tests, but it’s much nastier.) If this ever
ends up as a genuine issue for anyone, I’ll be very surprised. But it does bring the
option of signing assemblies into the picture. Just when you thought this was a nice,
simple little feature... 

7.7.3 InternalsVisibleTo and signed assemblies

If a friend assembly is signed, the source assembly needs to specify the public key of
the friend assembly, to make sure it’s trusting the right code. You need the full public
key, not just the public key token. 

 For instance, consider the following command line and output (rewrapped and
modified slightly for formatting) used to discover the public key of a signed Friend-
Assembly.dll:

c:\Users\Jon\Test>sn -Tp FriendAssembly.dll
Microsoft (R) .NET Framework Strong Name Utility Version 3.5.21022.8
Copyright (c) Microsoft Corporation. All rights reserved.
Public key is
0024000004800000940000000602000000240000525341310004000001
000100a51372c81ccfb8fba9c5fb84180c4129e50f0facdce932cf31fe
563d0fe3cb6b1d5129e28326060a3a539f287aaf59affc5aabc4d8f981
e1a82479ab795f410eab22e3266033c633400463ee7513378bb4ef41fc
0cae5fb03986d133677c82a865b278c48d99dc251201b9c43edd7bedef
d4b5306efd0dec7787ec6b664471c2

Public key token is 647b99330b7f792c

The source code for the Source class would now need to have this as the attribute:

[assembly:InternalsVisibleTo("FriendAssembly,PublicKey=" +
"0024000004800000940000000602000000240000525341310004000001" +
"000100a51372c81ccfb8fba9c5fb84180c4129e50f0facdce932cf31fe" +
"563d0fe3cb6b1d5129e28326060a3a539f287aaf59affc5aabc4d8f981" +
"e1a82479ab795f410eab22e3266033c633400463ee7513378bb4ef41fc" +
"0cae5fb03986d133677c82a865b278c48d99dc251201b9c43edd7bedef" +
"d4b5306efd0dec7787ec6b664471c2")]

Unfortunately, you need to either have the public key on one line or use string concat-
enation—whitespace in the public key will cause a compilation failure. It’d be a lot
more pleasant to look at if you could specify the token instead of the whole key, but
fortunately this ugliness is usually confined to AssemblyInfo.cs, so you won’t need to
see it often.
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 In theory, it’s possible to have an unsigned source assembly and a signed friend
assembly. In practice, that’s not terribly useful, as the friend assembly typically wants to
have a reference to the source assembly, and you can’t refer to an unsigned assembly
from one that’s signed. Likewise, a signed assembly can’t specify an unsigned friend
assembly, so typically you end up with both assemblies being signed if either one of
them is. 

7.8 Summary
This completes our tour of the new features in C# 2. The topics we’ve looked at in this
chapter have broadly fallen into two categories: “nice to have” improvements that
streamline development, and “hope you don’t need it” features that can get you out of
tricky situations when you need them. To make an analogy between C# 2 and improve-
ments to a house, the major features from our earlier chapters are comparable to full-
scale additions. Some of the features we’ve seen in this chapter (such as partial types
and static classes) are more like redecorating a bedroom, and features such as
namespace aliases are akin to fitting smoke alarms—you may never see a benefit, but
it’s nice to know they’re there if you ever need them.

 The range of features in C# 2 is broad—the designers tackled many of the areas
where developers were feeling pain, without any one overarching goal. That’s not to
say the features don’t work well together—nullable value types wouldn’t be feasible
without generics, for instance—but there’s no one aim that every feature contributes
to, unless you count general productivity.

 Now that we’ve finished examining C# 2, it’s time to move on to C# 3, where the
picture is very different. Nearly every feature in C# 3 forms part of the grand picture
of LINQ, a conglomeration of technologies that massively simplifies many tasks.



Part 3

C# 3: Revolutionizing
data access

There’s no doubt that C# 2 is a significant improvement over C# 1. The ben-
efits of generics, in particular, are fundamental to other changes, not just in C# 2
but also in C# 3. But C# 2 is in some sense a piecemeal collection of features.
Don’t get me wrong: they fit together nicely enough, but they address a set of
individual issues. That was appropriate at that stage of C#’s development, but
C# 3 is different.

 Almost every feature in C# 3 enables one specific technology: LINQ. Many of
the features are useful outside this context, and you certainly shouldn’t confine
yourself to only using them when you happen to be writing a query expression,
but it’d be equally silly not to recognize the complete picture created by the set
of jigsaw puzzle pieces presented in the following five chapters.

 When I originally wrote about C# 3 and LINQ in 2007, I was highly impressed
on a somewhat academic level. The more deeply you study the language, the
more clearly you see the harmony between the various elements that have been
introduced. The elegance of query expressions—and in particular the ability to
use the same syntax for both in-process queries and providers like LINQ to
SQL—was very appealing. LINQ had a great deal of promise.

 Now, years later, I can look back on the promises and see how they’ve played
out. In my experience with the community—particularly on Stack Overflow—it’s
obvious that LINQ has been widely adopted and really has changed how we
approach many data-oriented tasks. Database providers aren’t restricted to those

from Microsoft—LINQ to NHibernate and SubSonic are just two of the other



options available. Microsoft hasn’t stopped innovating around LINQ either; in
chapter 12 you’ll see Parallel LINQ and Reactive Extensions, two very different ways of
handling data that still use the familiar LINQ operators. And then there’s LINQ to
Objects—the simplest, most predictable, almost mundane LINQ provider, and the one
that’s most pervasive in industry. The days of writing yet another filtering loop, yet
another piece of code to find some maximum value, yet another check to see whether
any items in a collection satisfy some condition have gone—and good riddance.

 Despite the broad adoption of LINQ, I still see a number of questions that make it
clear that some developers regard LINQ as a sort of magic black box. What’s going to
happen when I use a query expression, compared with using extension methods
directly? When does the data actually get read? How can I make it work more effi-
ciently? Though you can learn a lot of LINQ just by playing with it and looking at
examples in blog posts, you’ll get a great deal more out of it by seeing how it all works
at a language level and then learning about what the various libraries do for you.

 This is not a book about LINQ—I’m still concentrating on the language features
that enable LINQ, rather than going into details of concurrency considerations for the
Entity Framework and so on. But once you’ve seen the language elements individually
and how they fit together, you’ll be in a much better position to learn the details of
specific providers.



Cutting fluff
with a smart compiler
We’ll start looking at C# 3 in the same way that we finished looking at C# 2—with a
collection of relatively simple features. These are just the first small steps on the
path to LINQ. Each of them can be used outside that context, but almost all are
important for simplifying code to the extent that LINQ requires in order to be
effective.

 One important point to note is that although two of the biggest features of
C# 2—generics and nullable types—required CLR changes, there were no signifi-
cant changes to the CLR that shipped with .NET 3.5. There were some tweaks, but
nothing fundamental. The framework grew to support LINQ, and a few more fea-

This chapter covers
 Automatically implemented properties

 Implicitly typed local variables

 Object and collection initializers

 Implicitly typed arrays

 Anonymous types
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tures were introduced to the base class library, but that’s a different matter. It’s
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worth being clear in your mind which changes are only in the C# language, which are
library changes, and which are CLR changes.

 Almost all of the new features exposed in C# 3 are due to the compiler being will-
ing to do more work for you. You saw some evidence of this in part of the book—par-
ticularly with anonymous methods and iterator blocks—and C# 3 continues in the
same vein. In this chapter, you’ll meet the following features that are new to C# 3:

 Automatically implemented properties—Remove the drudgery of writing simple
properties backed directly by fields

 Implicitly typed local variables—Reduce redundancy from local variable declara-
tions by inferring the variable type from the initial value

 Object and collection initializers—Simplify the creation and initialization of objects
in single expressions

 Implicitly typed arrays—Reduce redundancy from array-creation expressions by
inferring the array type from the contents

 Anonymous types—Enable the creation of ad hoc types to contain simple 
properties

In addition to describing what the new features do, I’ll make recommendations
about their use. Many of the features of C# 3 require a certain amount of discretion
and restraint on the part of the developer. That’s not to say they’re not powerful and
incredibly useful—quite the opposite—but the temptation to use the latest and
greatest funky syntax shouldn’t be allowed to overrule the drive toward clear and
readable code.

 The considerations I’ll discuss in this chapter (and the rest of the book) will rarely
be black and white. Perhaps more than ever before, readability is in the eye of the
beholder, and as you become more comfortable with the new features, they’re likely
to become more readable to you. I should stress, though, that unless you have good
reason to suppose you’ll be the only one to ever read your code, you should consider
the needs and views of your colleagues carefully.

 That’s enough navel gazing for the moment. We’ll start off with a feature that
shouldn’t cause any controversy. Simple but effective, automatically implemented
properties just make life better.

8.1 Automatically implemented properties
The first feature we’ll discuss is probably the simplest in the whole of C# 3. It’s even
simpler than any of the new features in C# 2. Despite that—or possibly because of
that—it’s also immediately applicable in many, many situations. When you read about
iterator blocks in chapter 6, you may not immediately have thought of any areas of
your current code base that could be improved by using them, but I’d be surprised to
find any nontrivial C# 2 program that couldn’t be modified to use automatically
implemented properties. This fabulously simple feature allows you to express trivial

properties with less code than before.
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What do I mean by a trivial property? I mean one that’s read/write and that stores its
value in a straightforward private variable without any validation or other custom
code. Trivial properties only take a few lines of code, but that’s still a lot when you con-
sider that you’re expressing a very simple concept. C# 3 reduces the verbosity by
applying a simple compile-time transformation, as shown in figure 8.1.

 The code at the bottom of figure 8.1 isn’t quite valid C#, of course. The field has an
unspeakable name to prevent naming collisions, in the same way as you’ve seen before
for anonymous methods and iterator blocks. But that’s effectively the code that’s gen-
erated by the automatically implemented property at the top.

 Where previously you might have been tempted to use a public variable for the sake
of simplicity, there’s now even less excuse for not using a property instead. This is par-
ticularly true for throwaway code, which we all know tends to live far longer than
anticipated.

TERMINOLOGY: AUTOMATIC PROPERTY OR AUTOMATICALLY IMPLEMENTED
PROPERTY? When automatically implemented properties were first dis-
cussed, long before the full C# 3 specification was published, they were
called automatic properties. Personally, I find this less of a mouthful than
the full name, and it’s more widely used in the community. There’s no
risk of ambiguity, so for the rest of this book, I’ll use automatic property and
automatically implemented property synonymously.

The feature of C# 2 that allows you to specify different access for the getter and the
setter is still available here, and you can also create static automatic properties. But
static automatic properties are almost always pointless. Although most types don’t
claim to have thread-safe instance members, publicly visible static members usually
should be thread-safe, and the compiler doesn’t do anything to help you in this
respect. The following listing gives an example of a safe, but useless, static automatic

public string Name { get; set; }

private string <Name>k__BackingField; 
public string Name 
{ 
  get { return <Name>k__BackingField;   }
  set { <Name>k__BackingField = value;   }
}

...is compiled as...

Figure 8.1 Transformation of an 
automatically implemented property



210 CHAPTER 8 Cutting fluff with a smart compiler

property that counts how many instances of a class have been created, along with
instance properties for the name and age of a person.

public class Person
{
   public string Name { get; private set; }
   public int Age { get; private set; }

   private static int InstanceCounter { get; set; }
   private static readonly object counterLock = new object();

   public InstanceCountingPerson(string name, int age)
   {

   Name = name;
  Age = age;

  lock (counterLock)
 {

  InstanceCounter++;
  }

   }   
}

In this listing, you use a lock to make sure you don’t have threading problems, and
you’d also need to use the same lock whenever you accessed the property. There are
better alternatives here involving the Interlocked class, but they require access to
fields. In short, the only scenario in which I can see static automatic properties being
useful is where the getter is public, the setter is private, and the setter is only called
within the type initializer.

 The other properties in listing 8.1, representing the name and age of the person,
tell a much happier tale—using automatic properties is a no-brainer here. Where you
have properties that you’d have implemented trivially in previous versions of C#,
there’s no benefit in not using automatic properties.1

 One slight wrinkle occurs if you use automatic properties when writing your own
structs: all of your constructors need to explicitly call the parameterless constructor—
this()—so that the compiler knows that all the fields have been definitely assigned.
You can’t set the fields directly because they’re anonymous, and you can’t use the prop-
erties until all the fields have been set. The only way of proceeding is to call the param-
eterless constructor, which will set the fields to their default values. For example, if you
wanted to create a struct with a single integer property, this wouldn’t be valid:

public struct Foo
{

public int Value { get; private set; }

Listing 8.1 Counting instances awkwardly with a static automatic property

1 Certainly for read/write properties, anyway. If you’re creating a read-only property, you may choose to use a
read-only backing field and a property with just a getter to return it. This prevents you from accidentally writ-
ing to the property within the class, which would be possible with a “public read, private write” automatic

Declares properties 
with public getters

Declares private 
static property 
and lock

Uses lock for safe 
property access
property.
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public Foo(int value)
{

this.Value = value;
}

}

But it’s fine if you explicitly chain to the parameterless constructor:

public struct Foo
{

public int Value { get; private set; }

public Foo(int value) : this()
{

this.Value = value;
}

}

That’s all there is to automatically implemented properties. There are no bells and
whistles to them. For instance, there’s no way of declaring them with initial default val-
ues, and no way of making them genuinely read-only (a private setter is as close as you
can get). 

 If all the C# 3 features were that simple, we could cover everything in a single chap-
ter. Of course, that’s not the case, but there are some features that don’t take too much
explanation. The next topic removes duplicate code in another common but specific
situation—declaring local variables. 

8.2 Implicit typing of local variables
In chapter 2 we discussed the nature of the C# 1 type system. In particular, I stated
that it was static, explicit, and safe. That’s still true in C# 2, and in C# 3 it’s still almost
completely true. The static and safe parts are still true (ignoring explicitly unsafe
code, just as we did in chapter 2), and most of the time it’s still explicitly typed—but
you can ask the compiler to infer the types of local variables for you.2

8.2.1 Using var to declare a local variable

In order to use implicit typing, all you need to do is replace the type part of a normal
local variable declaration with var. Certain restrictions exist (we’ll come to those in a
moment), but essentially it’s as easy as changing this:

MyType variableName = someInitialValue;

to this:

var variableName = someInitialValue;

The results of the two lines (in terms of compiled code) are exactly the same, assuming
that the type of someInitialValue is MyType. The compiler simply takes the compile-
time type of the initialization expression and makes the variable have that type too.

2 C# 4 changes the game yet again, allowing you to use dynamic typing where you want to, as you’ll see in chap-

ter 14. One step at a time—C# was still fully statically typed up to and including version 3.
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The type can be any normal .NET type, including generics, delegates, and interfaces.
The variable is still statically typed; you just haven’t written the name of the type in
your code.

 This is important to understand, as it goes to the heart of what a lot of developers
initially fear when they see this feature—that var makes C# dynamic or weakly typed.
That’s not true at all. The best way of explaining this is to show you some invalid code:

var stringVariable = "Hello, world.";
stringVariable = 0;

That doesn’t compile because the type of stringVariable is System.String, and you
can’t assign the value 0 to a string variable. In many dynamic languages, the code
would have compiled, leaving the variable with no particularly useful type as far as the
compiler, IDE, or runtime environment is concerned. Using var is not like using a
VARIANT type from COM or VB6. The variable is statically typed; the type has just been
inferred by the compiler. I apologize if I seem to be laboring this point somewhat, but
it’s incredibly important, and it’s been the cause of a lot of confusion.

 In Visual Studio, you can tell which type the compiler has used for the variable by
hovering over the var part of the declaration, as shown in figure 8.2. Note how the
type parameters for the generic Dictionary type are also explained. If this looks
familiar, that’s because it’s exactly the same behavior you get when you declare local
variables explicitly.

 Tooltips aren’t just available at the point of declaration, either. As you’d probably
expect, the tooltip displayed when you hover over the variable name later on in the
code indicates the type of the variable too. This is shown in figure 8.3, where the same
declaration is used and then I’ve hovered over a use of the variable. Again, that’s
exactly the same behavior as you’d see with a normal local variable declaration. 

NVALID

Figure 8.2 Hovering over var in 
Visual Studio displays the type of 
the declared variable.
Figure 8.3 Hovering over the use of an implicitly typed local variable displays its type.
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 There are two reasons for bringing up Visual Studio in this context. The first is that
it’s more evidence of the static typing involved—the compiler clearly knows the type
of the variable. The second is to point out that you can easily discover the type
involved, even from deep within a method. This’ll be important when we talk about
the pros and cons of using implicit typing in a minute. First, though, I ought to men-
tion some limitations. 

8.2.2 Restrictions on implicit typing

You can’t use implicit typing for every variable in every case. You can only use it when
all of the following points are true:

 The variable being declared is a local variable, rather than a static or instance
field.

 The variable is initialized as part of the declaration.
 The initialization expression isn’t a method group or anonymous function3

(without casting).
 The initialization expression isn’t null.
 Only one variable is declared in the statement.
 The type you want the variable to have is the compile-time type of the initializa-

tion expression.
 The initialization expression doesn’t involve the variable being declared.4

The third and fourth points are interesting. You can’t write this:

var starter = delegate() { Console.WriteLine(); };

That’s because the compiler doesn’t know what type to use. You can write this:

var starter = (ThreadStart) delegate() { Console.WriteLine(); };

But if you’re going to do that, you’d be better off explicitly declaring the variable in
the first place. The same is true in the null case—you could cast the null appropri-
ately, but there’d be no point. 

 Note that you can use the result of method calls or properties as the initialization
expression—you’re not limited to constants and constructor calls. For instance, you
could use this:

var args = Environment.GetCommandLineArgs();

In that case, args would be of type string[]. In fact, initializing a variable with the
result of a method call is likely to be the most common situation where implicit typing
is used, as part of LINQ. You’ll see all that later on—just bear it in mind as the exam-
ples progress.

3 The term anonymous function covers both anonymous methods and lambda expressions, which we’ll delve into
in chapter 9.

NVALID
4 It’d be highly unusual to do so anyway, but with normal declarations it’s possible if you try hard enough.
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 It’s also worth noting that you are allowed to use implicit typing for the local vari-
ables declared in the first part of a using, for, or foreach statement. For example, the
following are all valid (with appropriate bodies, of course):

for (var i = 0; i < 10; i++)
using (var x = File.OpenText("test.dat"))
foreach (var s in Environment.GetCommandLineArgs())

These variables would end up with types of int, StreamReader, and string, respectively. 
 Of course, just because you can do this doesn’t mean you should. Let’s look at the

reasons for and against using implicit typing. 

8.2.3 Pros and cons of implicit typing

The question of when it’s a good idea to use implicit typing is the cause of a lot of
community discussion. Views range from “everywhere” to “nowhere” with plenty of
more balanced approaches between the two. You’ll see in section 8.5 that in order to
use another of C# 3’s features—anonymous types—you often need to use implicit typ-
ing. You could avoid anonymous types as well, of course, but that’s throwing the baby
out with the bathwater.

 The main reason for using implicit typing (leaving anonymous types aside for the
moment) is not that it reduces the number of keystrokes required to enter the code,
but that it makes the code less cluttered (and therefore more readable) on the screen.
In particular, when generics are involved, the type names can get very long. Figures
8.2 and 8.3 used a type of Dictionary<string, List<Person>>, which is 33 charac-
ters. By the time you have that twice on a line (once for the declaration and once for
the initialization), you end up with a massive line just for declaring and initializing a
single variable. An alternative is to use an alias, but that puts the real type involved a
long way (conceptually at least) from the code that uses it.

 When reading the code, there’s no point in seeing the same long type name twice
on the same line when it’s obvious that they should be the same. If the declaration isn’t
visible on the screen, you’re in the same boat whether implicit typing was used or not
(all the ways you’d use to find out the variable type are still valid), and if it is visible,
the expression used to initialize the variable tells you the type anyway.

 Additionally, using var changes the emphasis of the code. Sometimes you want the
reader to pay close attention to the precise types involved because they’re significant.
For example, even though the generic SortedList and SortedDictionary types have
similar APIs, they have different performance characteristics, and that may be impor-
tant for your particular piece of code. Other times, all you really care about is the
operations that are being performed; you wouldn’t really mind if the expression used
to initialize the variable changed, as long as you could achieve the same goals.5 Using

5 I realize this sounds a little like duck typing: “As long as it can quack, I’m happy.” The difference is that you’re

still checking quackability at compile time, not execution time.
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var allows the reader to focus on the use of a variable rather than the declaration—the
what rather than the how of the code.

 All of this sounds good, so what are the arguments against implicit typing? Para-
doxically enough, readability is the most important one, despite also being an argu-
ment in favor of implicit typing! By not being explicit about what type of variable
you’re declaring, you may be making it harder to work it out when reading the code.
It breaks the “state what you’re declaring, then what value it’ll start off with” mindset
that keeps the declaration and the initialization separate. To what extent that’s an
issue depends on both the reader and the initialization expression involved.

 If you’re explicitly calling a constructor, it’ll always be pretty obvious what type
you’re creating. If you’re calling a method or using a property, it depends on how
obvious the return type is when looking at the call. Integer literals are an example
where it’s harder to guess the type of an expression than you might suppose. How
quickly can you work out the type of each of the variables declared here?

var a = 2147483647;
var b = 2147483648;
var c = 4294967295;
var d = 4294967296;
var e = 9223372036854775807;
var f = 9223372036854775808;

The answers are int, uint, uint, long, long, and ulong, respectively—the type used
depends on the value of the expression. There’s nothing new here in terms of the
handling of literals—C# has always behaved like this—but implicit typing makes it eas-
ier to write obscure code in this case.

 The argument that’s rarely explicitly stated but that I believe is behind a lot of the
concern over implicit typing is, “It just doesn’t feel right.” If you’ve been writing in a C-
like language for years and years, there’s something unnerving about the whole busi-
ness, however much you tell yourself that it’s still static typing under the covers. This
may not be a rational concern, but that doesn’t make it any less real. If you’re uncom-
fortable, you’re likely to be less productive. If the advantages don’t outweigh your neg-
ative feelings, that’s fine. Depending on your personality, you may try to push yourself
to become more comfortable with implicit typing, but you certainly don’t have to. 

8.2.4 Recommendations

Here are some recommendations based on my experience with implicit typing. That’s
all they are—recommendations—and you should feel free to take them with a pinch
of salt:

 If it’s important that someone reading the code knows the type of the variable
at a glance, use explicit typing.

 If the variable is directly initialized with a constructor and the type name is long
(which often occurs with generics), consider using implicit typing.
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 If the precise type of the variable isn’t important, but its general nature is clear
from the context, use implicit typing to de-emphasize how the code achieves its
aim and concentrate on the higher level of what it’s achieving.

 Consult your teammates on the matter when embarking on a new project.
 When in doubt, try a line both ways and go with your gut feelings.

I used to use explicit typing for production code, except in situations where there was
a clear and significant benefit to using implicit typing. Most of my uses of implicit typ-
ing were in test code (and throwaway code). Nowadays I’m more ambivalent and
frankly inconsistent. I’ll happily use implicit typing in production code just for a bit of
added simplicity, even when the type names involved aren’t too onerous. Although
consistency in some aspects of coding style is quite important, I haven’t found this
mix-and-match approach to cause any problems.

 Effectively, my recommendation boils down to not using implicit typing just
because it saves a few keystrokes. Where it keeps the code tidier, allowing you to con-
centrate on the most important elements of the code, go for it. I’ll use implicit typing
extensively in the rest of the book, for the simple reason that code is harder to format
in print than on a screen—not as much width is available.

 We’ll come back to implicit typing when we look at anonymous types, as they cre-
ate situations where you’re forced to ask the compiler to infer the types of some vari-
ables. Before that, let’s look at how C# 3 makes it easier to construct and populate a
new object in one expression. 

8.3 Simplified initialization
One would’ve thought that object-oriented languages would’ve streamlined object
creation long ago. After all, before you start using an object, something has to create it,
whether it’s through your code directly or a factory method of some sort. Despite this,
few language features in C# 2 are geared toward making life easier when it comes to
initialization. If you can’t do what you want using constructor arguments, you’re basi-
cally out of luck—you need to create the object, and then manually initialize it with
property calls and the like.

 This is particularly annoying when you want to create a whole bunch of objects in
one go, such as in an array or other collection. Without a single-expression way of ini-
tializing an object, you’re forced to either use local variables for temporary manipula-
tion or create a helper method that performs the appropriate initialization based on
parameters.

 C# 3 comes to the rescue in a number of ways, as you’ll see in this section.

8.3.1 Defining some sample types

The expressions we’ll use in this section are called object initializers. These are just ways
of specifying initialization that should occur after an object has been created. You can
set properties, set properties of properties (don’t worry, it’s simpler than it sounds),

and add to collections that are accessible via properties. 
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 To demonstrate all this, we’ll use a Person class again. It has the name and age
we’ve used before, exposed as writable properties. We’ll provide both a parameterless
constructor and one that accepts the name as a parameter. We’ll also add a list of
friends and the person’s home location, both of which are accessible as read-only
properties but can still be modified by manipulating the retrieved objects. A simple
Location class provides Country and Town properties to represent the person’s home.
The following listing shows the complete code for the classes.

public class Person
{

public int Age { get; set; }
public string Name { get; set; }

List<Person> friends = new List<Person>();
public List<Person> Friends { get { return friends; } }

Location home = new Location();
public Location Home { get { return home; } }

public Person() { }

public Person(string name)
{

Name = name;
}

}
public class Location
{

public string Country { get; set; }
public string Town { get; set; }

}

Listing 8.2 is straightforward, but it’s worth noting that both the list of friends and the
home location are created in a blank way when the person is created, rather than
being left as null references. The friends and home location properties are read-only,
too. That’ll be important later on—but for the moment let’s look at the properties
representing the name and age of a person. 

8.3.2 Setting simple properties

Now that you have a Person type, it’s time to create some instances of it using the new
features of C# 3. In this section, we’ll look at setting the Name and Age properties—
we’ll come to the others later.

 Object initializers are most commonly used to set properties, but everything shown
here also applies to fields. In a well-encapsulated system, though, you’re unlikely to
have access to fields unless you’re creating an instance of a type within that type’s own
code. It’s worth knowing that you can use fields, of course—so for the rest of the sec-
tion, just read property and field whenever the text says property.

Listing 8.2 A fairly simple Person class used for further demonstrations
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 With that out of the way, let’s get down to business. Suppose you want to create a
person called Tom, who is 9 years old. Prior to C# 3, there were two ways this could be
achieved:

Person tom1 = new Person();
tom1.Name = "Tom";
tom1.Age = 9;

Person tom2 = new Person("Tom");
tom2.Age = 9;

The first version uses the parameterless constructor and then sets both properties.
The second version uses the constructor overload, which sets the name, and then sets
the age afterward. Both of these options are still available in C# 3, but there are other
alternatives:

Person tom3 = new Person() { Name = "Tom", Age = 9 };
Person tom4 = new Person { Name = "Tom", Age = 9 };
Person tom5 = new Person("Tom") { Age = 9 };

The part in braces at the end of each line is the object initializer. Again, it’s just com-
piler trickery. The IL used to initialize tom3 and tom4 is identical, and is nearly the
same as that used for tom1.6 Predictably, the code for tom5 is nearly the same as for
tom2. Note how the initialization of tom4 omits the parentheses for the constructor.
You can use this shorthand for types with a parameterless constructor, which is what
gets called in the compiled code.

 After the constructor has been called, the specified properties are set in the obvi-
ous way. They’re set in the order specified in the object initializer, and you can only
specify a particular property once—you can’t set the Name property twice, for example.
(You could call the constructor taking the name as a parameter, and then set the Name
property. It would be pointless, but the compiler wouldn’t stop you from doing it.)
The expression used as the value for a property can be any expression that isn’t itself
an assignment—you can call methods, create new objects (potentially using another
object initializer), pretty much anything.

 You may be wondering just how useful this is—you’ve saved one or two lines of
code, but surely that’s not a good enough reason to make the language more compli-
cated, is it? There’s a subtle point here, though: you haven’t just created an object in
one line—you’ve created it in one expression. That difference can be very important. 

 Suppose you want to create an array of type Person[] with some predefined data
in it. Even without using the implicit array typing you’ll see later, the code is neat and
readable:

6 In fact, tom1’s new value isn’t assigned until all the properties have been set. A temporary local variable is
used until then. This is rarely important but worth knowing to avoid confusion if you happen to break into

the debugger halfway through the initializer.
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Person[] family = new Person[]
{

new Person { Name = "Holly", Age = 36 },
new Person { Name = "Jon", Age = 36 },
new Person { Name = "Tom", Age = 9 },
new Person { Name = "William", Age = 6 },
new Person { Name = "Robin", Age = 6 }

};

In a simple example like this, you could’ve written a constructor taking both the name
and age as parameters and initialized the array in a similar way in C# 1 or 2. But appro-
priate constructors aren’t always available, and if there are several constructor param-
eters, it’s often not clear which one means what, just from the position. By the time a
constructor needs to take five or six parameters, I often find myself relying on Intelli-
Sense more than I want to. Using the property names is a great boon to readability in
such cases.7

 This form of object initializer is the one you’ll probably use most often. But there
are two other forms—one for setting subproperties, and one for adding to collections.
Let’s look at subproperties—properties of properties—first. 

8.3.3 Setting properties on embedded objects

So far it’s been easy to set the Name and Age properties, but you can’t set the Home
property in the same way—it’s read-only. You can set the town and the country of a
person, though, by first fetching the Home property and then setting properties on the
result. The language specification refers to this as setting the properties of an embedded
object. 

 Just to make it clear, what we’re talking about is the following C# 1 code:

Person tom = new Person("Tom");
tom.Age = 9;
tom.Home.Country = "UK";
tom.Home.Town = "Reading";

When you’re populating the home location, each statement is doing a get to retrieve
the Location instance, and then a set on the relevant property on that instance.
There’s nothing new in that, but it’s worth slowing your mind down to look at it care-
fully; otherwise it’s easy to miss what’s going on behind the scenes.

 C# 3 allows all of this to be done in one expression, as shown here:

Person tom = new Person("Tom")
{

Age = 9,
Home = { Country = "UK", Town = "Reading" }

};
7 C# 4 provides an alternative approach here using named arguments, which you’ll meet in chapter 13.
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The compiled code for these snippets is effectively the same. The compiler spots that
to the right side of the = sign is another object initializer, and it applies the properties
to the embedded object appropriately. 

 The absence of the new keyword in the part initializing Home is significant. If you
need to work out where the compiler is going to create new objects and where it’s
going to set properties on existing ones, look for occurrences of new in the initializer.
Every time a new object is created, the new keyword appears somewhere.

FORMATTING OBJECT INITIALIZER CODE As with almost all C# features, object
initializers are whitespace-independent. You can collapse the whitespace in
the object initializer, putting it all on one line if you like. It’s up to you to
work out where the sweet spot is in balancing long lines against lots of lines.

We’ve dealt with the Home property, but what about Tom’s friends? There are proper-
ties you can set on a List<Person>, but none of them will add entries to the list. It’s
time for the next feature—collection initializers. 

8.3.4 Collection initializers

Creating a collection with some initial values is an extremely common task. Until C# 3
arrived, the only language feature that gave any assistance was array creation, and
even that was clumsy in many situations. C# 3 has collection initializers, which allow you
to use the same type of syntax as array initializers but with arbitrary collections and
with more flexibility.

CREATING NEW COLLECTIONS WITH COLLECTION INITIALIZERS

As a first example, let’s use the now-familiar List<T> type. In C# 2, you could populate
a list either by passing in an existing collection or by calling Add repeatedly after creat-
ing an empty list. Collection initializers in C# 3 take the latter approach. 

 Suppose we want to populate a list of strings with some names—here’s the C# 2
code (on the left) and the close equivalent in C# 3 (on the right):

Just as with object initializers, you can specify constructor arguments if you want, or
use a parameterless constructor either explicitly or implicitly. The use of implicit typ-
ing here was partly for space reasons—the names variable could equally well have been
declared explicitly. Reducing the number of lines of code (without reducing readabil-
ity) is nice, but there are two bigger benefits of collection initializers:

 The create-and-initialize part counts as a single expression.

List<string> names = new List<string>();
names.Add("Holly");
names.Add("Jon");
names.Add("Tom");
names.Add("Robin");
names.Add("William");

var names = new List<string>
{

"Holly", "Jon", "Tom",
"Robin", "William"

};
 There’s a lot less clutter in the code.
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The first point becomes important when you want to use a collection as either an
argument to a method or as one element in a larger collection. That happens relatively
rarely (although often enough to still be useful). The second point is the real reason
this is a killer feature in my view. If you look at the code on the right, you can easily see
the information you need, with each piece of information written only once. The vari-
able name occurs once, the type being used occurs once, and each of the elements of
the initialized collection appears once. It’s all extremely simple, and much clearer
than the C# 2 code, which contains a lot of fluff around the useful bits.

 Collection initializers aren’t limited to just lists. You can use them with any type
that implements IEnumerable, as long as it has an appropriate Add method for each
element in the initializer. You can use an Add method with more than one parameter
by putting the values within another set of braces. The most common use for this is
creating dictionaries. For example, if you wanted a dictionary mapping names to ages,
you could use the following code:

Dictionary<string,int> nameAgeMap = new Dictionary<string,int>
{

{ "Holly", 36 },
{ "Jon", 36 },
{ "Tom", 9 }

};

In this case, the Add(string, int) method would be called three times. If multiple
Add methods are available, different elements of the initializer can call different over-
loads. If no compatible overload is available for a specified element, the code will fail
to compile. There are two interesting points about the design decision here:

 The fact that the type has to implement IEnumerable is never used by the 
compiler.

 The Add method is only found by name—there’s no interface requirement
specifying it.

These are both pragmatic decisions. Requiring IEnumerable to be implemented is a
reasonable attempt to check that the type really is a collection of some sort, and using
any accessible overload of the Add method (rather than requiring an exact signature)
allows for simple initializations, such as the earlier dictionary example.

 An early draft of the C# 3 specification required ICollection<T> to be imple-
mented instead, and the implementation of the single-parameter Add method (as
specified by the interface) was called rather than allowing different overloads. This
sounds more pure, but there are far more types that implement IEnumerable than
ICollection<T>, and using the single-parameter Add method would be inconvenient.
For example, in this case it would’ve forced you to explicitly create an instance of a
KeyValuePair<string,int> for each element of the initializer. Sacrificing a bit of aca-
demic purity has made the language far more useful in real life. 
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POPULATING COLLECTIONS WITHIN OTHER OBJECT INITIALIZERS

So far we’ve only looked at collection initializers used in a standalone fashion to cre-
ate whole new collections. They can also be combined with object initializers to popu-
late embedded collections. To demonstrate this, we’ll go back to the Person example.
The Friends property is read-only, so you can’t create a new collection and specify
that as the collection of friends, but you can add to whatever collection is returned by
the property’s getter. The way you do this is similar to the syntax you’ve already seen
for setting properties of embedded objects, but you just specify a collection initializer
instead of a sequence of properties.

 Let’s see this in action by creating another Person instance for Tom, this time with
some of his friends.

Person tom = new Person
{

Name = "Tom",
Age = 9,
Home = { Town = "Reading", Country = "UK" },
Friends =
{

new Person { Name = "Alberto" },
new Person("Max"),
new Person { Name = "Zak", Age = 7 },
new Person("Ben"),
new Person("Alice"),
{

Age = 9,
Home = { Town = "Twyford", Country = "UK" }

}
}

};

Listing 8.3 uses all the features of object and collection initializers we’ve come across.
The main part of interest is the collection initializer, which itself uses lots of different
forms of object initializers internally. Note that you’re not creating a new collection
here, just adding to an existing one. (If the property had a setter, you could create a
new collection and still use collection initializer syntax.)

 You could’ve gone further, specifying friends of friends, friends of friends of
friends, and so forth. But you couldn’t specify that Tom is Alberto’s friend. While
you’re still initializing an object, you don’t have access to it, so you can’t express cyclic
relationships. This can be awkward in a few cases, but it usually isn’t a problem.

 Collection initialization within object initializers works as a sort of cross between
standalone collection initializers and setting embedded object properties. For each
element in the collection initializer, the collection property getter (Friends, in this
case) is called, and then the appropriate Add method is called on the returned value.
The collection isn’t cleared in any way before elements are added. For example, if you

Listing 8.3 Building up a rich object using object and collection initializers

Implicitly calls 
parameterless 
constructorSets

operties
directly Initializes embedded object

Initializes collection 
with further object 
initializers
were to decide that a person should always be his own friend, and added this to the
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list of friends within the Person constructor, using a collection initializer would only
add extra friends.

 As you can see, the combination of collection and object initializers can be used to
populate whole trees of objects. But when and where is this likely to actually happen?

8.3.5 Uses of initialization features

Trying to pin down exactly where these features are useful is reminiscent of being in a
Monty Python sketch about the Spanish Inquisition—every time you think you have a
reasonably complete list, another common example pops up. I’ll just mention three
examples, which I hope will encourage you to consider where else you might use them.

CONSTANT COLLECTIONS

It’s not uncommon for me to want some kind of collection (often a map) that’s effec-
tively constant. Of course, it can’t be a constant as far as the C# language is concerned,
but it can be declared static and read-only, with big warnings to say that it shouldn’t be
changed. (It’s usually private, so that’s good enough. Alternatively, you can use Read-
OnlyCollection<T>.) Typically, this used to involve writing a static constructor or a
helper method, just to populate the map. With C# 3’s collection initializers, it’s easy to
set the whole thing up inline. 

SETTING UP UNIT TESTS

When writing unit tests, I frequently want to populate an object just for one test, often
passing it in as an argument to the method I’m trying to test at the time. Writing all of
the initialization longhand can be long-winded and also hides the essential structure
of the object from the reader of the code, just as XML creation code can often obscure
what the document would look like if you viewed it (appropriately formatted) in a text
editor. With appropriate indentation of object initializers, the nested structure of the
object hierarchy can become obvious in the very shape of the code, as well as make
the values stand out more than they would otherwise. 

THE BUILDER PATTERN

For various reasons, sometimes you want to specify a lot of values for a single method
or constructor call. The most common situation in my experience is creating an
immutable object. Instead of having a huge set of parameters (which can become a
readability problem as the meaning of each argument becomes unclear8), you can use
the builder pattern—create a mutable type with appropriate properties, and then pass
an instance of the builder into the constructor or method. The framework Process-
StartInfo type is a good example of this—the designers could have overloaded
Process.Start with many different sets of parameters, but using ProcessStartInfo
makes everything clearer.

 Object and collection initializers allow you to create the builder object in a clearer
manner—you can even specify it inline when you call the original member if you
want. Admittedly, you still have to write the builder type in the first place, but auto-
matic properties help on that front. 
8 Named arguments in C# 4 help in this area, admittedly.
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<INSERT YOUR FAVORITE USE HERE>
Of course, there are uses beyond these three in ordinary code, and I don’t want to put
you off using the new features elsewhere. There’s little reason not to use them, other
than possibly confusing developers who aren’t familiar with C# 3 yet. You may decide
that using an object initializer just to set one property (as opposed to explicitly setting
it in a separate statement) is over the top—that’s a matter of aesthetics, and I can’t give
you much objective guidance there. As with implicit typing, it’s a good idea to try the
code both ways, and learn to predict your own (and your team’s) reading preferences.

 So far we’ve looked at a fairly diverse range of features: implementing properties
easily, simplifying local variable declarations, and populating objects in single expres-
sions. In the remainder of this chapter, we’ll gradually bring these topics together,
using more implicit typing and more object population, and creating whole types with-
out giving any implementation details.

 The next topic appears to be quite similar to collection initializers when you look
at code using it. I mentioned earlier that array initialization was a bit clumsy in C# 1
and 2. I’m sure it won’t surprise you to learn that it’s been streamlined for C# 3. Let’s
take a look. 

8.4 Implicitly typed arrays
In C# 1 and 2, initializing an array as part of a variable declaration and initialization
statement was quite neat, but if you wanted to do it anywhere else, you had to specify
the exact array type involved. For example, this compiles without any problem:

string[] names = {"Holly", "Jon", "Tom", "Robin", "William"};

This doesn’t work for parameters, though—suppose you wanted to make a call to
MyMethod, declared as void MyMethod(string[] names). This code won’t work:

MyMethod({"Holly", "Jon", "Tom", "Robin", "William"});

Instead, you have to tell the compiler what type of array you want to initialize:

MyMethod(new string[] {"Holly", "Jon", "Tom", "Robin", "William"});

C# 3 allows something in between:

MyMethod(new[] {"Holly", "Jon", "Tom", "Robin", "William"});

Clearly the compiler needs to work out what type of array to use. It starts by forming a
set containing all the compile-time types of the expressions inside the braces. If
there’s exactly one type in that set that all the others can be implicitly converted to,
that’s the type of the array. Otherwise (or if all the values are typeless expressions,
such as constant null values or anonymous methods, with no casts) the code won’t
compile. 

 Note that only the types of the expressions are considered as candidates for the
overall array type. This means that occasionally you might have to explicitly cast a
value to a less-specific type. For instance, this won’t compile:

new[] { new MemoryStream(), new StringWriter() }

NVALID

NVALID
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There’s no conversion from MemoryStream to StringWriter or vice versa. Both are
implicitly convertible to object and IDisposable, but the compiler only considers
types that are in the original set produced by the expressions themselves. If you
change one of the expressions in this situation so that its type is either object or
IDisposable, the code compiles:

new[] { (IDisposable) new MemoryStream(), new StringWriter() }

The type of this last expression is implicitly IDisposable[]. Of course, at that point
you might as well explicitly state the type of the array just as you would in C# 1 and 2,
to make it clearer what you’re trying to achieve.

 Compared with the earlier features, implicitly typed arrays are a bit of an anticli-
max. I find it hard to get excited about them, even though they do make life simpler in
cases where an array is passed as an argument. The designers haven’t gone mad,
though—there’s one important situation in which this implicit typing is absolutely
crucial. That’s when you don’t know (and can’t know) the name of the type of the ele-
ments of the array. How can you possibly get into this peculiar state? Read on… 

8.5 Anonymous types
Implicit typing, object and collection initializers, and implicit array typing are all use-
ful in their own right, to a greater or lesser extent. But they also serve a higher pur-
pose—they make it possible to work with this chapter’s final feature, anonymous types.
In turn, anonymous types serve the higher purpose of LINQ.

8.5.1 First encounters of the anonymous kind

It’s much easier to explain anonymous types when you already have some idea of what
they are through an example. I’m sorry to say that without the use of extension meth-
ods and lambda expressions, the examples in this section are likely to be a little con-
trived, but there’s a chicken-and-egg situation here: anonymous types are most useful
within the context of the more advanced features, but we need to cover the building
blocks before we can look at much of the bigger picture. Stick with it—it will make
sense in the long run, I promise.

 Let’s pretend we didn’t have the Person class, and the only properties we cared
about were the name and age. The following listing shows how you could still build
objects with those properties, without ever declaring a type.

var tom= new { Name = "Tom", Age = 9 };
var holly = new { Name = "Holly", Age = 36 };
var jon = new { Name = "Jon", Age = 36 } ;

Console.WriteLine("{0} is {1} years old", jon.Name, jon.Age);

As you can tell from listing 8.4, the syntax for initializing an anonymous type is similar

Listing 8.4 Creating objects of an anonymous type with Name and Age properties
to the object initializers you saw in section 8.3.2—it’s just that the name of the type is
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missing between new and the opening brace. Here you’re using implicitly typed local
variables because that’s all you can use (other than object of course)—you don’t have
a type name to declare the variable with. As you can see from the last line, the type has
properties for Name and Age, both of which can be read and which will have the values
specified in the anonymous object initializer used to create the instance, so in this case
the output is Jon is 36 years old. The properties have the same types as the expres-
sions in the initializers—string for Name and int for Age. Just as in normal object ini-
tializers, the expressions used in anonymous object initializers can call methods or
constructors, fetch properties, perform calculations—whatever you need to do.

 You might now be starting to see why implicitly typed arrays are important. Sup-
pose you want to create an array containing the whole family, and then iterate
through it to work out the total age.9 The following listing does just that, and it dem-
onstrates a few other interesting features of anonymous types at the same time.

var family = new[]
{

new { Name = "Holly", Age = 36 },
new { Name = "Jon", Age = 36 },
new { Name = "Tom", Age = 9 },
new { Name = "Robin", Age = 6 },
new { Name = "William", Age = 6 }

};

int totalAge = 0;
foreach (var person in family)
{

totalAge += person.Age;
}
Console.WriteLine("Total age: {0}", totalAge);

Putting together listing 8.5 and what you learned about implicitly typed arrays in sec-
tion 8.4, you can deduce something important: all the people in the family are of the same
type. If each use of an anonymous object initializer C referred to a different type, the
compiler couldn’t infer an appropriate type for the array B. Within any given assem-
bly, the compiler treats two anonymous object initializers as the same type if there are
the same number of properties, with the same names and types in the same order. In
other words, if you swapped the Name and Age properties in one of the initializers,
there’d be two different types involved; likewise, if you introduced an extra property
in one line, or used a long instead of an int for the age of one person, another anon-
ymous type would’ve been introduced. At that point, the type inference for the array
would fail.

9 If you already know LINQ, you may feel that this is a quaint way of summing the ages. I agree, calling

Listing 8.5 Populating an array using anonymous types and then finding the total age

Uses an implicitly typed 
array initializerB

Uses same 
anonymous type 
five timesC

Uses implicit 
typing for person

D

Sums agesE
family.Sum(p => p.Age) would be a lot neater—but let’s take things one step at a time.
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IMPLEMENTATION DETAIL: HOW MANY TYPES? If you ever decide to look at the
IL (or decompiled C#) for an anonymous type generated by Microsoft’s com-
piler, be aware that although two anonymous object initializers with the same
property names in the same order but using different property types will pro-
duce two different types, they’ll actually be generated from a single generic
type. The generic type is parameterized, but the closed, constructed types will
be different because they’ll be given different type arguments for the differ-
ent initializers.

Notice that you can use a foreach statement to iterate over the array, just as you would
any other collection. The type involved is inferred D, and the type of the person vari-
able is the same anonymous type you used in the array. Again, you can use the same
variable for different instances because they’re all of the same type.

 Listing 8.5 also proves that the Age property really is strongly typed as an int—
otherwise trying to sum the ages E wouldn’t compile. The compiler knows about the
anonymous type, and Visual Studio is even willing to share the information via tool-
tips, in case you’re uncertain. Figure 8.4 shows the result of hovering over the person
part of the person.Age expression from listing 8.5.

 Now that you’ve seen anonymous types in action, let’s go back and look at what the
compiler is actually doing. 

8.5.2 Members of anonymous types

Anonymous types are created by the compiler and included in the compiled assembly
in the same way as the extra types for anonymous methods and iterator blocks. The
CLR treats them as perfectly ordinary types, and so they are—if you later move from
an anonymous type to a normal, manually coded type with the behavior described in
this section, you shouldn’t see anything change. 

 Anonymous types contain the following members:

 A constructor taking all the initialization values. The parameters are in the
same order as they were specified in the anonymous object initializer, and they
have the same names and types.

 Public read-only properties.
 Private read-only fields backing the properties.

Figure 8.4 Hovering over a 
variable that’s declared 
(implicitly) to be of an anonymous 
type shows the details of that 
anonymous type.
 Overrides for Equals, GetHashCode, and ToString.
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That’s it. There are no implemented interfaces, no cloning or serialization capabili-
ties—just a constructor, some properties, and the normal methods from object.

 The constructor and the properties do the obvious things. Equality between two
instances of the same anonymous type is determined in the natural manner, compar-
ing each property value in turn using the property type’s Equals method. The hash
code generation is similar, calling GetHashCode on each property value in turn and
combining the results. The exact method for combining the various hash codes
together to form one composite hash is unspecified, and you shouldn’t write code
that depends on it anyway—you just need to be confident that two equal instances will
return the same hash, and two unequal instances will usually return different hashes.
All of this only works if the Equals and GetHashCode implementations of all the differ-
ent types involved as properties conform to the normal rules, of course.

 Because the properties are read-only, all anonymous types are immutable as long
as the types used for their properties are immutable. This provides you with all the
normal benefits of immutability—being able to pass values to methods without fear of
them changing, simple sharing of data across threads, and so forth.

VB ANONYMOUS TYPE PROPERTIES ARE MUTABLE BY DEFAULT Anonymous types
are also available in Visual Basic 9 onward. But, by default, their properties
are mutable; you need to declare any properties you want to be immutable
with the Key modifier. Only properties declared as keys are used in hashing
and equality comparisons. This is easy to overlook when converting code
from one language to another.

We’re almost done with anonymous types now. But there’s one slight wrinkle still to
talk about—a shortcut for a situation that’s fairly common in LINQ. 

8.5.3 Projection initializers

The anonymous object initializers you’ve seen so far have all been lists of name/value
pairs—Name="Jon", Age=36 and the like. As it happens, I’ve always used constants
because they make for smaller examples, but in real code you often want to copy prop-
erties from an existing object. Sometimes you’ll want to manipulate the values in some
way, but often a straight copy is enough.

 Again, without LINQ it’s hard to give convincing examples of this, but let’s go back
to our Person class and suppose we had a good reason to want to convert a collection of
Person instances into a similar collection where each element has just a name and a
flag to say whether that person is an adult. Given an appropriate person variable, you
could use something like this:

new { Name = person.Name, IsAdult = (person.Age >= 18) }

That works, and for just a single property the syntax for setting the name (the part in
bold) isn’t too clumsy, but if you were copying several properties it would get tiresome. 

 C# 3 provides a shortcut: if you don’t specify the property name, but just the

expression to evaluate for the value, it’ll use the last part of the expression as the
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name, provided it’s a simple field or property. This is called a projection initializer. It
means you can rewrite the previous code as follows:

new { person.Name, IsAdult = (person.Age >= 18) }

It’s common for all the bits of an anonymous object initializer to be projection initial-
izers—it typically happens when you’re taking some properties from one object and
some properties from another, often as part of a join operation. Anyway, I’m getting
ahead of myself. 

 The following listing shows the previous code in action, using the List<T>
.ConvertAll method and an anonymous method.

List<Person> family = new List<Person>
{

new Person { Name = "Holly", Age = 36 },
new Person { Name = "Jon", Age = 36 },
new Person { Name = "Tom", Age = 9 },
new Person { Name = "Robin", Age = 6 },
new Person { Name = "William", Age = 6 }

};
var converted = family.ConvertAll(delegate(Person person)

{ return new { person.Name, IsAdult = (person.Age >= 18) }; }
);
foreach (var person in converted)
{

Console.WriteLine("{0} is an adult? {1}",
person.Name, person.IsAdult);

}

In addition to the use of a projection initializer for the Name property, listing 8.6 shows
the value of delegate type inference and anonymous methods. Without them, you
couldn’t have retained the strong typing of converted, because you wouldn’t have
been able to specify what the TOutput type parameter of Converter should be. As it is,
you can iterate through the new list and access the Name and IsAdult properties as if
you were using any other type.

 Don’t spend too long thinking about projection initializers at this point—the
important thing is to be aware that they exist so you won’t get confused when you see
them later. In fact, that advice applies to this entire section on anonymous types, so
without going into details, let’s look at why they’re present at all. 

8.5.4 What’s the point?

I hope you’re not feeling cheated at this point, but I sympathize if you are. Anony-
mous types are a fairly complex solution to a problem we haven’t really encountered
yet. But I bet you have seen part of the problem before, really.

 If you’ve ever done any real-life work involving databases, you’ll know that you
don’t always want all of the data that’s available on all the rows that match your query

Listing 8.6 Transformation from Person to a name and adulthood flag
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criteria. Often it’s not a problem to fetch more than you need, but if you only need 2
columns out of the 50 in the table, you wouldn’t bother to select all 50, would you?

 The same problem occurs in nondatabase code. Suppose you have a class that
reads a log file and produces a sequence of log lines with many fields. Keeping all of
the information might be far too memory-intensive if you only care about a couple of
fields from the log. LINQ lets you filter that information easily.

 But what’s the result of that filtering? How can you keep some data and discard the
rest? How can you easily keep some derived data that isn’t directly represented in the
original form? How can you combine pieces of data that may not initially have been
consciously associated, or that may only have a relationship in a particular situation?
Effectively, you want a new data type, but manually creating such a type in every situa-
tion is tedious, particularly when you have tools such as LINQ available that make the
rest of the process so simple. Figure 8.5 shows the three elements that make anony-
mous types a powerful feature.

 If you find yourself creating a type that’s only used in a single method, and that
only contains fields and trivial properties, consider whether an anonymous type would
be appropriate. I suspect that usually, when you find yourself leaning toward anony-
mous types, you could also use LINQ to help you.

 If you find yourself using the same sequence of properties for the same purpose in
several places, though, you might want to consider creating a normal type for the pur-
pose, even if it still just contains trivial properties. Anonymous types naturally infect
whatever code they’re used in with implicit typing, which is often fine, but can be a
nuisance at other times. In particular, it means you can’t easily create a method to
return an instance of that type in a strongly typed way. As with the previous features,
use anonymous types when they genuinely make the code simpler to work with, not
just because they’re new and cool. 
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Figure 8.5 Anonymous types allow you to 
keep just the data you need for a particular 
situation, in a form that’s tailored to that 
situation, without the tedium of writing a 
fresh type each time.
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8.6 Summary
What a seemingly mixed bag of features! You’ve seen four features that are quite simi-
lar, at least in syntax: object initializers, collection initializers, implicitly typed arrays,
and anonymous types. The other two features—automatic properties and implicitly
typed local variables—are somewhat different. Likewise, most of the features would’ve
been useful individually in C# 2, whereas implicitly typed arrays and anonymous types
only pay back the cost of learning about them when the rest of the C# 3 features are
brought into play.

 So what do these features really have in common? They all relieve the developer of
tedious coding. I’m sure you don’t enjoy writing trivial properties any more than I do, or
setting several properties, one at a time, using a local variable—particularly when
you’re trying to build up a collection of similar objects. Not only do the new features
of C# 3 make it easier to write the code, they also make it easier to read it, at least when
they’re applied sensibly.

 In the next chapter, we’ll look at a major new language feature, along with a frame-
work feature it provides direct support for. If you thought anonymous methods made
creating delegates easy, just wait until you see lambda expressions.



Lambda expressions
and expression trees
In chapter 5 you saw how C# 2 made delegates much easier to use due to implicit con-
versions of method groups, anonymous methods, and return type and parameter
variance. This is enough to make event subscription significantly simpler and more
readable, but delegates in C# 2 are still too bulky to be used all the time; a page of
code full of anonymous methods is painful to read, and you wouldn’t want to start
putting multiple anonymous methods in a single statement on a regular basis.

 One of the fundamental building blocks of LINQ is the ability to create pipe-
lines of operations, along with any state required by those operations. These opera-

This chapter covers
 Lambda expression syntax

 Conversions from lambdas to delegates

 Expression tree framework classes

 Conversions from lambdas to expression trees

 Why expression trees matter

 Changes to type inference and overload resolution
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tions can express all kinds of logic about data: how to filter it, how to order it, how
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to join different data sources together, and much more. When LINQ queries are exe-
cuted in-process, those operations are usually represented by delegates.

 Statements containing several delegates are common when manipulating data with
LINQ to Objects,1 and lambda expressions in C# 3 make all of this possible without sacri-
ficing readability. (While I’m mentioning readability, this chapter uses lambda expres-
sion and lambda interchangeably.)

IT’S ALL GREEK TO ME The term lambda expression comes from lambda calculus,
also written as λ-calculus, where λ is the Greek letter lambda. This is an area of
math and computer science dealing with defining and applying functions. It’s
been around for a long time and is the basis of functional languages such as
ML. The good news is that you don’t need to know lambda calculus to use
lambda expressions in C# 3.

Executing delegates is only part of the LINQ story. To use databases and other query
engines efficiently, you need a different representation of the operations in the pipe-
line—a way to treat code as data that can be examined programmatically. The logic
within the operations can then be transformed into a different form, such as a web
service call, a SQL or LDAP query—whatever’s appropriate.

 Although it’s possible to build up representations of queries in a particular API, it’s
usually tricky to read and it sacrifices a lot of compiler support. This is where lambdas
save the day again: not only can they be used to create delegate instances, but the C#
compiler can also transform them into expression trees—data structures representing
the logic of the lambda expressions—so that other code can examine it. In short,
lambda expressions are the idiomatic way of representing the operations in LINQ data
pipelines—but we’ll take things one step at a time, examining them in a fairly isolated
way before we embrace the whole of LINQ.

 In this chapter we’ll look at both ways of using lambda expressions, although for
the moment our coverage of expression trees will be relatively basic—we won’t create
any SQL just yet. With that theory under your belt, you should be relatively comfort-
able with lambda expressions and expression trees by the time we hit the really
impressive stuff in chapter 12.

 In the final part of this chapter we’ll examine how type inference has changed for
C# 3, mostly due to lambdas with implicit parameter types. This is a bit like learning
how to tie shoelaces: far from exciting, but without this ability you’ll trip over yourself
when you start running.

 Let’s begin by seeing what lambda expressions look like. We’ll start with an anony-
mous method and gradually transform it into shorter and shorter forms.

1 LINQ to Objects handles sequences of data within the same process. By contrast, providers such as LINQ to

SQL offload the work to other out-of-process systems—databases, for example.
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9.1 Lambda expressions as delegates
In many ways, lambda expressions can be seen as an evolution of anonymous methods
from C# 2. Lambda expressions can do almost everything that anonymous methods
can, and they’re almost always more readable and compact.2 In particular, the behav-
ior of captured variables is exactly the same in lambda expressions as in anonymous
methods. In the most explicit form, not much difference exists between the two, but
lambda expressions have a lot of shortcuts available that make them compact in com-
mon situations. Like anonymous methods, lambda expressions have special conver-
sion rules—the type of the expression isn’t a delegate type in itself, but it can be
converted into a delegate instance in various ways, both implicitly and explicitly. The
term anonymous function covers anonymous methods and lambda expressions, and in
many cases the same conversion rules apply to both of them.

 We’ll start with a simple example, initially expressed as an anonymous method.
You’ll create a delegate instance that takes a string parameter and returns an int
(which is the length of the string). First you need to choose a delegate type to use; for-
tunately, .NET 3.5 comes with a whole family of generic delegate types to help you out. 

9.1.1 Preliminaries: Introducing the Func<…> delegate types

There are five generic Func delegate types in .NET 3.5’s System namespace. There’s
nothing special about Func—it’s just handy to have some predefined generic types
that are capable of handling many situations. Each delegate signature takes between
zero and four parameters, the types of which are specified as type parameters.3 The
last type parameter is used for the return type in each case. 

 Here are the signatures of all the Func delegate types in .NET 3.5:

TResult Func<TResult>()
TResult Func<T,TResult>(T arg)
TResult Func<T1,T2,TResult>(T1 arg1, T2 arg2)
TResult Func<T1,T2,T3,TResult>(T1 arg1, T2 arg2, T3 arg3)
TResult Func<T1,T2,T3,T4,TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)

For example, Func<string,double,int> is equivalent to a delegate type of the form
public delegate int SomeDelegate(string arg1, double arg2)

The Action<...> set of delegates provides the equivalent functionality when you want
a void return type. The single parameter form of Action existed in .NET 2.0, but the
rest are new to .NET 3.5. If four arguments aren’t enough for you, then .NET 4 has the
answer: it expands both the Action<...> and Func<...> families to take up to 16
arguments, so Func<T1,...,T16,TResult> has an eye-watering 17 type parameters.
This is primarily to help support the Dynamic Language Runtime (DLR) that you’ll
meet in chapter 14, and you’re unlikely to need to deal with it directly.

2 The one feature available to anonymous methods but not lambda expressions is the ability to concisely ignore
parameters. Look back at section 5.4.3 for more details if you’re interested, but in practice it’s not something
you’ll really miss with lambda expressions.
3 You may remember that you met the version without any parameters (but one type parameter) in chapter 6.
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 For this example, you need a type that takes a string parameter and returns an
int, so you can use Func<string,int>. 

9.1.2 First transformation to a lambda expression

Now that you know the delegate type, you can use an anonymous method to create
your delegate instance. The following listing shows this and executes the delegate
instance afterward, so you can see it working.

Func<string,int> returnLength;
returnLength = delegate (string text) { return text.Length; };

Console.WriteLine(returnLength("Hello"));

Listing 9.1 prints 5, just as you’d expect it to. I’ve separated the declaration of return-
Length from the assignment to it, to keep it on one line—it’s easier to keep track of
that way. The anonymous method expression is the part in bold; that’s the part you’ll
convert into a lambda expression.

 The most long-winded form of a lambda expression is this:

(explicitly-typed-parameter-list) => { statements }

The => part is new to C# 3 and tells the compiler that you’re using a lambda expres-
sion. Most of the time, lambda expressions are used with a delegate type that has a
nonvoid return type, and the syntax is slightly less intuitive when there isn’t a result.
This is another indication of the changes in idiom between C# 1 and C# 3. In C# 1,
delegates were usually used for events and rarely returned anything. In LINQ they’re
usually used as part of a data pipeline, taking input and returning a result to say what
the projected value is, or whether the item matches the current filter, and so forth.

 With the explicit parameters and statements in braces, this version looks very simi-
lar to an anonymous method. The following listing is equivalent to listing 9.1, but it
uses a lambda expression.

Func<string,int> returnLength;
returnLength = (string text) => { return text.Length; };

Console.WriteLine(returnLength("Hello"));

Again, I’ve used bold to indicate the expression used to create the delegate instance.
When reading lambda expressions, it helps to think of the => part as “goes to,” so the
example in listing 9.2 could be read “text goes to text.Length.” Since this is the only
part of the listing that’s interesting for a while, I’ll show it alone from now on. You can
replace the bold text from listing 9.2 with any of the lambda expressions listed in this
section and the result will be the same.

Listing 9.1 Using an anonymous method to create a delegate instance

Listing 9.2 A long-winded first lambda expression, similar to an anonymous method
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 The same rules that govern return statements in anonymous methods apply to
lambdas: you can’t try to return a value from a lambda expression with a void return
type, whereas if there’s a nonvoid return type, every code path has to return a compat-
ible value.4 It’s all pretty intuitive and rarely gets in the way.

 So far, we haven’t saved much space or made things particularly easy to read. Let’s
start applying the shortcuts. 

9.1.3 Using a single expression as the body

The form we’ve looked at so far uses a full block of code to return the value. This is
flexible—you can have multiple statements, perform loops, return from different
places in the block, and so on, just as with anonymous methods. But most of the time,
you can easily express the whole of the body in a single expression, the value of which
is the result of the lambda.5 In these cases, you can specify just that expression, with-
out any braces, return statements, or semicolons. The format then is

(explicitly-typed-parameter-list) => expression

In our example, this means that the lambda expression becomes

(string text) => text.Length

That’s starting to look simpler already. Now, what about that parameter type? The
compiler already knows that instances of Func<string,int> take a single string
parameter, so you should be able to just name that parameter. 

9.1.4 Implicitly typed parameter lists

Most of the time, the compiler can guess the parameter types without you explicitly
stating them. In these cases, you can write the lambda expression as

(implicitly-typed-parameter-list) => expression

An implicitly typed parameter list is just a comma-separated list of names, without the
types. You can’t mix and match for different parameters—either the whole list is
explicitly typed, or it’s all implicitly typed. Also, if any of the parameters are out or ref
parameters, you’re forced to use explicit typing. In our example, it’s fine, so your
lambda expression is just

(text) => text.Length

That’s getting pretty short now. There’s not a lot more you could get rid of. The
parentheses seem redundant, though. 

4 Code paths throwing exceptions don’t need to return a value, of course, and neither do detectable infinite
loops.

5 You can still use this syntax for a delegate with a void return type if you only need one statement. You omit

the semicolon and the braces, basically.
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9.1.5 Shortcut for a single parameter

When the lambda expression only needs a single parameter, and that parameter can
be implicitly typed, C# 3 allows you to omit the parentheses, so it now has this form:

parameter-name => expression

The final form of your lambda expression is therefore

text => text.Length

You may be wondering why there are so many special cases with lambda expres-
sions—none of the rest of the language cares whether a method has one parameter
or more, for instance. Well, what sounds like a very specific case actually turns out to
be extremely common, and the improvement in readability from removing the paren-
theses from the parameter list can be significant when there are many lambdas in a
short piece of code.

 It’s worth noting that you can put parentheses around the whole lambda expres-
sion if you want to, just like other expressions. Occasionally this helps readability, such
as when you’re assigning the lambda to a variable or property—otherwise, the equals
symbols can get confusing, at least to start with. Most of the time it’s perfectly readable
without any extra syntax at all. The following listing shows this in the context of our
original code.

Func<string,int> returnLength;
returnLength = text => text.Length;

Console.WriteLine(returnLength("Hello"));

At first you may find listing 9.3 confusing to read, in the same way that anonymous
methods appear strange to many developers until they get used to them. In normal use,
you’d declare the variable and assign the value to it in the same expression, making it
even clearer. When you are used to lambda expressions, though, you can appreciate
how concise they are. It’d be hard to imagine a shorter, clearer way of creating a dele-
gate instance.6 You could change the variable name text to something like x, and in full
LINQ that’s often useful, but longer names give valuable information to the reader.

 I’ve shown this transformation over the course of a few pages, but figure 9.1 makes
it clear just how much extraneous syntax you’ve saved.

 The decision of whether to use the short form for the body of the lambda expres-
sion, specifying just an expression instead of a whole block, is completely independent
from the decision about whether to use explicit or implicit parameters. This example
has taken us down one route of shortening the lambda, but we could’ve started off by

Listing 9.3 A concise lambda expression

6 That’s not to say it’s impossible. Some languages allow closures to be represented as simple blocks of code

with a magic variable name to represent the common case of a single parameter.
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making the parameters implicit. When you’re comfortable with lambda expressions,
you won’t think about this at all—you’ll just write the shortest available form naturally.

HIGHER-ORDER FUNCTIONS The body of a lambda expression can itself contain
a lambda expression, and this tends to be as confusing as it sounds. Alterna-
tively, the parameter to a lambda expression can be another delegate, which
is just as bad. Both of these are examples of higher-order functions. If you enjoy
feeling dazed and confused, have a look at some of the downloadable source
code. Although I’m being flippant, this approach is common in functional
programming and can be useful. It just takes a certain degree of perseverance
to get into the right mindset.

So far we’ve only dealt with a single lambda expression, putting it into different forms.
Let’s look at a few examples to make things more concrete before we examine the
details. 

9.2 Simple examples using List<T> and events
When we look at extension methods in chapter 10, we’ll use lambda expressions all
the time. Until then, List<T> and event handlers give us the best examples. We’ll start
off with lists, using automatically implemented properties, implicitly typed local vari-
ables, and collection initializers for the sake of brevity. We’ll then call methods that
take delegate parameters, using lambda expressions to create the delegates, of course.

9.2.1 Filtering, sorting, and actions on lists

Remember the FindAll method on List<T>—it takes a Predicate<T> and returns a
new list with all the elements from the original list that match the predicate. The Sort
method takes a Comparison<T> and sorts the list accordingly. Finally, the ForEach

delegate(String text) { return text.Length; }

(string text) => { return text.Length; }

(string text) => text.Length

(text) => text.Length

text => text.Length

Convert to lambda expression

Single expression, so no braces required

Let the compiler infer the parameter type

Remove unnecessary parentheses

Start with an anonymous method

Figure 9.1 Lambda 
syntax shortcuts
method takes an Action<T> to perform on each element. 
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 Listing 9.4 uses lambda expressions to provide the delegate instance to each of
these methods. The sample data in question is the name and year of release for various
films. You print out the original list, then create and print out a filtered list of only old
films, and then sort and print out the original list ordered by name. (It’s interesting to
consider how much more code would’ve been required to do the same thing in C# 1.)

class Film
{

public string Name { get; set; }
public int Year { get; set; }

}
...
var films = new List<Film>
{

new Film { Name = "Jaws", Year = 1975 },
new Film { Name = "Singing in the Rain", Year = 1952 },
new Film { Name = "Some like it Hot", Year = 1959 },
new Film { Name = "The Wizard of Oz", Year = 1939 },
new Film { Name = "It's a Wonderful Life", Year = 1946 },
new Film { Name = "American Beauty", Year = 1999 },
new Film { Name = "High Fidelity", Year = 2000 },
new Film { Name = "The Usual Suspects", Year = 1995 }

};

Action<Film> print =
film => Console.WriteLine("Name={0}, Year={1}",

  film.Name, film.Year);

films.ForEach(print);

films.FindAll(film => film.Year < 1960)
.ForEach(print);

films.Sort((f1, f2) => f1.Name.CompareTo(f2.Name));
films.ForEach(print);

The first half of listing 9.4 involves setting up the data. This code uses a named type
just to make life easier—an anonymous type would’ve meant a few more hoops to
jump through in this particular case.

 Before you use the newly created list, you create a delegate instance B, which
you’ll use to print out the items of the list. You use this delegate instance three times,
which is why I created a variable to hold it rather than using a separate lambda
expression each time. It just prints a single element, but by passing it into
List<T>.ForEach you can dump the whole list to the console. A subtle but important
point is that the semicolon at the end of this statement is part of the assignment state-
ment, not part of the lambda expression. If you were using the same lambda expres-
sion as an argument in a method call, there wouldn’t be a semicolon directly after
Console.WriteLine(...).

Listing 9.4 Manipulating a list of films using lambda expressions

Creates reusable 
list-printing delegate

B

Prints original listC
Creates filtered listD

Sorts original listE
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 The first list you print out is just the original one without any modifications C. You
then find all the films in your list that were made before 1960 and print those out D.
This is done with another lambda expression, which is executed for each film in the
list—it only has to determine whether a single film should be included in the filtered
list. The source code uses the lambda expression as a method argument, but really the
compiler has created a method like this:

private static bool SomeAutoGeneratedName(Film film)
{

return film.Year < 1960;
}

The method call to FindAll is then effectively this:

films.FindAll(new Predicate<Film>(SomeAutoGeneratedName))

The lambda expression support here is just like the anonymous method support in
C# 2; it’s all cleverness on the part of the compiler. (In fact, the Microsoft compiler is
even smarter in this case—it realizes it can get away with reusing the delegate instance
if the code is ever called again, so it caches it.)

 Sorting the list is also achieved using a lambda expression E, which compares any
two films using their names. I have to confess that explicitly calling CompareTo yourself
is a bit ugly. In the next chapter you’ll see how the OrderBy extension method allows
you to express ordering in a neater way.

 Let’s look at another example, this time using lambda expressions with event
handling. 

9.2.2 Logging in an event handler

If you think back to chapter 5, in section 5.9 you saw an easy way of using anonymous
methods to log which events were occurring, but you could only use a compact syntax
because you didn’t mind losing the parameter information. What if you wanted to log
both the nature of the event and information about its sender and arguments?
Lambda expressions enable this in a neat way, as shown in the following listing.

static void Log(string title, object sender, EventArgs e)
{

Console.WriteLine("Event: {0}", title);
Console.WriteLine(" Sender: {0}", sender);
Console.WriteLine(" Arguments: {0}", e.GetType());
foreach (PropertyDescriptor prop in

TypeDescriptor.GetProperties(e))
{

string name = prop.DisplayName;
object value = prop.GetValue(e);
Console.WriteLine(" {0}={1}", name, value);

}

Listing 9.5 Logging events using lambda expressions
}
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...
Button button = new Button { Text = "Click me" };
button.Click += (src, e) => Log("Click", src, e);
button.KeyPress += (src, e) => Log("KeyPress", src, e);
button.MouseClick += (src, e) => Log("MouseClick", src, e);

Form form = new Form { AutoSize = true, Controls = { button } };
Application.Run(form);

Listing 9.5 uses lambda expressions to pass the event name and parameters to the Log
method, which logs details of the event. You don’t log the details of the event source,
beyond whatever its ToString override returns, because an overwhelming amount of
information is associated with controls. But you use reflection over property descrip-
tors to show the details of the EventArgs instance passed to you. 

 Here’s some sample output from when you click the button:

Event: Click
Sender: System.Windows.Forms.Button, Text: Click me
Arguments: System.Windows.Forms.MouseEventArgs

Button=Left
Clicks=1
X=53
Y=17
Delta=0
Location={X=53,Y=17}

Event: MouseClick
Sender: System.Windows.Forms.Button, Text: Click me
Arguments: System.Windows.Forms.MouseEventArgs

Button=Left
Clicks=1
X=53
Y=17
Delta=0
Location={X=53,Y=17}

All of this is possible without lambda expressions, of course, but it’s a lot neater than it
would’ve been otherwise. 

 Now that you’ve seen lambdas being converted into delegate instances, it’s time to
look at expression trees, which represent lambda expressions as data instead of code. 

9.3 Expression trees
The idea of code as data is an old one, but it hasn’t been used much in popular pro-
gramming languages. You could argue that all .NET programs use the concept,
because the IL code is treated as data by the JIT, which then converts it into native
code to run on your CPU. That’s deeply hidden though, and although libraries that
manipulate IL programmatically exist, they’re not widely used.

 Expression trees in .NET 3.5 provide an abstract way of representing some code as
a tree of objects. It’s like CodeDOM but operating at a slightly higher level. The pri-
mary use of expression trees is in LINQ, and later in this section you’ll see how crucial

expression trees are to the whole LINQ story.
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 C# 3 provides built-in support for converting lambda expressions to expression
trees, but before we cover that, let’s explore how they fit into the .NET Framework
without using any compiler tricks. 

9.3.1 Building expression trees programmatically

Expression trees aren’t as mystical as they sound, although some of the uses they’re
put to look like magic. As the name suggests, they’re trees of objects, where each node
in the tree is an expression in itself. Different types of expressions represent the differ-
ent operations that can be performed in code: binary operations, such as addition;
unary operations, such as taking the length of an array; method calls; constructor
calls; and so forth.

 The System.Linq.Expressions namespace contains the various classes that repre-
sent expressions. All of them derive from the Expression class, which is abstract and
mostly consists of static factory methods to create instances of other expression
classes. It exposes two properties, though:

 The Type property represents the .NET type of the evaluated expression—you
can think of it like a return type. The type of an expression that fetches the
Length property of a string would be int, for example.

 The NodeType property returns the kind of expression represented as a member
of the ExpressionType enumeration, with values such as LessThan, Multiply,
and Invoke. To use the same example, in myString.Length the property access
part would have a node type of MemberAccess.

There are many classes derived from Expression, and some of them can have many
different node types. BinaryExpression, for instance, represents any operation with
two operands: arithmetic, logic, comparisons, array indexing, and the like. This is
where the NodeType property is important, as it distinguishes between different kinds
of expressions that are represented by the same class.

 I don’t intend to cover every expression class or node type—there are far too many,
and MSDN does a perfectly good job of explaining them (see http://mng.bz/3vW3).
Instead, we’ll try to get a general feel for what you can do with expression trees.

 Let’s start off by creating one of the simplest possible expression trees, adding two
constant integers together. The following listing creates an expression tree to repre-
sent 2+3.

Expression firstArg = Expression.Constant(2);
Expression secondArg = Expression.Constant(3);
Expression add = Expression.Add(firstArg, secondArg);

Console.WriteLine(add);

Listing 9.6 A simple expression tree, adding 2 and 3

http://mng.bz/3vW3
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Running listing 9.6 will produce the output (2 + 3), which demonstrates that the various
expression classes override ToString to produce human-readable output. Figure 9.2
depicts the tree generated by the code.

 It’s worth noting that the leaf expressions are created first in the code: you build
expressions from the bottom up. This is enforced by the fact that expressions are
immutable—once you’ve created an expression, it’ll never change, so you can cache
and reuse expressions at will.

 Now that you’ve built up an expression tree, it’s time to execute it. 

9.3.2 Compiling expression trees into delegates

One of the types derived from Expression is LambdaExpression. The generic class
Expression<TDelegate> then derives from LambdaExpression. It’s all slightly confus-
ing—figure 9.3 shows the type hierarchy to make things clearer.

 The difference between Expression and Expression<TDelegate> is that the
generic class is statically typed to indicate what kind of expression it is, in terms of
return type and parameters. Obviously, this is expressed by the TDelegate type param-
eter, which must be a delegate type. For instance, the simple addition expression takes
no parameters and returns an integer—this is matched by the signature of Func<int>,
so you could use an Expression<Func<int>> to represent the expression in a statically
typed manner. You do this using the Expression.Lambda method, which has a num-
ber of overloads. The examples we’ve looked at use the generic method, which uses a

firstArg

ConstantExpression
NodeType=Constant
Type=System.Int32

Value=2

secondArg

ConstantExpression
NodeType=Constant
Type=System.Int32

Value=3

BinaryExpression
NodeType=Add

Type=System.Int32

Left Right

add

Figure 9.2 Graphical 
representation of the expression 
tree created by listing 9.6

Expression

LambdaExpression

Expression<TDelegate>

BinaryExpression (Other types)

Figure 9.3 Type hierarchy from 
Expression<TDelegate> up to 

Expression
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type parameter to indicate the type of delegate we wanted to represent. See MSDN for
alternatives.

 So, what’s the point of doing this? Well, LambdaExpression has a Compile method
that creates a delegate of the appropriate type; Expression<TDelegate> has another
method by the same name, but statically typed to return a delegate of type TDelegate.
This delegate can now be executed in the normal manner, as if it had been created
using a normal method or any other means. The following listing shows this in action,
with the same expression as before.

Expression firstArg = Expression.Constant(2);
Expression secondArg = Expression.Constant(3);
Expression add = Expression.Add(firstArg, secondArg);

Func<int> compiled = Expression.Lambda<Func<int>>(add).Compile();
Console.WriteLine(compiled());

Arguably, listing 9.7 is one of the most convoluted ways of printing out 5 that you
could ask for. At the same time, it’s also rather impressive. You’re programmatically
creating some logical blocks and representing them as normal objects, and then ask-
ing the framework to compile the whole thing into real code that can be executed.
You may never need to use expression trees this way, or even build them up program-
matically at all, but it’s useful background information that will help you understand
how LINQ works.

 As I said at the beginning of this section, expression trees aren’t too far removed
from CodeDOM—Snippy compiles and executes C# code that’s been entered as plain
text, for instance. But two significant differences exist between CodeDOM and expres-
sion trees.

 First, in .NET 3.5, expression trees were only able to represent single expressions.
They weren’t designed for whole classes, methods, or even just statements. This has
changed somewhat in .NET 4, where they’re used to support dynamic typing—you can
now create blocks, assign values to variables, and so on. But there are still significant
restrictions compared with CodeDOM.

 Second, C# supports expression trees directly in the language, through lambda
expressions. Let’s take a look at that now. 

9.3.3 Converting C# lambda expressions to expression trees

As you’ve already seen, lambda expressions can be converted to appropriate delegate
instances, either implicitly or explicitly. That’s not the only conversion that’s available.
You can also ask the compiler to build an expression tree from your lambda expres-
sion, creating an instance of Expression<TDelegate> at execution time. For example,
the following listing shows a much shorter way of creating the “return 5” expression,
compiling it, and then invoking the resulting delegate.

Listing 9.7 Compiling and executing an expression tree
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Expression<Func<int>> return5 = () => 5;
Func<int> compiled = return5.Compile();
Console.WriteLine(compiled());

In the first line of listing 9.8, the () => 5 part is the lambda expression. You don’t
need any casts because the compiler can verify everything as it goes. You could’ve writ-
ten 2+3 instead of 5, but the compiler would’ve optimized the addition away for you.
The important point to take away is that the lambda expression has been converted
into an expression tree.

THERE ARE LIMITATIONS Not all lambda expressions can be converted to
expression trees. You can’t convert a lambda with a block of statements (even
just one return statement) into an expression tree—it has to be in the form
that evaluates a single expression, and that expression can’t contain assign-
ments. This restriction applies even in .NET 4 with its extended abilities for
expression trees. Although these are the most common restrictions, they’re
not the only ones—the full list isn’t worth describing here, as this issue comes
up so rarely. If there’s a problem with an attempted conversion, you’ll find
out at compile time.

Let’s look at a more complicated example to see how things work, particularly with
respect to parameters. This time you’ll write a predicate that takes two strings and
checks to see if the first one begins with the second. The code is simple when written
as a lambda expression.

Expression<Func<string, string, bool>> expression =
(x, y) => x.StartsWith(y);

var compiled = expression.Compile();

Console.WriteLine(compiled("First", "Second"));
Console.WriteLine(compiled("First", "Fir"));

The expression tree itself is more complicated, especially by the time you’ve converted
it into an instance of LambdaExpression. The next listing shows how it could be built
in code.

MethodInfo method = typeof(string).GetMethod
("StartsWith", new[] { typeof(string) });

var target = Expression.Parameter(typeof(string), "x");
var methodArg = Expression.Parameter(typeof(string), "y");
Expression[] methodArgs = new[] { methodArg };

Expression call = Expression.Call(target, method, methodArgs);

Listing 9.8 Using lambda expressions to create expression trees

Listing 9.9 Demonstration of a more complicated expression tree

Listing 9.10 Building a method call expression tree in code

Builds up 
parts of 
method call

B

C
Creates CallExpression

from parts
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var lambdaParameters = new[] { target, methodArg };
var lambda = Expression.Lambda<Func<string, string, bool>>

(call, lambdaParameters);

var compiled = lambda.Compile();

Console.WriteLine(compiled("First", "Second"));
Console.WriteLine(compiled("First", "Fir"));

As you can see, listing 9.10 is considerably more involved than the version with the C#
lambda expression. But it does make it more obvious exactly what’s involved in the
tree and how parameters are bound. 

 You start off by working out everything you need to know about the method call
that forms the body of the final expression B: the target of the method (the string
you’re calling StartsWith on); the method itself (as a MethodInfo); and the list of
arguments (in this case, just the one). It so happens that your method target and argu-
ment will both be parameters passed into the expression, but they could be other
types of expressions—constants, the results of other method calls, property evalua-
tions, and so forth.

 After building the method call as an expression C, you then need to convert it
into a lambda expression D, binding the parameters as you go. You reuse the same
ParameterExpression values you created as information for the method call: the
order in which they’re specified when creating the lambda expression is the order in
which they’ll be picked up when you eventually call the delegate.

 Figure 9.4 shows the same final expression tree graphically. To be picky, even
though it’s still called an expression tree, the fact that you reuse the parameter expres-
sions (and you have to—creating a new one with the same name and attempting to
bind parameters that way causes an exception at execution time) means that it’s not
really a tree in the purest sense.

 Glancing at the complexity of figure 9.4 and listing 9.10 without trying to look at
the details, you’d be forgiven for thinking that you were doing something really com-
plicated, when in fact it’s just a single method call. Imagine what the expression tree
for a genuinely complex expression would look like—and then be grateful that C# 3
can create expression trees from lambda expressions!

 For one final way of looking at the same idea, Visual Studio 2010 and 2012 provide
a built-in visualizer for expression trees.7 This can be useful if you’re trying to work
out how to build up an expression tree in code, and you want to get an idea of what it
should look like; write a lambda expression that does what you want with some
dummy data, look at the visualization in the debugger, and then work out how to
build similar trees with the information you have in your real code. The visualizer
relies on changes within .NET 4, so it won’t work with projects targeting .NET 3.5. Fig-
ure 9.5 shows the visualization for the StartsWith example.

7 If you’re using Visual Studio 2008, you can download some sample code from MSDN to build a similar visu-
alizer (see http://mng.bz/g6xd), but obviously it’s easier to use the one shipped with Visual Studio if you

Converts call into
LambdaExpression D
have a recent enough version.

http://mng.bz/g6xd
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The .Lambda and .Call parts of the visualization correspond to your calls to
Expression.Lambda and Expression.Call; $x and $y correspond to the parameter
expressions. The visualization is the same whether the expression tree has been built
up explicitly through code or using a lambda expression conversion.

 One small point to note is that although the C# compiler builds expression trees in
the compiled code using code similar to listing 9.10, it has one shortcut up its sleeve: it
doesn’t need to use normal reflection to get the MethodInfo for string.StartsWith.
Instead, it uses the method equivalent of the typeof operator. This is only available in
IL, not in C# itself, and the same operator is used to create delegate instances from
method groups.

 Now that you’ve seen how expression trees and lambda expressions are linked,
let’s take a brief look at why they’re so useful. 

9.3.4 Expression trees at the heart of LINQ

Without lambda expressions, expression trees would have relatively little value.
They’d be an alternative to CodeDOM in cases where you only wanted to model a sin-
gle expression instead of whole statements, methods, types, and so forth, but the ben-
efit would still be limited.

 The reverse is also true to a limited extent: without expression trees, lambda
expressions would certainly be less useful. Having a more compact way of creating del-
egate instances would still be welcome, and the shift toward a more functional mode
of development would still be viable. Lambda expressions are particularly effective
when combined with extension methods, as you’ll see in the next chapter, but with
expression trees in the picture as well, things get a lot more interesting.

 What do you get when you combine lambda expressions, expression trees, and
extension methods? The answer is, “the language side of LINQ,” pretty much. The
extra syntax you’ll see in chapter 11 is icing on the cake, but the story would still have
been compelling with just those three ingredients. For a long time you could have
either nice compile-time checking or the ability to tell another platform to run some
code, usually expressed as text (SQL queries being the most obvious example). But
you couldn’t do both at the same time.

 By combining lambda expressions that provide compile-time checks with expres-
sion trees that abstract the execution model away from the desired logic, you can have
the best of both worlds, within reason. At the heart of out-of-process LINQ providers is
the idea that you can produce an expression tree from a familiar source language (C#,
in this case) and use the result as an intermediate format that can then be converted
into the native language of the target platform—SQL, for example. In some cases,
there may not be a simple native language so much as a native API, making different
web service calls depending on what the expression represents, perhaps. Figure 9.6
shows the different paths of LINQ to Objects and LINQ to SQL.

 In some cases, the conversion may try to perform all the logic on the target plat-

form, whereas other cases may use the compilation facilities of expression trees to
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execute some of the expression locally and some elsewhere. We’ll look at some of the
details of this conversion step in chapter 12, but you should bear this end goal in mind
as we explore extension methods and LINQ syntax in chapters 10 and 11.

NOT ALL CHECKING CAN BE DONE BY THE COMPILER When expression trees are
examined by some sort of converter, some cases generally have to be rejected.
For instance, although it’s possible to convert a call to string.StartsWith
into a similar SQL expression, a call to string.IsInterned doesn’t make
sense in a database environment. Expression trees allow a large amount of
compile-time safety, but the compiler can only check that the lambda expres-
sion can be converted into a valid expression tree; it can’t make sure that the
expression tree will be suitable for its eventual use.

Although the most common uses of expression trees are related to LINQ, that’s not
always the case… 

9.3.5 Expression trees beyond LINQ

Bjarne Stroustrup once said, “I wouldn’t like to build a tool that could only do what I
had been able to imagine for it.” Though expression trees were introduced into .NET
primarily for LINQ, both the community and Microsoft have found other uses for
them since then. This section is far from comprehensive, but it might give you a few
ideas of where expression trees might help you.

Query results

C# compiler

LINQ to SQL provider

Executed at database
and fetched back

Query results

C# compiler

Delegate code
executed directly

in the CLR

LINQ to Objects LINQ to SQL

Compile time

Execution time

C# compiler

C# query code with
lambda expressions

C# compiler

C# query code with
lambda expressions

IL using 
expression trees

E t d t

Dynamic SQL

IL using
delegates

Figure 9.6 Both LINQ to Objects and LINQ to SQL start with C# code and end 
with query results. The ability to execute the code remotely comes through 
expression trees.
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OPTIMIZING THE DYNAMIC LANGUAGE RUNTIME

We’ll see a lot more of the Dynamic Language Runtime (DLR) in chapter 14, when we
talk about dynamic typing in C#, but expression trees are a core part of the architec-
ture. They have three properties that make them attractive to the DLR:

 They’re immutable, so you can cache them safely.
 They’re composable, so you can build complex behavior out of simple building

blocks.
 They can be compiled into delegates that are JIT-compiled into native code as

normal.

The DLR has to make decisions about how to handle various expressions where the
meaning can change subtly based on different rules. Expression trees allow these rules
(and the results) to be transformed into code that’s close to what you’d write by hand
if you knew all the rules and results you’d seen so far. It’s a powerful concept, and one
that allows dynamic code to execute surprisingly quickly. 

REFACTOR-PROOF REFERENCES TO MEMBERS

In section 9.3.3 I mentioned that the compiler can emit references to MethodInfo val-
ues much like the typeof operator can. Unfortunately, C# doesn’t have the same abil-
ity, which means the only way of telling one piece of general-purpose, reflection-based
code to “use the property called BirthDate defined in my type” has previously been to
use a string literal and make sure that if you change the name of the property, you also
change the literal. Using C# 3, you can build an expression tree representing a prop-
erty reference using a lambda expression. The method can then dissect the expres-
sion tree, work out the property you mean, and do whatever it likes with the
information. It can also compile the expression tree into a delegate and use it directly,
of course. 

 As an example of how this might be used, you could write this:

serializationContext.AddProperty(x => x.BirthDate);

The serialization context would then know that you wanted to serialize the BirthDate
property, and it could record appropriate metadata and retrieve the value. (Serializa-
tion is just one area where you may want a property or method reference; it’s fairly
common within reflection-driven code.) If you refactor the BirthDate property to call
it DateOfBirth, the lambda expression will change too. Of course, it’s not foolproof—
there’s no compile-time check that the expression really evaluates a simple property;
that has to be an execution-time check in the AddProperty code.

 It’s possible that one day C# will gain the ability to do this within the language
itself. Such an operator has already been named: infoof, pronounced either “info-of”
or “in-foof,” depending on your level of light-heartedness. This has been on the C#
team’s possible-feature list for a while, and unsurprisingly Eric Lippert has blogged
about it (see http://mng.bz/24y7), but it hasn’t made the cut yet. Maybe in C# 6. 

http://mng.bz/24y7


251Changes to type inference and overload resolution

SIMPLER REFLECTION

The final use I want to mention before we delve into the murky depths of type infer-
ence is also about reflection. As I mentioned in chapter 3, arithmetic operators don’t
play nicely with generics, which makes it hard to write generic code to (say) add up a
series of values. Marc Gravell used expression trees to great effect to provide a generic
Operator class and a nongeneric helper class, allowing you to write code such as this:

T runningTotal = initialValue;
foreach (T item in values)
{

runningTotal = Operator.Add(runningTotal, item);
}

This will even work in cases where the values are a different type than the running
total—adding a whole sequence of TimeSpan values to a DateTime, for example. It’s
possible to do this in C# 2, but it’s significantly more fiddly due to the ways that opera-
tors are exposed via reflection, particularly for the primitive types. Expression trees
allow the implementation of this magic to be quite clean, and the fact that they’re
compiled to normal IL, which is then JIT-compiled, gives great performance.

 These are just some examples, and no doubt there are many developers busy work-
ing on completely different uses. But they mark an end to our direct coverage of
lambda expressions and expression trees. You’ll see a good deal more of them when
we look at LINQ, but before we go any further, there are a few changes to C# that need
some explanation. These are changes to type inference and how the compiler selects
between overloaded methods. 

9.4 Changes to type inference and overload resolution
The steps involved in type inference and overload resolution were altered in C# 3 to
accommodate lambda expressions and to make anonymous methods more useful.
This may not count as a new feature of C# as such, but it can be important to under-
stand what the compiler is going to do. If you find details like this tedious and irrele-
vant, feel free to skip to the chapter summary, but remember that this section exists,
so you can read it if you run across a compilation error related to this topic and can’t
understand why your code doesn’t work. (Alternatively, you might want to come back
to this section if you find your code does compile, but you don’t think it should!)

 Even within this section, I won’t go into every nook and cranny—that’s what the
language specification is for; the details are in the C# 5 specification, section 7.5.2
(“Type inference”). Instead, I’ll give an overview of the new behavior, providing exam-
ples of common cases. The primary reason for changing the specification is to allow
lambda expressions to work in a concise fashion, which is why I’ve included the topic
in this particular chapter. 

 Let’s first look a little deeper at what problems you’d have run into if the C# team
had stuck with the old rules.
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9.4.1 Reasons for change: streamlining generic method calls

Type inference occurs in a few situations. You’ve already seen it apply to implicitly
typed arrays, and it’s also required when you try to implicitly convert a method group
to a delegate type. This can be particularly confusing when the conversion occurs
when you’re using a method group as an argument to another method. With over-
loading of the method being called, and overloading of methods within the method
group, and the possibility of generic methods getting involved, the set of potential
conversions may be enormous.

 By far the most common situation for type inference is when you’re calling a
generic method without specifying any type arguments. This happens all the time in
LINQ—the way that query expressions work depends heavily on this ability. It’s all han-
dled so smoothly that it’s easy to ignore how much the compiler has to work out on
your behalf, all for the sake of making your code clearer and more concise.

 The rules were reasonably straightforward in C# 2, although method groups and
anonymous methods weren’t always handled as well as you might’ve liked. The type
inference process didn’t deduce any information from them, leading to situations
where the desired behavior was obvious to developers but not to the compiler. Life is
more complicated in C# 3 due to lambda expressions. If you call a generic method
using a lambda expression with an implicitly typed parameter list, the compiler needs
to work out what types you’re talking about before it can check the lambda expres-
sion’s body.

 This is much easier to see in code than in words. The following listing gives an
example of the kind of issue I’m referring to: calling a generic method using a lambda
expression.

static void PrintConvertedValue<TInput,TOutput>
(TInput input, Converter<TInput,TOutput> converter)

{
Console.WriteLine(converter(input));

}
...
PrintConvertedValue("I'm a string", x => x.Length);

The PrintConvertedValue method in listing 9.11 simply takes an input value and a
delegate that can convert that value into a different type. It’s completely generic—it
makes no assumptions about the type parameters TInput and TOutput. Now, look at
the types of the arguments you’re calling it with in the bottom line of the listing. The
first argument is clearly a string, but what about the second? It’s a lambda expression,
so you need to convert it into a Converter<TInput,TOutput>, and that means you
need to know the types of TInput and TOutput.

 Remember from section 3.3.2 that the type inference rules of C# 2 were applied to
each argument individually, with no way of using the types inferred from one argu-

Listing 9.11 Example of code requiring the new type inference rules
ment to another. In this case, these rules would’ve stopped you from finding the types
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of TInput and TOutput for the second argument, so the code in listing 9.11 would’ve
failed to compile.

 Our eventual goal is to understand what makes listing 9.11 compile in C# 3 (and it
does, I promise you), but we’ll start with something more modest. 

9.4.2 Inferred return types of anonymous functions

The following listing shows another example of some code that looks like it should
compile but doesn’t under the type inference rules of C# 2.

delegate T MyFunc<T>();

static void WriteResult<T>(MyFunc<T> function)
{

Console.WriteLine(function());
}
...
WriteResult(delegate { return 5; });

Compiling listing 9.12 under C# 2 gives an error like this:

error CS0411: The type arguments for method
'Snippet.WriteResult<T>(Snippet.MyFunc<T>)' cannot be inferred from the
usage. Try specifying the type arguments explicitly.

You can fix the error in two ways—either specify the type argument explicitly (as sug-
gested by the compiler) or cast the anonymous method to a concrete delegate type:

WriteResult<int>(delegate { return 5; });
WriteResult((MyFunc<int>)delegate { return 5; });

Both of these work, but they’re ugly. You might like the compiler to perform the same
kind of type inference as for nondelegate types, using the type of the returned expres-
sion to infer the type of T. That’s exactly what C# 3 does for both anonymous methods
and lambda expressions, but there’s one catch. Although in many cases only one
return statement is involved, there can sometimes be more. 

 The following listing is a slightly modified version of listing 9.12, where the anony-
mous method sometimes returns an integer and sometimes returns an object.

delegate T MyFunc<T>();

static void WriteResult<T>(MyFunc<T> function)
{

Console.WriteLine(function());
}
...
WriteResult(delegate
{

Listing 9.12 Attempting to infer the return type of an anonymous method

Listing 9.13 Code returning an integer or an object depending on the time of day

Declares delegate type: Func<T> isn’t in .NET 2.0

Declares generic 
method with 
delegate parameter

Requires type inference for T
if (DateTime.Now.Hour < 12)
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{
return 10;

}
else
{

return new object();
}

});

The compiler uses the same logic to determine the return type in this situation as it
does for implicitly typed arrays, as described in section 8.4. It forms a set of all the
types from the return statements in the body of the anonymous function8 (in this case,
int and object) and checks to see if exactly one of the types can be implicitly con-
verted to from all the others. There’s an implicit conversion from int to object (via
boxing) but not from object to int, so the inference succeeds with object as the
inferred return type. If there are no types matching that criterion (or more than one),
no return type can be inferred and you’ll get a compilation error.

 Now you know how to work out the return type of an anonymous function, but what
about lambda expressions where the parameter types can be implicitly defined?

9.4.3 Two-phase type inference

The details of type inference in C# 3 are much more complicated than they are for
C# 2. It’s rare that you’ll need to reference the specification for the exact behavior,
but if you do, I recommend you write down all the type parameters, arguments, and so
forth on a piece of paper, and then follow the specification step by step, carefully not-
ing down every action it requires. You’ll end up with a sheet full of fixed and unfixed
type variables, with a different set of bounds for each of them. A fixed type variable is
one that the compiler has decided the value of; otherwise it’s unfixed. A bound is a
piece of information about a type variable. In addition to a bunch of notes, I suspect
you’ll get a headache; this stuff isn’t pretty.

 I’ll present a more fuzzy way of thinking about type inference—one that’s likely to
serve just as well as knowing the specification and that will be a lot easier to under-
stand. The fact is, if the compiler doesn’t perform type inference in exactly the way
you want it to, it’ll almost certainly result in a compilation error rather than code that
builds but doesn’t behave properly. If your code doesn’t build, try giving the compiler
more information—it’s as simple as that. But here’s roughly what’s changed for C# 3.

 The first big difference is that the method arguments work as a team in C# 3. In
C# 2, every argument was used to try to pin down some type parameters exactly, and
the compiler would complain if any two arguments came up with different results for
a particular type parameter, even if they were compatible. In C# 3, arguments can

8 Returned expressions that don’t have a type, such as null or another lambda expression, aren’t included in
this set. Their validity is checked later, once a return type has been determined, but they don’t contribute to

Return type is int

Return type is object
that decision.
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contribute pieces of information—types that must be implicitly convertible to the final
fixed value of a particular type variable. The logic used to come up with that fixed
value is the same as for inferred return types and implicitly typed arrays. 

 The following listing shows an example of this without using any lambda expres-
sions or even anonymous methods.

static void PrintType<T>(T first, T second)
{

Console.WriteLine(typeof(T));
}
...
PrintType(1, new object());

Although the code in listing 9.14 is syntactically valid in C# 2, it wouldn’t build; type
inference would fail, because the first parameter would decide that T must be int and
the second parameter would decide that T must be object. In C# 3, the compiler
determines that T should be object in exactly the same way that it did for the inferred
return type in listing 9.13. In fact, the inferred return type rules are effectively one
example of the more general process in C# 3.

 The second change is that type inference is now performed in two phases. The first
phase deals with normal arguments where the types involved are known to begin with.
This includes anonymous functions where the parameter list is explicitly typed.

 The second phase then kicks in, where implicitly typed lambda expressions and
method groups have their types inferred. The idea is to see whether any of the infor-
mation the compiler has pieced together so far is enough to work out the parameter
types of the lambda expression (or method group). If it is, the compiler can then
examine the body of the lambda expression and work out the inferred return type
which is often another of the type parameters it’s looking for. If the second phase
gives some more information, the compiler goes through it again, repeating until
either it runs out of clues or it’s worked out all the type parameters involved. 

 Figure 9.7 shows this in flowchart form, but please bear in mind that this is a heav-
ily simplified version of the algorithm.

 Let’s look at two examples to show how it works. First we’ll take the code we started
the section with—listing 9.11:

static void PrintConvertedValue<TInput,TOutput>
(TInput input, Converter<TInput,TOutput> converter)

{
Console.WriteLine(converter(input));

}
...
PrintConvertedValue("I'm a string", x => x.Length);

Listing 9.14 Flexible type inference combining information from multiple arguments
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The type parameters you need to work out here are TInput and TOutput. The steps
performed are as follows:

1 Phase 1 begins.
2 The first parameter is of type TInput, and the first argument is of type string.

You infer that there must be an implicit conversion from string to TInput.
3 The second parameter is of type Converter<TInput,TOutput>, and the second

argument is an implicitly typed lambda expression. No inference is per-
formed—you don’t have enough information.

4 Phase 2 begins.
5 TInput doesn’t depend on any unfixed type parameters, so it’s fixed to string.

Are there any 
unfixed type 
variables left?

Finished: 
type inference 

succeeded

Finished: type 
inference failed 
(compile error)

No

No

Yes

Yes

Phase 1

Phase 2

s

Have we made 
any progress 
this iteration?

Infer information 
from explicitly 

typed arguments

Fix type variables
which don't depend on 

anything still being decided

Infer more information 
based on newly fixed 

type parameters

Figure 9.7 The two-phase type 
inference flow



257Changes to type inference and overload resolution

6 The second argument now has a fixed input type but an unfixed output type. You
can consider it to be (string x) => x.Length and infer the return type as int.
Therefore an implicit conversion must take place from int to TOutput.

7 Phase 2 repeats.
8 TOutput doesn’t depend on anything unfixed, so it’s fixed to int.
9 There are now no unfixed type parameters, so inference succeeds.

Complicated, eh? Still, it does the job—the result is what you’d want (TInput=string,
TOutput=int), and everything compiles without any problems. 

 The importance of phase 2 repeating is best shown with another example.
Listing 9.15 shows two conversions being performed, with the output of the first one
becoming the input of the second. Until you’ve worked out the output type of the first
conversion, you don’t know the input type of the second, so you can’t infer its output
type either.

static void ConvertTwice<TInput,TMiddle,TOutput>
(TInput input,
Converter<TInput,TMiddle> firstConversion,
Converter<TMiddle,TOutput> secondConversion)

{
TMiddle middle = firstConversion(input);
TOutput output = secondConversion(middle);
Console.WriteLine(output);

}
...
ConvertTwice("Another string",

text => text.Length,
length => Math.Sqrt(length));

The first thing to notice is that the method signature appears to be pretty horrific. It’s
not too bad when you stop being scared and just look at it carefully, and certainly the
example usage makes it more obvious. You take a string and perform a conversion on
it—the same conversion as before, just a length calculation. You then take that length
(an int) and find its square root (a double).

 Phase 1 of type inference tells the compiler that there must be a conversion from
string to TInput. The first time through phase 2, TInput is fixed to string and you
infer that there must be a conversion from int to TMiddle. The second time through
phase 2, TMiddle is fixed to int and you infer that there must be a conversion from
double to TOutput. The third time through phase 2, TOutput is fixed to double and
type inference succeeds. When type inference has finished, the compiler can look at
the code within the lambda expression properly.

CHECKING THE BODY OF A LAMBDA EXPRESSION The body of a lambda expres-
sion cannot be checked until the input parameter types are known. The lambda
expression x => x.Length is valid if x is an array or a string, but invalid in

Listing 9.15 Multistage type inference
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many other cases. This isn’t a problem when the parameter types are explic-
itly declared, but with an implicit parameter list, the compiler needs to wait
until it’s performed the relevant type inference before it can try to work out
what the lambda expression means.

These examples have shown only one change working at a time, but in practice there
can be several pieces of information about different type variables, potentially discov-
ered in different iterations of the process. In an effort to save your sanity (and mine),
I won’t present any more complicated examples—hopefully you understand the gen-
eral mechanism, even if the exact details are hazy.

 Although it may seem as if this kind of situation will occur so rarely that it’s not
worth having such complex rules to cover it, in fact it’s common in C# 3, particularly
with LINQ. You could easily use type inference extensively without thinking about it—
it’s likely to become second nature to you. If it fails and you wonder why, you can
always revisit this section and the language specification.

 We need to cover one more change, but you’ll be glad to hear it’s easier than type
inference. Let’s look at method overloading. 

9.4.4 Picking the right overloaded method

Overloading occurs when there are multiple methods available with the same name
but different signatures. Sometimes it’s obvious which method is appropriate, because
it’s the only one with the right number of parameters, or it’s the only one where all
the arguments can be converted into the corresponding parameter types.

 The tricky bit comes when there are multiple methods that could be the right one.
The rules in section 7.5.3 of the specification (“Overload Resolution”) are quite com-
plicated (yes, again), but the key part is the way that each argument type is converted
into the parameter type.9 For instance, consider these method signatures as if they
were both declared in the same type:

void Write(int x)
void Write(double y)

The meaning of a call to Write(1.5) is obvious, because there’s no implicit conver-
sion from double to int, but a call to Write(1) is trickier. There is an implicit conver-
sion from int to double, so both methods are possible. At that point, the compiler
considers the conversion from int to int and from int to double. A conversion from
any type to itself is defined to be better than any conversion to a different type, so the
Write(int x) method is better than Write(double y) for this particular call.

 When there are multiple parameters, the compiler has to make sure there’s a best
method to use. One method is better than another if all the argument conversions
involved are at least as good as the corresponding conversions in the other method, and
at least one conversion is strictly better. As a simple example, suppose you had this:

9 I’m assuming that all the methods are declared in the same class. When inheritance is involved as well, it

becomes even more complicated. That aspect hasn’t changed in C# 3, though.
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void Write(int x, double y)
void Write(double x, int y)

A call to Write(1, 1) would be ambiguous, and the compiler would force you to add
a cast to at least one of the parameters to make it clear which method you meant to
call. Each overload has one better argument conversion, so neither of them is the best
method.

 That logic still applies to C# 3, but with one extra rule about anonymous functions,
which never specify a return type. In this case, the inferred return type (as described
in section 9.4.2) is used in the better-conversion rules.

 Let’s look at an example of the kind of situation that needs the new rule. The fol-
lowing listing contains two methods with the name Execute and a call using a lambda
expression.

static void Execute(Func<int> action)
{

Console.WriteLine("action returns an int: " + action());
}
static void Execute(Func<double> action)
{

Console.WriteLine("action returns a double: " + action());
}
...

Execute(() => 1);

The call to Execute in listing 9.16 could’ve been written with an anonymous method
or a method group instead—the same rules are applied whatever kind of conversion is
involved. Which Execute method should be called? The overloading rules say that
when two methods are both applicable after performing conversions on the argu-
ments, those argument conversions are examined to see which one is better. The con-
versions here aren’t from a normal .NET type to the parameter type—they’re from a
lambda expression to two different delegate types. Which conversion is better?

 Surprisingly enough, the same situation in C# 2 would result in a compilation
error—there was no language rule covering this case. In C# 3, the method with the
Func<int> parameter would be chosen. The extra rule that has been added can be
paraphrased this way:

If an anonymous function can be converted to two delegate types that have the same
parameter list but different return types, the delegate conversions are judged by the
conversions from the inferred return type to the delegates’ return types.

That’s pretty much gibberish without referring to an example. Let’s look back at list-
ing 9.16 where you’re converting from a lambda expression with no parameters and
an inferred return type of int to either Func<int> or Func<double>. The parameter
lists are the same (empty) for both delegate types, so the rule applies. You then just

Listing 9.16 Sample of overloading choice influenced by delegate return type
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need to find the better conversion: int to int, or int to double. This puts you in
more familiar territory; as you saw earlier, the int to int conversion is better. Listing
9.16 therefore prints out action returns an int: 1. 

9.4.5 Wrapping up type inference and overload resolution

This section has been pretty heavy. I would’ve loved to have made it simpler, but it’s a
fundamentally complicated topic. The terminology involved doesn’t make it any eas-
ier, especially as parameter type and type parameter mean completely different things!
Congratulations if you made it through and actually understood it all. Don’t worry if
you didn’t; hopefully next time you read through the section, it’ll shed more light on
the topic—particularly after you’ve run into situations where it’s relevant to your own
code. For the moment, here are the most important points:

 Anonymous functions (anonymous methods and lambda expressions) have
inferred return types based on the types of all the return statements.

 Lambda expressions can only be understood by the compiler when the types of
all the parameters are known.

 Type inference no longer requires that each argument independently come
to exactly the same conclusion about type parameters, as long as the results stay
compatible.

 Type inference is now multistage: the inferred return type of one anonymous
function can be used as a parameter type for another.

 Finding the best overloaded method when anonymous functions are involved
takes the inferred return type into account.

Even that short list is pretty daunting in terms of the sheer density of technical terms.
Again, don’t fret if it doesn’t all make sense. In my experience things just work the way
you want them to most of the time.

9.5 Summary
In C# 3, lambda expressions almost entirely replace anonymous methods. Anonymous
methods are supported for the sake of backward compatibility, but idiomatic, freshly
written C# 3 code will contain few of them.

 You’ve seen how lambda expressions are more than just a compact syntax for dele-
gate creation. They can be converted into expression trees, subject to some limita-
tions. The expression trees can then be processed by other code, possibly performing
equivalent actions in different execution environments. Without this ability, LINQ
would be restricted to in-process queries.

 Our discussion of type inference and overloading was a necessary evil to some
extent; very few people actually enjoy discussing the sort of rules that are required, but
it’s important to have at least a passing understanding of what’s going on. Before we
all feel too sorry for ourselves, spare a thought for the poor language designers who

have to live and breathe this kind of thing, making sure the rules are consistent and
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don’t fall apart in nasty situations. Then pity the testers who have to try to break the
implementation.

 That’s it in terms of describing lambda expressions, but you’ll see a lot more of them
in the rest of the book. For instance, the next chapter is all about extension methods.
Superficially, they’re completely separate from lambda expressions, but in reality the
two features are often used together.



Extension methods
I’m not a fan of inheritance. Or rather, I’m not a fan of a number of places where
inheritance has been used in code that I’ve maintained, or class libraries I’ve worked
with. As with so many things, it’s powerful when used properly, but its design over-
head is often overlooked and can become painful over time. It’s sometimes used as
a way of adding extra behavior and functionality to a class, even when no real infor-
mation about the object is being added—where nothing is being specialized.

 Sometimes that’s appropriate—if objects of the new type should carry around
the details of the extra behavior—but often it’s not. Often it’s just not possible to
use inheritance in this way in the first place, such as when you’re working with a
value type, a sealed class, or an interface. The alternative is usually to write a bunch
of static methods, most of which take an instance of the type in question as at least

This chapter covers
 Writing extension methods

 Calling extension methods

 Method chaining

 Extension methods in .NET 3.5

 Other uses for extension methods
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one of their parameters. This works fine, without the design penalty of inheritance,
but it tends to make code look ugly.

 C# 3 introduced the idea of extension methods, which have the benefits of the static
methods solution and also improve the readability of code that calls them. They let
you call static methods as if they were instance methods of a completely different class.
Don’t panic—it’s not as crazy or as arbitrary as it sounds.

 In this chapter we’ll first look at how to use extension methods and how to write
them. We’ll then examine a few of the extension methods provided by .NET 3.5 and
see how they can be chained together easily. This chaining ability is an important part
of the reason for introducing extension methods to the language in the first place,
and it’s an important part of LINQ.1 Finally, we’ll consider some of the pros and cons
of using extension methods instead of plain static methods.

 First, though, let’s take a closer look at why extension methods are sometimes
desirable compared with what’s available in C# 1 and 2, particularly when you create
utility classes.

10.1 Life before extension methods
You may be getting a sense of déjà vu at this point, because utility classes came up in
chapter 7 when we looked at static classes. If you wrote a lot of C# 2 code before using
C# 3, you should look at your static classes—many of the methods in them may be
good candidates for converting into extension methods. That’s not to say that all exist-
ing static classes are a good fit, but you may well recognize the following traits:

 You want to add some members to a type.
 You don’t need to add any more data to the instances of the type.
 You can’t change the type itself, because it’s in someone else’s code.

One slight variation on this is where you want to work with an interface instead of a
class, adding useful behavior while only calling methods on the interface. A good
example of this is IList<T>. Wouldn’t it be nice to be able to sort any (mutable)
implementation of IList<T>? It’d be horrendous to force each implementation of the
interface to implement sorting, but it’d be nice from the point of view of the user of
the list.

 The thing is, IList<T> provides all the building blocks for a completely generic
sort routine (several, in fact), but you can’t put that implementation in the interface.
IList<T> could’ve been specified as an abstract class instead, and the sorting func-
tionality included that way, but as C# and .NET have single inheritance of implementa-
tion, that would’ve placed a significant restriction on the types deriving from it. An
extension method on IList<T> would allow you to sort any IList<T> implementa-
tion, making it appear as if the list itself provided the functionality.

1 If you’re getting fed up with hearing about how many features are “an important part of LINQ,” I don’t blame
you, but that’s part of its greatness. There are lots of small parts, but the sum of them is very shiny. The fact

that each feature can be used independently is an added bonus.



264 CHAPTER 10 Extension methods

 You’ll see later that a lot of the functionality of LINQ is built on extension methods
over interfaces. For the moment, though, we’ll use a different type for our examples:
System.IO.Stream, the bedrock of binary communication in .NET. Stream itself is an
abstract class with several concrete derived classes, such as NetworkStream,
FileStream, and MemoryStream. Unfortunately, there are a few pieces of functionality
that would’ve been handy to include in Stream that just aren’t there.

 The missing features I’m most often aware of are the ability to read the whole of a
stream into memory as a byte array, and the ability to copy the contents of one stream
into another.2 Both of these features are frequently implemented badly, making
assumptions about streams that just aren’t valid—the most common misconception
being that Stream.Read will completely fill the buffer if the data doesn’t run out first.

NOT SO “MISSING” AFTER ALL One of these features has been added to .NET 4:
Stream now has a CopyTo method. This is useful in terms of demonstrating
one slightly brittle aspect of extension methods, and we’ll come back to it in
section 10.2.3. ReadFully is still missing, but it should be used carefully any-
way: you should only try to read the entirety of a stream if you’re confident it
actually has an end and that all the data fits into memory. Streams are under
no obligation to have a finite amount of data.

It’d be nice to have the functionality in a single place, rather than duplicating it in sev-
eral projects. That’s why I wrote the StreamUtil class in my miscellaneous utility
library. The real code contains a fair amount of error checking and other functional-
ity, but the following listing shows a cut-down version that’s more than adequate for
our needs.

using System.IO;

public static class StreamUtil
{

const int BufferSize = 8192;

public static void Copy(Stream input, Stream output)
{

byte[] buffer = new byte[BufferSize];
int read;
while ((read = input.Read(buffer, 0, buffer.Length)) > 0)
{

output.Write(buffer, 0, read);
}

}
public static byte[] ReadFully(Stream input)
{

using (MemoryStream tempStream = new MemoryStream())

2 Due to the nature of streams, this copying doesn’t necessarily duplicate the data—it just reads it from one
stream and writes it to another. Although copy isn’t a strictly accurate term in this sense, the difference is usu-

Listing 10.1 A simple utility class to provide extra functionality for streams
ally irrelevant.
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{
Copy(input, tempStream);
return tempStream.ToArray();

}
}

}

The implementation details don’t matter much, although it’s worth noting that the
ReadFully method calls the Copy method—that’ll be useful to demonstrate a point
about extension methods later. 

 The class is easy to use—the following listing shows how you can write a web
response to disk, for example.

WebRequest request = WebRequest.Create("http://manning.com");
using (WebResponse response = request.GetResponse())
using (Stream responseStream = response.GetResponseStream())
using (FileStream output = File.Create("response.dat"))
{

StreamUtil.Copy(responseStream, output);
}

Listing 10.2 is quite compact, and the StreamUtil class has taken care of looping and
asking the response stream for more data until it’s all been received. It’s done its job
as a utility class perfectly reasonably. Even so, it doesn’t feel very object-oriented. It’d
be better to ask the response stream to copy itself to the output stream, just like the
MemoryStream class has a WriteTo method. It’s not a big problem, but it’s a little ugly
as it is.

 Inheritance wouldn’t help you in this situation (you want this behavior to be avail-
able for all streams, not just ones you’re responsible for), and you can’t go changing
the Stream class itself, so what can you do? With C# 2, you were out of options—you
had to stick with the static methods and live with the clumsiness. C# 3 allows you to
change your static class to expose its members as extension methods, so you can pre-
tend that the methods have been part of Stream all along. Let’s see what changes are
required. 

10.2 Extension method syntax
Extension methods are almost embarrassingly easy to create, and they’re simple to
use, too. The considerations around when and how to use them are significantly
deeper than the difficulties involved in learning how to write them in the first place.
Let’s start by converting the StreamUtil class so it has a couple of extension methods.

10.2.1 Declaring extension methods

You can’t use just any method as an extension method—it must have the following
characteristics:

Listing 10.2 Using StreamUtil to copy a web response stream to a file
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 It must be in a non-nested, nongeneric static class (and therefore must be a
static method).

 It must have at least one parameter.
 The first parameter must be prefixed with the this keyword.
 The first parameter can’t have any other modifiers (such as out or ref).
 The type of the first parameter must not be a pointer type.

That’s it—the method can be generic, return a value, have ref/out parameters other
than the first one, be implemented with an iterator block, be part of a partial class, use
nullable types—anything, as long as the preceding constraints are met.

 We’ll call the type of the first parameter the extended type of the method and say that
the method extends that type—in this case, we’re extending Stream. This isn’t official
terminology from the specification, but it’s a useful piece of shorthand.

 Not only does the previous list provide all the restrictions, but it also gives the
details of what you need to do to turn a normal static method in a static class into an
extension method—just add the this keyword. The following listing shows the same
class as in listing 10.1, but this time with both methods as extension methods.

public static class StreamUtil
{

const int BufferSize = 8192;

public static void CopyTo(this Stream input, Stream output)
{

byte[] buffer = new byte[BufferSize];
int read;
while ((read = input.Read(buffer, 0, buffer.Length)) > 0)
{

output.Write(buffer, 0, read);
}

}

public static byte[] ReadFully(this Stream input)
{

using (MemoryStream tempStream = new MemoryStream())
{

CopyTo(input, tempStream);
return tempStream.ToArray();

}
}

}

Yes, the only big change in listing 10.3 is the addition of the two modifiers shown in
bold. I’ve also changed the name of the method from Copy to CopyTo. As you’ll see in
a minute, that’ll allow calling code to read more naturally, although it does look
slightly strange in the ReadFully method at the moment.

 Now, it’s not much use having extension methods if you can’t use them… 

Listing 10.3 The StreamUtil class again, but this time with extension methods
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10.2.2 Calling extension methods

I’ve mentioned it in passing, but you haven’t yet seen what an extension method actu-
ally does. Simply put, it pretends to be an instance method of another type—the type
of the first parameter of the method.

 The transformation of code that uses StreamUtil is as simple as the transforma-
tion of the utility class itself. This time, instead of adding something in, we’ll take it
away. The following listing is a repeat performance of listing 10.2, but using the new
syntax to call CopyTo. I say “new,” but it’s really not new at all—it’s the same syntax
you’ve always used for calling instance methods.

WebRequest request = WebRequest.Create("http://manning.com");
using (WebResponse response = request.GetResponse())
using (Stream responseStream = response.GetResponseStream())
using (FileStream output = File.Create("response.dat"))
{

responseStream.CopyTo(output);
}

In listing 10.4 it at least looks like you’re asking the response stream to do the copying.
It’s still StreamUtil doing the work behind the scenes, but the code reads in a more
natural way. In fact, the compiler has converted the CopyTo call into a normal static
method call to StreamUtil.CopyTo, passing the value of responseStream as the first
argument (followed by output as normal).

 Now that you can see the code in question, I hope you understand why I changed
the method name from Copy to CopyTo. Some names work just as well for static meth-
ods as instance methods, but you’ll find that others need tweaking to get the maxi-
mum readability benefit.

 If you want to make the StreamUtil code slightly more pleasant, you can change
the line of ReadFully that calls CopyTo like this:

input.CopyTo(tempStream);

At this point, the name change is fully appropriate for all the uses—although there’s
nothing to stop you from using the extension method as a normal static method,
which is useful when you’re migrating a lot of code.

 You may have noticed that nothing in these method calls indicates that you’re
using an extension method instead of a regular instance method of Stream. This can
be seen in two ways: it’s a good thing if your aim is to make extension methods blend
in as much as possible and cause little alarm, but it’s a bad thing if you want to be able
to immediately see what’s really going on. 

 If you’re using Visual Studio, you can hover over a method call and get an indica-
tion in the tooltip when it’s an extension method, as shown in figure 10.1. IntelliSense
also indicates when it’s offering an extension method, in both the icon for the

Listing 10.4 Copying a stream using an extension method
method and the tooltip when it’s selected. Of course, you don’t want to have to hover
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over every method call you make or be super careful with IntelliSense, but most of the
time it doesn’t matter whether you’re calling an instance or extension method. 

 There’s still one rather strange thing about this calling code—it doesn’t mention
StreamUtil anywhere! How does the compiler know to use the extension method in
the first place?

10.2.3 Extension method discovery

It’s important to know how to call extension methods, but it’s also important to know
how to not call them—how to avoid being presented with unwanted options. To
achieve that, you need to know how the compiler decides which extension methods to
use in the first place.

 Extension methods are made available to the code in the same way that classes are
made available without qualification—with using directives. When the compiler sees
an expression that looks like it’s trying to use an instance method, but none of the
instance methods are compatible with the method call (if there’s no method with that
name, for instance, or no overload matches the arguments given), it then looks for an
appropriate extension method. It considers all the extension methods in all the
imported namespaces and the current namespaces, and matches ones where there’s
an implicit conversion from the expression type to the extended type.

WebRequest request = WebRequest.Create("http://manning.com");
using (WebResponse response = request.GetResponse())
using (Stream responseStream = response.GetResponseStream()0
using (FileStream output = File.Create("response.dat"))
{
    responseStream.CopyTo(output);
}

py ( p );

(extension) void Stream.CopyTo(Stream output)

Figure 10.1 Hovering over a method call in Visual Studio reveals whether the 
method is an extension method.

Implementation detail: how does the compiler spot an extension method?
To work out whether it should use an extension method, the compiler has to be able
to tell the difference between an extension method and other methods within a
static class that happen to have an appropriate signature. It does this by checking
whether System.Runtime.CompilerServices.ExtensionAttribute has been
applied to the method and the class. This attribute was introduced in .NET 3.5, but
the compiler doesn’t check which assembly the attribute comes from. This means
that you can still use extension methods even if your project targets .NET 2.0—you
just need to define your own attribute with the right name in the right namespace.
You can then declare your extension methods as normal, and the attribute will be
applied automatically. The compiler also applies the attribute to the assembly con-
taining the extension method, but it doesn’t currently require this when searching for
extension methods.
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If multiple applicable extension methods are available for different extended types
(using implicit conversions), the most appropriate one is chosen with the better con-
version rules used in overloading. For instance, if IDerived inherits from IBase, and
there’s an extension method with the same name for both, then the IDerived exten-
sion method is used in preference to the one on IBase. Again, this feature is used in
LINQ, as you’ll see in section 12.2, where you’ll meet the IQueryable<T> interface.

 It’s important to note that if an applicable instance method is available, that will
always be used before searching for extension methods, but the compiler doesn’t issue
a warning if an extension method also matches an existing instance method. For
example, .NET 4 has a new Stream method that’s also called CopyTo. It has two over-
loads, one of which conflicts with the extension method you just created. The result is
that the new method is picked in preference to the extension method, so if you com-
pile listing 10.4 against .NET 4, you’ll end up using Stream.CopyTo instead of Stream-
Util.CopyTo. You can still call the StreamUtil method statically using the normal
syntax of StreamUtil.CopyTo(input, output), but it’ll never be picked as an exten-
sion method. In this case, there’s no harm to existing code: the new instance method
has the same meaning as your extension method, so it doesn’t matter which one is
used. In other cases, there could be subtle differences in semantics that might be hard
to spot until the code breaks.

 Another potential problem with the way that extension methods are made avail-
able to code is that it’s very wide-ranging. If there are two classes in the same
namespace containing methods with the same extended type, there’s no way of only
using the extension methods from one of the classes. Likewise, there’s no way of
importing a namespace for the sake of making types available using only their simple
names, but without making the extension methods within that namespace available at
the same time. You may want to use a namespace that solely contains static classes with
extension methods to mitigate this problem, unless the rest of the functionality of the
namespace is heavily dependent on the extension methods already (as is the case for
System.Linq, for example).

 One aspect of extension methods can be quite surprising when you first encounter
it, but it’s also useful in some situations. It’s all about null references—let’s take a look. 

10.2.4 Calling a method on a null reference

Anyone who does a significant amount of .NET programming is bound to encounter a

Introducing your own copies of system types can become problematic when you later
need to use a version of the framework that already defines those types. If you do
use this technique, it’s worth using preprocessor symbols to only declare the attri-
bute conditionally. You can then build one version of your code targeting .NET 2.0 and
another targeting .NET 3.5 and higher.
NullReferenceException caused by calling a method via a variable whose value turns
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out to be a null reference. You can’t call instance methods on null references in C#
(although IL itself supports it for nonvirtual calls), but you can call extension methods
with a null reference. This is demonstrated by the following listing. Note that this isn’t
a snippet, since nested classes can’t contain extension methods.

using System;
public static class NullUtil
{

public static bool IsNull(this object x)
{

return x == null;
}

}
public class Test
{

static void Main()
{

object y = null;
Console.WriteLine(y.IsNull());
y = new object();
Console.WriteLine(y.IsNull());

}
}

The output of listing 10.5 is True, and then False. If IsNull had been a normal
instance method, an exception would’ve been thrown in the second line of Main;
instead, IsNull was called with null as the argument. Prior to the advent of extension
methods, C# had no way of letting you write the more readable y.IsNull() form
safely, requiring NullUtil.IsNull(y) instead. 

 There’s one particularly obvious example in the framework where this aspect of
the behavior of extension methods could be useful: string.IsNullOrEmpty. C# 3
allows you to write an extension method that has the same signature (other than the
extra parameter for the extended type) as an existing static method on the extended
type. To save you reading through that sentence several times, here’s an example—
even though the string class has a static, parameterless method IsNullOrEmpty, you
can still create and use the following extension method:

public static bool IsNullOrEmpty(this string text)
{

return string.IsNullOrEmpty(text);
}

At first it seems odd to be able to call IsNullOrEmpty on a variable that’s null without
an exception being thrown, particularly if you’re familiar with it as a static method
from .NET 2.0. But in my view, code using the extension method is more easily under-
standable. For instance, if you read the expression if (name.IsNullOrEmpty()) out
loud, it says exactly what it’s doing. 

Listing 10.5 Extension method being called on a null reference
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 As always, experiment to see what works for you, but be aware of the possibility of
other people using this technique if you’re debugging code. Don’t assume that an
exception will be thrown on a method call unless you’re sure it’s not an extension
method. Also, think carefully before reusing an existing name for an extension
method—the previous extension method could confuse readers who are only familiar
with the static method from the framework.

CHECKING FOR NULLITY I’m sure that, as a conscientious developer, your pro-
duction methods always check their arguments’ validity before proceeding.
One question that naturally arises from this quirky feature of extension meth-
ods is what exception you should throw when the first argument is null
(assuming it’s not meant to be). Should it be ArgumentNullException, as if it
were a normal argument, or should it be NullReferenceException, which is
what would’ve happened if the extension method had been an instance
method to start with? I recommend the former: it’s still an argument, even if
the extension method syntax doesn’t make that obvious. This is the route that
Microsoft has taken for the extension methods in the framework, so it has the
benefit of consistency too. Finally, bear in mind that extension methods can
still be called as normal static methods, and in that situation, Argument-
NullException is clearly the preferred result.

Now that you know the syntax and behavior of extension methods, we can look at
some examples of the ones provided in .NET 3.5 as part of the framework. 

10.3 Extension methods in .NET 3.5
The biggest use of extension methods in the framework is for LINQ. Some LINQ pro-
viders have a few extension methods to help them along, but there are two classes
that stand out, both of them appearing in the System.Linq namespace: Enumerable
and Queryable. These contain many, many extension methods; most of the ones in
Enumerable operate on IEnumerable<T> and most of those in Queryable operate on
IQueryable<T>. We’ll look at the purpose of IQueryable<T> in chapter 12, but for
the moment let’s concentrate on Enumerable.

10.3.1 First steps with Enumerable

Enumerable has a lot of methods in it, and the purpose of this section isn’t to cover all
of them, but to give you enough of a feel for them that you’re comfortable going off
and experimenting. It’s a joy to play with everything available in Enumerable, and it’s
definitely worth firing up Visual Studio or LINQPad for your experiments (rather
than using Snippy), as IntelliSense is handy for this kind of activity. Appendix A gives a
quick rundown of the behavior of all Enumerable’s methods too.

 All the complete examples in this section deal with a simple situation: we’ll start
with a collection of integers and transform it in various ways. Real-life situations are
likely to be somewhat more complicated, usually dealing with business-related types,

so at the end of this section I’ll present a couple examples of the transformation side



272 CHAPTER 10 Extension methods

of things applied to possible business situations, with full source code available on the
book’s website. But those examples are harder to play with than a straightforward col-
lection of numbers. 

 It’s worth considering some recent projects you’ve been working on as you read
this chapter; see if you can think of situations where you could make your code sim-
pler or more readable by using the kind of operations described here.

 There are a few methods in Enumerable that aren’t extension methods, and we’ll
use one of them in the examples for the rest of the chapter. The Range method takes
two int parameters: the number to start with and how many results to yield. The
result is an IEnumerable<int> that returns one number at a time in the obvious way. 

 To demonstrate the Range method and create a framework to play with, let’s print
out the numbers 0 to 9, as shown in the following listing.

var collection = Enumerable.Range(0, 10);

foreach (var element in collection)
{

Console.WriteLine(element);
}

No extension methods are called in listing 10.6, just a plain static method. And yes, it
really does just print the numbers 0 to 9—I never claimed this code would set the
world on fire.

DEFERRED EXECUTION The Range method doesn’t build a list with the appro-
priate numbers—it just yields them at the appropriate time. In other words,
constructing the enumerable instance doesn’t do the bulk of the work; it gets
things ready, so that the data can be provided in a just-in-time fashion at the
appropriate point. This is called deferred execution—you saw this sort of behav-
ior when we looked at iterator blocks in chapter 6, but you’ll see much more
of it in the next chapter.

Pretty much the simplest thing you can do with a sequence of numbers that’s already
in order is to reverse it. The following listing uses the Reverse extension method to do
this—it returns an IEnumerable<T> that yields the same elements as the original
sequence, but in the reverse order.

var collection = Enumerable.Range(0, 10)
.Reverse();

foreach (var element in collection)
{

Console.WriteLine(element);
}

Listing 10.6 Using Enumerable.Range to print out the numbers 0 to 9

Listing 10.7 Reversing a collection with the Reverse method
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Predictably enough, this prints out 9, then 8, then 7, and so on right down to 0. You
called Reverse (seemingly) on an IEnumerable<int>, and the same type has been
returned. This pattern of returning one enumerable based on another is pervasive in
the Enumerable class.

 Let’s do something more adventurous now—we’ll use a lambda expression to
remove the even numbers. 

10.3.2 Filtering with Where and chaining method calls together

The Where extension method is a simple but powerful way of filtering collections. It
accepts a predicate, which it applies to each of the elements of the original collection.
It returns an IEnumerable<T>, and any element that matches the predicate is included
in the resulting collection. 

 Listing 10.8 demonstrates this, applying the odd/even filter to the collection of
integers before reversing it. You don’t have to use a lambda expression here; for
instance, you could use a delegate you’d created earlier, or an anonymous method. In
this case (and in many other real-life situations), it’s simple to put the filtering logic
inline, and lambda expressions keep the code concise.

var collection = Enumerable.Range(0, 10)
.Where(x => x % 2 != 0)
.Reverse();

foreach (var element in collection)
{

Console.WriteLine(element);

Listing 10.8 Using the Where method with a lambda expression to find odd numbers

Efficiency: buffering versus streaming
The extension methods provided by the framework stream or pipe data wherever pos-
sible. When an iterator is asked for its next element, it’ll often take an element from
the iterator it’s chained to, process that element, and then return something appro-
priate, preferably without using any more storage itself. Simple transformations and
filters can do this easily, and it’s a powerful way of efficiently processing data where
it’s possible, but some operations, such as reversing the order or sorting, require all
the data to be available, so it’s all loaded into memory for bulk processing. The dif-
ference between this buffered approach and piping is similar to the difference
between reading data by loading a whole DataSet versus using a DataReader to pro-
cess one record at a time. It’s important to consider what’s required when using
LINQ—a single method call can have significant performance implications.

Streaming is also known as lazy evaluation, and buffering is also known as eager
evaluation. For example, the Reverse method uses deferred execution (it does noth-
ing until the first call to MoveNext), but it then eagerly evaluates its data source. Per-
sonally, I dislike the terms lazy and eager, as they mean different things to different
people (a topic I discuss more in my “Just how lazy are you?” blog entry: http://
mng.bz/3LLM). 
}



274 CHAPTER 10 Extension methods

Listing 10.8 prints out the numbers 9, 7, 5, 3, and 1. Hopefully, you’ll have noticed a
pattern forming—you’re chaining the method calls together. The chaining idea itself
isn’t new. For example, StringBuilder.Replace always returns the instance you call it
on, allowing code like this:

builder = builder.Replace("<", "&lt;")
.Replace(">", "&gt;")
...

In contrast, String.Replace returns a string, but a new one each time—this allows
chaining, but in a slightly different way. Both patterns are handy to know about; the
“return the same reference” pattern works well for mutable types, whereas “return a
new instance that’s a copy of the original with some changes” is required for immuta-
ble types.

 Chaining with instance methods like String.Replace and StringBuilder

.Replace has always been simple, but extension methods allow static method calls to
be chained together. This is one of the primary reasons why extension methods exist. They’re
useful for other utility classes, but their true power is revealed in this ability to chain
static methods in a natural way. That’s why extension methods primarily show up in
Enumerable and Queryable in .NET: LINQ is geared toward this approach to data pro-
cessing, with information effectively traveling through pipelines constructed of indi-
vidual operations chained together.

EFFICIENCY CONSIDERATION: REORDERING METHOD CALLS TO AVOID WASTE I’m
not a fan of micro-optimization without good cause, but it’s worth looking at
the ordering of the method calls in listing 10.8. You could’ve added the Where
call after the Reverse call and achieved the same results, but that would’ve
wasted some effort—the Reverse call would’ve had to work out where the
even numbers should come in the sequence even though they’ll be discarded
from the final result. In this case, it won’t make much difference, but it can
have a significant effect on performance in real situations; if you can reduce
the amount of wasted work without compromising readability, that’s a good
thing. That doesn’t mean you should always put filters at the start of the pipe-
line, though; you need to think carefully about any reordering to make sure
you get the correct results.

There are two obvious ways of writing the first part of listing 10.8 without using the
fact that Reverse and Where are extension methods. One is to use a temporary vari-
able, which keeps the structure intact:

var collection = Enumerable.Range(0, 10);
collection = Enumerable.Where(collection, x => x % 2 != 0)
collection = Enumerable.Reverse(collection);

I hope you’ll agree that the meaning of the code is far less clear here than in listing 10.8. 
 It gets even worse with the other option, which is to keep the single-statement style:
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var collection = Enumerable.Reverse
(Enumerable.Where

(Enumerable.Range(0, 10),
x => x % 2 != 0));

The method call order appears to be reversed, because the innermost method call
(Range) will be performed first, then the others, with execution working its way out-
ward. Even with just three method calls it’s ugly—it becomes far worse for queries
involving more operators.

 Before we move on, let’s think a bit about what the Where method does. 

10.3.3 Interlude: haven’t we seen the Where method before?

If the Where method feels familiar, it’s because you implemented it in chapter 6. All
you need to do is convert listing 6.9 into an extension method and change the dele-
gate type from Predicate<T> to Func<T,bool> and you have a perfectly good alterna-
tive implementation to Enumerable.Where:

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
Func<T, bool> predicate)

{
if (source == null || predicate == null)
{

throw new ArgumentNullException();
}
return WhereImpl(source, predicate);

}
private static IEnumerable<T> WhereImpl<T>(IEnumerable<T> source,

Func<T, bool> predicate)
{

foreach (T item in source)
{

if (predicate(item))
{

yield return item;
}

}
}

You can change the last part of listing 6.9 to make it look more LINQ-like, too:

foreach (string line in LineReader.ReadLines("../../FakeLinq.cs")
                 .Where(line => line.StartsWith("using")))

{
Console.WriteLine(line);

}

This is effectively a LINQ query without using the System.Linq namespace. It would
work perfectly well in .NET 2.0 if you declared the appropriate Func delegate and
[ExtensionAttribute]. You could even use that implementation for the where clause
in a query expression (while still targeting .NET 2.0), as you’ll see in the next chap-
ter—but let’s not get ahead of ourselves. 
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 Filtering is one of the simplest operations in a query, and another is transforming
or projecting the results. 

10.3.4 Projections using the Select method and anonymous types

The most commonly used projection method in Enumerable is Select. It operates on
an IEnumerable<TSource> and projects it into an IEnumerable<TResult> by way of a
Func<TSource,TResult>, which is the transformation to use on each element, speci-
fied as a delegate. It’s much like the ConvertAll method in List<T>, but it operates
on any enumerable collection and uses deferred execution to perform the projection
when each element is requested.

 When I introduced anonymous types, I said they were useful with lambda expres-
sions and LINQ—here’s an example of the kind of thing you can do with them. You
currently have the odd numbers from 0 to 9 (in reverse order)—let’s create a type that
encapsulates the square root of the number as well as the original number. The fol-
lowing listing shows both the projection and a slightly modified way of writing out the
results. I’ve adjusted the whitespace solely for the sake of space on the printed page.

var collection = Enumerable.Range(0, 10)
.Where(x => x % 2 != 0)
.Reverse()
.Select(x => new { Original = x, SquareRoot = Math.Sqrt(x) } );

foreach (var element in collection)
{

Console.WriteLine("sqrt({0})={1}",
element.Original,
element.SquareRoot);

}

This time the type of collection isn’t IEnumerable<int>—it’s IEnumerable

<Something>, where Something is the anonymous type created by the compiler. You
can’t give the collection variable an explicit type other than the nongeneric
IEnumerable type or object. Implicit typing (with var) is what allows you to use the
Original and SquareRoot properties when writing out the results. 

 The output of listing 10.9 is as follows:

sqrt(9)=3
sqrt(7)=2.64575131106459
sqrt(5)=2.23606797749979
sqrt(3)=1.73205080756888
sqrt(1)=1

Of course, a Select method doesn’t have to use an anonymous type at all—you
could’ve selected just the square root of the number, discarding the original. In that
case, the result would’ve been IEnumerable<double>. Alternatively, you could’ve man-
ually written a type to encapsulate an integer and its square root—it was just easiest to

Listing 10.9 Projection using a lambda expression and an anonymous type
use an anonymous type in this case.
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 Let’s look at one last method to round off our coverage of Enumerable for the
moment: OrderBy. 

10.3.5 Sorting using the OrderBy method

Sorting is a common requirement when processing data, and in LINQ this is usually
performed by using the OrderBy or OrderByDescending methods. The first call is
sometimes followed by ThenBy or ThenByDescending if you need to sort by more than
one property of the data. This ability to sort on multiple properties has always been
available the hard way using a complicated comparison, but it’s much clearer to be
able to present a series of simple comparisons.

 To demonstrate this, let’s make a small change to the operations involved. You’ll
start off with the integers –5 to 5 (inclusive, so there are 11 elements in total), and
then project to an anonymous type containing the original number and its square
(rather than square root). Finally, you’ll sort by the square and then the original num-
ber. The following listing shows all of this.

var collection = Enumerable.Range(-5, 11)
.Select(x => new { Original = x, Square = x * x })
.OrderBy(x => x.Square)
.ThenBy(x => x.Original);

foreach (var element in collection)
{

Console.WriteLine(element);
}

Note how aside from the call to Enumerable.Range, the code reads almost exactly like
the textual description. The anonymous type’s ToString implementation does the for-
matting this time, and here are the results:

{ Original = 0, Square = 0 }
{ Original = -1, Square = 1 }
{ Original = 1, Square = 1 }
{ Original = -2, Square = 4 }
{ Original = 2, Square = 4 }
{ Original = -3, Square = 9 }
{ Original = 3, Square = 9 }
{ Original = -4, Square = 16 }
{ Original = 4, Square = 16 }
{ Original = -5, Square = 25 }
{ Original = 5, Square = 25 }

As intended, the main sorting property is Square, but when two values have the same
square, the negative original number is always sorted before the positive one. Writing
a single comparison to do the same kind of thing (in a general case—there are mathe-
matical tricks to cope with this particular example) would’ve been significantly more
complicated, to the extent that you wouldn’t want to include the code inline in the

Listing 10.10 Ordering a sequence by two properties
lambda expression.
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 One thing to note is that the ordering doesn’t change an existing collection—it
returns a new sequence that yields the same data as the input sequence, except sorted.
Contrast this with List<T>.Sort or Array.Sort, which both change the element
order within the list or array. LINQ operators are intended to be side-effect free: they
don’t affect their input, and they don’t make any other changes to the environment,
unless you’re iterating through a naturally stateful sequence (such as reading from a
network stream) or a delegate argument has side effects. This is an approach from
functional programming, and it leads to code that’s more readable, testable, compos-
able, predictable, thread-safe, and robust.

 We’ve looked at just a few of the many extension methods available in Enumerable,
but hopefully you can appreciate how neatly they can be chained together. In the next
chapter you’ll see how this can be expressed in a different way using extra syntax pro-
vided by C# 3 (query expressions), and we’ll look at some other operations we haven’t
covered here. It’s worth remembering that you don’t have to use query expressions—
often it can be simpler to make a couple of calls to methods in Enumerable, using
extension methods to chain operations together.

 Now that you’ve seen how all these apply to the collection-of-numbers example, it’s
time for me to make good on the promise of showing you some business-related
examples. 

10.3.6 Business examples involving chaining

Much of what we do as developers involves moving data around. In fact, for many appli-
cations that’s the only meaningful thing we do—the user interface, web services, data-
base, and other components often exist solely to get data from one place to another, or
from one form into another. It should come as no surprise that the extension methods
we’ve looked at in this section are well suited to many business problems. 

 I’ll just give a couple of examples here. I’m sure you’ll be able to imagine how C# 3
and the Enumerable class can help you solve problems involving your business require-
ments more expressively than before. For each example, I’ll only include a sample
query—it should be enough to help you understand the purpose of the code, but
without all the baggage. Full working code is on the book’s website.

AGGREGATION: SUMMING SALARIES

The first example involves a company composed of several departments. Each depart-
ment has a number of employees, each of whom has a salary. Suppose you want to
report on total salary cost by department, with the most expensive department listed
first. The query is simply as follows:

company.Departments
.Select(dept => new
{

dept.Name,
Cost = dept.Employees.Sum(person => person.Salary)

})

.OrderByDescending(deptWithCost => deptWithCost.Cost);
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This query uses an anonymous type to keep the department name (using a projection
initializer) and the sum of the salaries of all the employees within that department.
The salary summation uses a self-explanatory Sum extension method, again part of
Enumerable. 

 In the result, the department name and total salary can be retrieved as properties.
If you wanted the original department reference, you’d just need to change the anon-
ymous type used in the Select method. 

GROUPING: COUNTING BUGS ASSIGNED TO DEVELOPERS

If you’re a professional developer, I’m sure you’ve seen many project management
tools giving you different metrics. If you have access to the raw data, LINQ can help
you transform it in practically any way you choose. 

 As a simple example, let’s look at a list of developers and how many bugs they have
assigned to them at the moment:

bugs.GroupBy(bug => bug.AssignedTo)
.Select(list => new { Developer = list.Key, Count = list.Count() })
.OrderByDescending(x => x.Count);

This query uses the GroupBy extension method, which groups the original collection
by a projection (the developer assigned to fix the bug, in this case), resulting in an
IGrouping<TKey,TElement>. There are many overloads of GroupBy, but this example
uses the simplest one and then selects just the key (the name of the developer) and
the number of bugs assigned to him. After that you order the result to show the devel-
opers with the most bugs first.

 One of the problems when looking at the Enumerable class can be working out
exactly what’s going on; for example, one of the overloads of GroupBy has four type
parameters and five normal parameters (three of which are delegates). Don’t panic—
just follow the steps shown in chapter 3, assigning different types to different type
parameters until you have a concrete example of what the method would look like.
That usually makes it a lot easier to understand what’s going on.

 These examples aren’t particularly involved, but I hope you can see the power of
chaining method calls together, where each method takes an original collection and
returns another one in some form or other, whether by filtering out some values,
ordering values, transforming each element, aggregating some values, or using other
options. In many cases, the resulting code can be read aloud and understood immedi-
ately, and in other situations it’s still usually a lot simpler than the equivalent code
would’ve been in previous versions of C#.

 We’ll use the example of defect tracking as our sample data when we look at
query expressions in the next chapter. Now that you’ve seen some of the extension
methods that are provided, let’s consider just how and when it makes sense to write
them yourself. 
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10.4 Usage ideas and guidelines
Like implicit typing of local variables, extension methods are controversial. It’d be dif-
ficult to claim that they make the overall aim of the code harder to understand in
many cases, but at the same time they do obscure the details of which method is get-
ting called. In the words of one of the lecturers at my university, “I’m hiding the truth
in order to show you a bigger truth.” If you believe that the most important aspect of
the code is its result, extension methods are great. If the implementation is more
important to you, then explicitly calling a static method is more clear. Effectively, it’s
the difference between the what and the how.

 We’ve already looked at using extension methods for utility classes and method
chaining, but before we discuss the pros and cons further, it’s worth calling out a cou-
ple of aspects that may not be obvious.

10.4.1 “Extending the world” and making interfaces richer

Wes Dyer, a former developer on the C# compiler team, has a fantastic blog covering
all kinds of subject matter (see http://blogs.msdn.com/b/wesdyer/). One of his
posts about extension methods particularly caught my attention (see http://mng.bz/
I4F2). It’s called “Extending the World,” and it talks about how extension methods
can make code easier to read by effectively adapting your environment to your needs:

Typically for a given problem, a programmer is accustomed to building up a solution
until it finally meets the requirements. Now, it is possible to extend the world to meet the
solution instead of solely just building up until we get to it. That library doesn’t provide
what you need, just extend the library to meet your needs.

This has implications beyond situations where you’d use a utility class. Typically devel-
opers only start creating utility classes when they’ve seen the same kind of code repro-
duced in dozens of places, but extending a library is about clarity of expression as
much as avoiding duplication. Extension methods can make the calling code feel like
the library is richer than it really is.

 You’ve already seen this with IEnumerable<T>, where even the simplest implemen-
tation appears to have a wide set of operations available, such as sorting, grouping, pro-
jection, and filtering. The benefits aren’t limited to interfaces—you can also “extend
the world” with enums, abstract classes, and so forth.

 The .NET Framework also provides a good example of another use for extension
methods: fluent interfaces. 

10.4.2 Fluent interfaces

There used to be a television program in the United Kingdom called Catchphrase. The
idea was that contestants would watch a screen where an animation would show some
cryptic version of a phrase or saying, which they’d have to guess. The host would often
try to help by instructing them: “Say what you see.” That’s pretty much the idea
behind fluent interfaces—that if you read the code verbatim, its purpose will leap off

http://blogs.msdn.com/b/wesdyer/
http://mng.bz/I4F2
http://mng.bz/I4F2
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the screen as if it were written in a natural human language. The term “fluent inter-
faces” was originally coined by Martin Fowler (see his blog entry at http://mng.bz/
3T9T) and Eric Evans. 

 If you’re familiar with domain-specific languages (DSLs), you may be wondering what
the differences are between a fluent interface and a DSL. A lot has been written on the
subject, but the consensus seems to be that a DSL has more freedom to create its own
syntax and grammar, whereas a fluent interface is constrained by the host language
(C#, in our case).

 Some good examples of fluent interfaces in the framework are the OrderBy and
ThenBy methods: with a bit of interpretation of lambda expressions, the code explains
exactly what it does. In the case of listing 10.10 earlier, you could read “order by the
square, then by the original number” without much work. Statements end up reading
as whole sentences rather than individual noun-verb phrases.

 Writing fluent interfaces can require a change of mindset. Method names defy the
normal descriptive-verb form, with And, Then, and If sometimes being suitable meth-
ods in a fluent interface. The methods themselves often do little more than set up con-
text for future calls, often returning a type whose sole purpose is to act as a bridge
between calls. Figure 10.2 illustrates how this bridging works. It only uses two extension
methods (on int and TimeSpan), but they make all the difference in the readability.

 The grammar of the example in figure 10.2 could have many different forms; you
may be able to add additional attendees to an UntimedMeeting or create an Unat-
tendedMeeting at a particular time before specifying the attendees, for instance. For a
lot more guidance on DSLs, see DSLs in Boo: Domain-Specific Languages in .NET by
Ayende Rahien (Manning, 2010).

 C# 3 only supports extension methods rather than extension properties, which restricts
fluent interfaces slightly. It means you can’t have expressions such as 1.week.from.now
or 2.days + 10.hours (which are both valid in Groovy with an appropriate package—
see Groovy’s Google Data Support: http://groovy.codehaus.org/Google+Data+
Support), but with a few superfluous parentheses you can achieve similar results. At first
it looks odd to call a method on a number (such as 2.Dollars() or 3.Meters()), but
it’s hard to deny that the meaning is clear. Without extension methods, this sort of
clarity isn’t possible when you need to act on types such as numbers that aren’t under
your control.

Meeting.Between("Jon")

       .And("Russell")

       .At(8.OClock().Tomorrow())

Returns SoloMeeting

Returns UntimedMeeting

Returns Meeting

Returns TimeSpan

Returns DateTime

Figure 10.2 Pulling apart a fluent 
interface expression to create a 
meeting. The time of the meeting is 
specified using extension methods to 
create a TimeSpan from an int, and 
a DateTime from a TimeSpan.

http://mng.bz/3T9T
http://mng.bz/3T9T
http://groovy.codehaus.org/Google+Data+Support
http://groovy.codehaus.org/Google+Data+Support


282 CHAPTER 10 Extension methods

At the time of this writing, the development community is still on the fence about flu-
ent interfaces: they’re relatively rare in most fields, although many mocking and unit
testing libraries have at least some fluent aspects. They’re certainly not universally
applicable, but in the right situations they can radically transform the readability of
the calling code. As an example, with appropriate extension methods from my Misc-
Util library, I can iterate over every day I’ve been alive in a readable way:

foreach (DateTime day in 19.June(1976).To(DateTime.Today)
.Step(1.Days()))

Although the range-related implementation details are complicated, the extension
methods allowing 19.June(1976) and 1.Days() are extremely simple. This is culture-
specific code, which you may not want to expose in your production code, but it can
make unit tests a great deal more pleasant.

 These aren’t the only uses available for extension methods, of course. I’ve used
them for argument validation, implementing alternative approaches to LINQ, adding
my own operators to LINQ to Objects, making composite comparisons easier to build,
adding more flag-related functionality to enums, and much more. I’m constantly
amazed at how such a simple feature can have such a profound impact on readability
when used appropriately. The key word there is “appropriately,” which is easier to say
than describe. 

10.4.3 Using extension methods sensibly

I’m in no position to dictate how you write your code. It may be possible to write tests
to objectively measure readability for an average developer, but it only matters for
those who’re going to use and maintain your code. You need to consult with the rele-
vant people as far as you can, presenting different options and getting appropriate
feedback. Extension methods make this particularly easy in many cases, as you can
demonstrate both options in working code simultaneously—turning a method into an
extension method doesn’t stop you from calling it explicitly in the same way as before.

 The main question to ask is the one I referred to at the start of this section: is the
“what does it do” aspect of the code more important than the “how does it do it” aspect?
That varies by person and situation, but here are some guidelines to bear in mind:

 Everyone on the development team should be aware of extension methods and
where they might be used. Where possible, avoid surprising code maintainers.

 By putting extensions in their own namespace, you make it hard to use them
accidentally. Even if it’s not obvious when reading the code, the developers writ-
ing it should be aware of what they’re doing. Use a project-wide or company-
wide convention for naming the namespace. You may choose to take this one
step further and use a single namespace for each extended type. For instance,
you could create a TypeExtensions namespace for classes that extend
System.Type.
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 Think carefully before you extend widely used types, such as numbers or
object, or before you write a method where the extended type is a type param-
eter. Some guidelines go as far as to recommend that you shouldn’t do this at
all; I think such extensions have their place, but they should have to really earn
their place in your library. In this situation, it’s even more important that the
extension method be either internal or in its own namespace; I wouldn’t want
IntelliSense to be suggesting the June extension method everywhere I used an
integer, for example—only in classes that used at least some extension methods
related to date and time.

 The decision to write an extension method should always be a conscious one. It
shouldn’t become habitual. Not every static method deserves to be an extension
method.

 Document whether the first parameter (the value your method appears to be
called on) is allowed to be null—if it’s not, check the value in the method and
throw an ArgumentNullException if necessary.

 Be careful not to use a method name that already has a meaning in the
extended type. If the extended type is a framework type or comes from a third-
party library, check all your extended method names whenever you change ver-
sions of the library. If you’re lucky (as I was with Stream.CopyTo), the new
meaning is the same as the old, but even so, you may wish to deprecate your
extension method.

 Question your instincts, but acknowledge that they affect your productivity. Just
like with implicit typing, there’s little point in forcing yourself to use a feature
you instinctively dislike.

 Try to group extension methods into static classes dealing with the same
extended type. Sometimes related classes (such as DateTime and TimeSpan) can
be sensibly grouped together, but avoid grouping extension methods targeting
disparate types such as Stream and string within the same class.

 Think really carefully before adding extension methods with the same extended
type and same name in two different namespaces, particularly if there are situa-
tions where the different methods may both be applicable (they have the same
number of parameters). It’s reasonable for adding or removing a using direc-
tive to make a program fail to build, but it’s nasty if it still builds but changes the
behavior.

Few of these guidelines are particularly clear-cut; to some extent you’ll have to feel
your own way to the best use or avoidance of extension methods. It’s perfectly reason-
able to never write your own extension methods at all, and to use the LINQ-related
ones for the readability gains available there. But it’s worth at least thinking about
what’s possible. 
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10.5 Summary
The mechanical aspect of extension methods is straightforward—the feature is simple
to describe and demonstrate. The benefits (and costs) of them are harder to talk
about in a definitive manner—it’s a touchy-feely topic, and different people are
bound to have different views on the value provided.

 In this chapter I’ve tried to show a bit of everything. Early on, we looked at what
the feature achieves in the language, and then we looked at some of the capabilities
available through the framework. In some ways, this was a relatively gentle introduc-
tion to LINQ; we’ll revisit some of the extension methods you’ve seen so far, and look
at some new ones, when we delve into query expressions in the next chapter.

 A wide variety of methods is available within the Enumerable class, and we’ve only
scratched the surface in this chapter. It’s fun to come up with a scenario of your own
devising (whether hypothetical or in a real project) and browse through MSDN to see
what’s available to help you. I urge you to use a sandbox project of some sort to play
with the extension methods provided—it does feel like play rather than work, and
you’re unlikely to want to limit yourself to just the methods you need to achieve your
most immediate goal. Appendix A has a list of the standard query operators from
LINQ, which covers many of the methods within Enumerable.

 New patterns and practices keep emerging in software engineering, and ideas
from some systems often cross-pollinate to others. That’s one of the things that keeps
development exciting. Extension methods allow code to be written in a way that was
previously unavailable in C#, creating fluent interfaces and changing the environment
to suit your code rather than the other way around. Those are just the techniques
we’ve looked at in this chapter—there are bound to be interesting future develop-
ments using the new C# features, whether individually or combined.

 The revolution obviously doesn’t end here. For a few calls, extension methods are
fine. In the next chapter, we’ll look at the real power tools: query expressions and full-
blown LINQ.



Query expressions
and LINQ to Objects
You may be tired of all the hyperbole around LINQ by now. You’ve already seen
some examples in the book, and you’ve almost certainly read a lot about it on the
web. This is where we separate myth from reality:

 LINQ doesn’t turn the most complicated query into a one-liner.
 LINQ doesn’t mean you never need to look at raw SQL again.
 LINQ doesn’t magically imbue you with architectural genius.

This chapter covers
 Streaming sequences of data and deferred execution

 Standard query operators and query expression 
translation

 Range variables and transparent identifiers

 Projecting, filtering, and sorting

 Joining and grouping

 Choosing which syntax to use
285
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Given all that, LINQ is still the best way of expressing queries that I’ve seen within an
object-oriented environment. It’s not a silver bullet, but it’s a very powerful tool to
have in your development armory. We’ll explore two distinct aspects of LINQ: the
framework support and the compiler translation of query expressions. The latter can
look odd to start with, but I’m sure you’ll learn to love them.

 Query expressions are effectively preprocessed by the compiler into “normal”
C# 3, which is then compiled in an ordinary way. This is a neat way of integrating que-
ries into the language without changing the specification in more than one small sec-
tion. Most of this chapter is a list of the preprocessing translations performed by the
compiler, as well as the effects achieved when the result uses the Enumerable exten-
sion methods.

 You won’t see any SQL or XML here—that awaits you in chapter 12. But with this
chapter as a foundation, you should be able to understand what the more exciting
LINQ providers do when you meet them. Call me a spoilsport, but I want to take away
some of their magic. Even without the air of mystery, LINQ is still very cool.

 First let’s consider the basis of LINQ, and how we’ll go about exploring it.

11.1 Introducing LINQ
With a topic as large as LINQ, you need a certain amount of background before you’re
ready to see it in action. In this section we’ll look at a few of the core principles behind
LINQ and at the data model we’ll use for the examples in this chapter and the next. I
know you’re likely to be itching to get into the code, so I’ll keep this fairly brief.

11.1.1 Fundamental concepts in LINQ

One of the problems with reducing the impedance mismatch between two data mod-
els is that it usually involves creating yet another model to act as the bridge. This sec-
tion describes the LINQ model, beginning with its most important aspect: sequences.

SEQUENCES

You’re already familiar with the concept of a sequence: it’s encapsulated by the
IEnumerable and IEnumerable<T> interfaces, and we looked at those fairly closely in
chapter 6 when we studied iterators. A sequence is like a conveyor belt of items—you
fetch them one at a time until either you’re no longer interested or the sequence runs
out of data.

 The key difference between a sequence and other collection data structures, such
as lists and arrays, is that when you’re reading from a sequence, you don’t generally
know how many more items are waiting, and you don’t have access to arbitrary
items—just the current one. Indeed, some sequences could be never-ending; you
could easily have an infinite sequence of random numbers, for example. Lists and
arrays can act as sequences, just as List<T> implements IEnumerable<T>, but the
reverse isn’t always true. You can’t have an infinite array or list, for example.

 Sequences are LINQ’s bread and butter. When you read a query expression, you

should think about the sequences involved; there’s always at least one sequence to
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start with, and it’s usually transformed into other sequences along the way, possibly
being joined with yet more sequences. LINQ query examples on the web frequently
have little explanation, but when you take them apart by looking at each sequence in
turn, things make a lot more sense. As well as being an aid to reading code, this
approach can also help a lot when writing it. Thinking in sequences can be tricky—it’s
a bit of a mental leap sometimes—but if you can get there, it’ll help you immeasurably
when you’re working with LINQ.

 As a simple example, let’s take a query expression running against a list of people.
We’ll apply a filter first, and then a projection, so that we end up with a sequence of
the names of adults: 

var adultNames = from person in people
where person.Age >= 18
select person.Name;

Figure 11.1 shows this query expression graphically, breaking it down into its individ-
ual steps.

 Each arrow represents a sequence—the description is on the left side and some
sample data is on the right. Each box is a step in the query expression. Initially, you
have the whole family (as Person objects); then, after filtering, the sequence only
contains adults (again, as Person objects); and the final result has the names of
those adults as strings. Each time, you take one sequence and apply an operation to
produce a new sequence. The result isn’t the strings Holly and Jon—instead, it’s an
IEnumerable<string>, which, when asked for its elements one by one, will first yield
Holly and then Jon.

All Person objects 
in people

All Person objects with  
an age of at least 18

from person in people

Name="Holly", Age=36
Name="Tom", Age=9 
Name="Jon", Age=36
Name="William", Age=6
Name="Robin", Age=6

(Result of query)

Name="Holly", Age=36
Name="Jon", Age=36

Names of people with 
an age of at least 18

"Holly"
"Jon"

where person.Age >= 18

select person.Name

Figure 11.1 A simple query expression 
broken down into the sequences and 
transformations involved
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This example was straightforward to start with, but we’ll apply the same technique
later to more complicated query expressions in order to understand them more easily.
Some advanced operations involve more than one sequence as input, but it’s still a lot
less to worry about than trying to understand the whole query in one go.

 And why are sequences so important? They’re the basis for a streaming model for
data handling—one that allows you to fetch and process data only when you need it. 

DEFERRED EXECUTION AND STREAMING

When the query expression shown in figure 11.1 is created, no data is processed. The
original list of people isn’t accessed at all.1 Instead, a representation of the query is
built up in memory. Delegate instances are used to represent the predicate testing for
adulthood and the conversion from a person to that person’s name. The wheels only
start turning when the resulting IEnumerable<string> is asked for its first element.

 This aspect of LINQ is called deferred execution. When the first element of the result
is requested, the Select transformation asks the Where transformation for its first ele-
ment. The Where transformation asks the list for its first element, checks whether the
predicate matches (which it does, in this case), and returns that element back to
Select. That in turn extracts the name and returns it as the result.

HAVEN’T WE SEEN THIS BEFORE? You may be getting a sense of déjà vu here,
because I did mention all of this in chapter 10. But it’s such an important
topic that it’s worth covering a second time, in more detail.

That’s a mouthful, but a sequence diagram makes it all much clearer. I’ll collapse the
calls to MoveNext and Current to a single fetch operation; it makes the diagram a lot
simpler. Just remember that each time the fetch occurs, it’s effectively checking for
the end of the sequence as well. Figure 11.2 shows the first few stages of the sample
query expression in operation, when you print out each element of the result using a
foreach loop.

 As you can see in figure 11.2, only one element of data is processed at a time. If you
decided to stop printing output after Holly, you’d never execute any of the operations
on the other elements of the original sequence. Although several stages are involved
here, processing data in a streaming manner like this is efficient and flexible. Regard-
less of how much source data there is, you don’t need to know about more than one
element at any point in time.

 This is a best-case scenario. There are times where in order to fetch the first result
of a query, you have to evaluate all of the data from the source. We’ve already looked
at one example of this in the previous chapter: the Enumerable.Reverse method
needs to fetch all the data available in order to return the last original element as the
first element of the resulting sequence. This makes Reverse a buffering operation,
which can have a huge effect on the efficiency (or even feasibility) of your overall

1 The various parameters involved are checked for nullity, though. This is important to bear in mind if you

implement your own LINQ operators, as you’ll see in chapter 12.
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operation. If you can’t afford to have all the data in memory at one time, you can’t use
buffering operations.

 Just as streaming depends on which operation you perform, some transformations
take place as soon as you call them, rather than using deferred execution. This is
called immediate execution. Generally speaking, operations that return another
sequence (usually an IEnumerable<T> or IQueryable<T>) use deferred execution,
whereas operations that return a single value use immediate execution.

 The operations that are widely available in LINQ are known as the standard query
operators—let’s take a brief look at them now. 

Caller 
(foreach) Select Where List

Fetch
Fetch

Fetch

Return {"Holly", 36}

Check: Age >= 18? Yes

Transform: 
{"Holly", 36} => "Holly"

Return "Holly"

Fetch
Fetch

Fetch

Print "Holly"

Return {"Tom", 9}

Check: Age >= 18? No

Return {"Jon", 36}

Check: Age >= 18? Yes

Fetch

Transform: 
{"Jon", 36} => "Jon"

Return "Jon"

Print "Jon"

(and so on)

Return {"Holly", 36}

Return {"Jon", 36}

Figure 11.2 Sequence diagram of the execution of a query expression
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STANDARD QUERY OPERATORS

LINQ’s standard query operators are a collection of transformations whose meanings are
well understood. LINQ providers are encouraged to implement as many of these oper-
ators as possible, making the implementation obey the expected behavior. This is cru-
cial in providing a consistent query framework across multiple data sources. Of
course, some LINQ providers may expose more functionality, and some of the opera-
tors may not map appropriately to the target domain of the provider, but at least the
opportunity for consistency is there.

IMPLEMENTATION-SPECIFIC DETAILS OF STANDARD OPERATORS Just because the
standard query operators have common general meanings doesn’t mean
they’ll work exactly the same way for every implementation. For example,
some LINQ providers may load the data for a whole query as soon as they
need the first item—if you’re accessing a web service, that may make perfect
sense. Likewise, a query that works in LINQ to Objects may have subtly differ-
ent semantics in LINQ to SQL. This doesn’t mean that LINQ has failed, just
that you need to consider which data source you’re accessing when you write
a query. There’s still a huge advantage in having a single set of query opera-
tors and a consistent query syntax, even though it’s not a panacea.

C# 3 has support for some of the standard query operators built into the language via
query expressions, but you can always choose to call them manually if you find that
makes the code clearer. You may be interested to know that VB9 has more of the oper-
ators present in the language; as ever, there’s a trade-off between the added complex-
ity of including a feature in the language and the benefits that feature brings.
Personally, I think the C# team has done an admirable job; I’ve always been a fan of a
relatively small language with a large library behind it.

OPERATOR OVERLOADING The term operator is used to describe both query
operators (methods such as Select and Where) and the familiar operators
such as addition, equality, and so on. Usually it should be obvious which one I
mean from the context—if I’m talking about LINQ, operator will almost always
refer to a method used as part of a query.

You’ll see some of these operators in the examples as we go through this chapter and
the next, but I don’t aim to give a comprehensive guide to them here; this book is pri-
marily about C#, not the whole of LINQ. You don’t need to know all of the operators in
order to be productive in LINQ, but your experience is likely to grow over time. Appen-
dix A gives a brief description of each of the standard query operators, and MSDN gives
more details of each specific overload. When you run into a problem, check the list: if
it feels like there ought to be a built-in method to help you, there probably is! That’s not
always the case, though—I founded the MoreLINQ open source project to add some
extra operators to LINQ to Objects (see http://code.google.com/p/morelinq/). Like-

wise the Reactive Extensions package (see http://mng.bz/R7ip) has additions for the

http://code.google.com/p/morelinq/
http://mng.bz/R7ip
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pull model of LINQ to Objects as well as the push model we’ll look at later. If the stan-
dard operators fail you, check both projects before building your own solution. It’s not
a disaster if you do have to write your own operator, though; it can be a lot of fun. In
chapter 12 I’ll give a few tips on this subject.

 Having mentioned examples, it’s time I introduced the data model that most of
the rest of the sample code in this chapter will use. 

11.1.2 Defining the sample data model

In section 10.3.4 I gave a brief example of defect tracking as a real use for extension
methods and lambda expressions. We’ll use the same idea for almost all of the sample
code in this chapter—it’s a fairly simple model, but one that can be manipulated in
many different ways to give useful information. Defect tracking is also a domain that
most professional developers are all too familiar with, unfortunately.

 Our fictional setting is SkeetySoft, a small software company with big ambitions.
The founders have decided to create an office suite, a media player, and an instant
messaging application. After all, there are no big players in those markets, are there?

 The development department of SkeetySoft consists of five people: two developers
(Deborah and Darren), two testers (Tara and Tim), and a manager (Mary). There’s
currently a single customer: Colin. The aforementioned products are SkeetyOffice,
SkeetyMediaPlayer, and SkeetyTalk, respectively.2 We’ll look at defects logged during
May 2013, using the data model shown in figure 11.3.

 As you can see, there’s not a lot of data being recorded here. In particular, there’s
no real history to the defects, but there’s enough here to let you work with the query
expression features of C# 3. 

 For the purposes of this chapter, all the data is stored in memory. You have a class
named SampleData with properties AllDefects, AllUsers, AllProjects, and All-
Subscriptions, which each return an appropriate type of IEnumerable<T>. The
Start and End properties return DateTime instances for the start and end of May,
respectively, and there are nested classes Users and Projects within SampleData to
provide easy access to a particular user or project. The one type that may not be
immediately obvious is NotificationSubscription; the idea behind this is to send
an email to the specified address every time a defect is created or changed in the rel-
evant project.

 There are 41 defects in the sample data, created using C# 3 object initializers. All
of the code is available on the book’s website, along with the sample data.

 Now that the preliminaries are dealt with, let’s get cracking with some queries!
2 The marketing department of SkeetySoft isn’t particularly creative.
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11.2 Simple beginnings: selecting elements
We’ve already discussed some general LINQ concepts—I’ll introduce the concepts
that are specific to C# 3 as they arise in the course of the chapter. We’ll start with a sim-
ple query (even simpler than the one you saw earlier) and work up to some compli-
cated ones, not only building up your understanding of what the C# 3 compiler is
doing, but also teaching you how to read LINQ code.

 All of the examples will follow the pattern of defining a query and then printing
the results to the console. We won’t look at binding queries to data grids or anything
like that—it’s all important, but not directly relevant to learning C# 3.

 You can use a simple expression that prints out all the users as the starting point
for examining what the compiler is doing behind the scenes and learning about range
variables.

Figure 11.3 Class diagram of the SkeetySoft defect data model
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11.2.1 Starting with a source and ending with a selection

Every query expression in C# 3 starts off in the same way—stating the source of a
sequence of data:

from element in source

The element part is just an identifier, with an optional type name before it. Most of
the time you won’t need the type name, and we won’t have one for the first example.
The source part is a normal expression. Lots of different things can happen after that
first clause, but sooner or later you always end with a select clause or a group clause. 

 We’ll start off with a select clause to keep things nice and simple. The syntax for a
select clause is also easy:

select expression

The select clause is known as a projection. 
 Combining the two together and using a trivial expression gives a simple (and

practically useless) query, as shown in the following listing.

var query = from user in SampleData.AllUsers 
            select user;
foreach (var user in query)
{

Console.WriteLine(user);
}

The query expression is the part in bold. I’ve overridden ToString for each of the
entities in the model, so the results of listing 11.1 are as follows:

User: Tim Trotter (Tester)
User: Tara Tutu (Tester)
User: Deborah Denton (Developer)
User: Darren Dahlia (Developer)
User: Mary Malcop (Manager)
User: Colin Carton (Customer)

You may be wondering how useful this is as an example; after all, you could just use
SampleData.AllUsers directly in the foreach statement. But we’ll use this query
expression—trivial though it is—to introduce two new concepts. First we’ll look at the
general nature of the translation process the compiler uses when it encounters a query
expression, and then we’ll discuss range variables. 

11.2.2 Compiler translations as the basis of query expressions

The C# 3 query expression support is based on the compiler translating query expres-
sions into normal C# code. It does this in a mechanical manner that doesn’t try to
understand the code, apply type inference, check the validity of method calls, or per-
form any of the normal business of a compiler. That’s all done later, after the transla-

Listing 11.1 Trivial query to print the list of users
tion. In many ways, this first phase can be regarded as a preprocessor step. 
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 The compiler translates listing 11.1 into the following code before doing the real
compilation.

var query = SampleData.AllUsers.Select(user => user);

foreach (var user in query)
{

Console.WriteLine(user);
}

The C# 3 compiler translates the query expression into exactly this code before prop-
erly compiling it further. In particular, it doesn’t assume that it should use Enumerable
.Select, or that List<T> will contain a method called Select. It merely translates the
code and then lets the next phase of compilation deal with finding an appropriate
method—whether as a straightforward member or as an extension method.3 The
parameter can be a suitable delegate type or an Expression<T> for an appropriate
type T.

 This is where it’s important that lambda expressions can be converted into both
delegate instances and expression trees. All the examples in this chapter will use dele-
gates, but you’ll see how expression trees are used when we look at the other LINQ
providers in chapter 12. When I present the signatures for some of the methods called
by the compiler later on, remember that these are just the ones called in LINQ to
Objects—whenever the parameter is a delegate type (which most of them are), the
compiler will use a lambda expression as the argument and then try to find a method
with a suitable signature.

 It’s also important to remember that wherever a normal variable (such as a local
variable within the method) appears within a lambda expression after translation has
been performed, it’ll become a captured variable in the same way that you saw back in
chapter 5. This is normal lambda expression behavior, but unless you understand
which variables will be captured, you could easily be confused by the results of your
queries.

 The language specification gives details of the query expression pattern, which must
be implemented for all query expressions to work, but this isn’t defined as an inter-
face as you might expect. That makes a lot of sense: it allows LINQ to be applied to
interfaces such as IEnumerable<T> using extension methods. This chapter tackles
each element of the query expression pattern, one at a time. If you want to see exactly
how the language specification defines each translation, see section 7.16 (“Query
Expressions”).

Listing 11.2 The query expression of listing 11.1 translated into a method call

3 It’s even more general than that—the compiler doesn’t require Select to be a method or SampleData
.AllUsers to be a property access. So long as the translated code compiles, it’s happy. In almost every sensi-
ble case, you’ll access either standard or extension methods, but I have a blog post with some particularly odd
queries that the compiler’s perfectly happy with (see http://mng.bz/7E3i). I haven’t found queries like this
to be useful in practice, but I do like this example as a way of hammering home how mechanical the transla-

tion process is and how it doesn’t care about the meaning of the translated code.

http://mng.bz/7E3i
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 Listing 11.3 illustrates how the compiler translation works: it provides a dummy
implementation of both Select and Where, with Select as a normal instance method
and Where as an extension method. Our original simple query expression only con-
tained a select clause, but this one includes a where clause to show both kinds of
methods in use. This is a full listing rather than a snippet as extension methods can
only be declared in top-level static classes.

static class Extensions
{

public static Dummy<T> Where<T>(this Dummy<T> dummy,
Func<T,bool> predicate)

{
Console.WriteLine("Where called");
return dummy;

}
}

class Dummy<T>
{

public Dummy<U> Select<U>(Func<T,U> selector)
{

Console.WriteLine("Select called");
return new Dummy<U>();

}
}

class TranslationExample
{

static void Main()
{

var source = new Dummy<string>();
var query = from dummy in source

where dummy.ToString() == "Ignored"
select "Anything";

}
}

When you run listing 11.3, it prints Where called and then Select called, just as
you’d expect, because the query expression has been translated into this code:

var query = source.Where(dummy => dummy.ToString() == "Ignored")
.Select(dummy => "Anything");

Of course, you’re not doing any querying or transformation here, but it shows how
the compiler is translating the query expression. If you’re puzzled as to why the
lambda expression in the Select call returns "Anything" instead of just dummy, it’s
because a projection of dummy (which is a do-nothing projection) would be removed
by the compiler in this particular case. We’ll look at that in section 11.3.2, but for the
moment the important idea is the overall type of translation involved. You only need
to learn what translations the C# compiler will use, and then you can take any query

Listing 11.3 Compiler translation calling methods on a dummy LINQ implementation

Declares Where 
extension methodB

Declares Select 
instance methodC

Creates source 
to be queried

D

Calls methods 
via a query 
expressionE
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expression, convert it into the form that doesn’t use query expressions, and then look
at what it’s doing from that point of view.

 Note that you don’t implement IEnumerable<T> at all in Dummy<T>. The translation
from query expressions to normal code doesn’t depend on it, but in practice most
LINQ providers will expose data either as IEnumerable<T> or IQueryable<T> (which
we’ll look at in chapter 12). The fact that the translation doesn’t depend on any par-
ticular types but merely on the method names and parameters is a sort of compile-
time form of duck typing. This is similar to the way that the collection initializers pre-
sented in chapter 8 find a public method called Add using normal overload resolution
rather than using an interface containing an Add method with a particular signature.
Query expressions take this idea one step further—the translation occurs early in the
compilation process in order to allow the compiler to pick either instance methods or
extension methods. You could even consider the translation to be the work of a sepa-
rate preprocessing engine. 

 You may think I’m banging on about this a lot, but it’s all part of removing the mist
that sometimes shrouds LINQ. If you rewrite a query expression as a series of method
calls, effectively doing what the compiler would’ve done, you won’t change the perfor-
mance and your query won’t behave any differently. They’re just two different ways of
representing the same code.

WHY FROM...WHERE...SELECT INSTEAD OF SELECT...FROM...WHERE? Many devel-
opers find the order of the clauses in query expressions confusing to start
with. It looks just like SQL—except back to front. If you look back to the trans-
lation into methods, you’ll see the main reason behind it. The query expres-
sion is processed in the same order that it’s written: you start with a source in
the from clause, then filter it in the where clause, and then project it in the
select clause. Another way of looking at it is to consider the diagrams
throughout this chapter. The data flows from top to bottom, and the boxes
appear in the diagram in the same order as their corresponding clauses
appear in the query expression. Once you get over any initial discomfort due
to unfamiliarity, you may find this approach appealing—I know I do. You may
even find yourself asking the equivalent question about SQL.

You now know that a source level translation is involved, but there’s another crucial
concept to understand before we move on any further. 

11.2.3 Range variables and nontrivial projections

Let’s look back at this chapter’s original query expression in more depth. We haven’t
examined the identifier in the from clause or the expression in the select clause.
Figure 11.4 shows the query expression again, with each part labeled to explain its
purpose.

 The contextual keywords are easy to explain—they specify to the compiler what you
want to do with the data. Likewise, the source expression is a normal C# expression—

a property in this case, but it could just as easily have been a method call or a variable.
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 The tricky bits are the range variable
declaration and the projection expres-
sion. Range variables aren’t like any other
type of variable. In some ways they’re not
variables at all! They’re only available in
query expressions, and they’re effectively
present to propagate context from one
expression to another. They represent
one element of a particular sequence at a
time, and they’re used in the compiler
translation to allow other expressions to
be turned into lambda expressions easily.

 You’ve already seen that the original
query expression was turned into

SampleData.AllUsers.Select(user => user)

The left side of the lambda expression—the part that provides the parameter name—
comes from the range variable declaration. The right side comes from the select
clause. The translation is as simple as that (in this case). It all works out okay because
the same name is used on both sides. 

 Suppose you’d written the query expression like this:

from user in SampleData.AllUsers
select person

In that case, the translated version would’ve been

SampleData.AllUsers.Select(user => person)

At that point, the compiler would’ve complained because it wouldn’t have known
what person referred to. 

 Now that you know how simple the process is, it becomes easier to understand a
query expression that has a slightly more complicated projection. The following list-
ing prints out just the names of our users.

IEnumerable<string> query = from user in SampleData.AllUsers
select user.Name;

foreach (string name in query)
{

Console.WriteLine(name);
}

This time you’re using user.Name as the projection, and the result is a sequence of
strings, not of User objects. (I’ve used an explicitly typed variable to emphasize this
point.) The translation of the query expression follows the same rules as before, and

Listing 11.4 Query selecting just the names of the users

Query expression 
contextual keywords

Range variable 
declaration

Expression using 
range variable

Source expression 
(normal code)

from user in SampleData.AllUsers

select user

Figure 11.4 A simple query expression broken 
down into its constituent parts
becomes
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SampleData.AllUsers.Select(user => user.Name)

The compiler allows this, because the chosen Select extension method from
Enumerable has this signature:4

static IEnumerable<TResult> Select<TSource,TResult>
(this IEnumerable<TSource> source,
Func<TSource,TResult> selector)

The type inference described in chapter 9 kicks in, converting the lambda expression
into a Func<TSource,TResult>. First it infers that TSource is User due to the type of
SampleData.AllUsers. At that point, it knows about the parameter type for the
lambda expression, so it can resolve user.Name as a property access expression return-
ing type string, thus inferring that TResult is string. This is why lambda expressions
allow implicitly typed parameters, and why there are such complicated type inference
rules; these are the gears and pistons of the LINQ engine.

WHY DO YOU NEED TO KNOW ALL THIS? You can almost ignore what’s going on
with range variables a lot of the time. You may have seen many, many queries
and understood what they achieve without ever knowing about what’s going
on behind the scenes. That’s fine when things are working (as they tend to
with examples in tutorials), but when things go wrong, it pays to know about
the details. If you have a query expression that won’t compile because the
compiler is complaining that it doesn’t know about a particular identifier, you
should look at the range variables involved.

So far we’ve only looked at implicitly typed range variables. What happens when you
include a type in the declaration? The answer lies in the Cast and OfType standard
query operators. 

11.2.4 Cast, OfType, and explicitly typed range variables

Most of the time, range variables can be implicitly typed; you’re likely to be working
with generic collections where the specified type is all you need. What if that weren’t
the case, though? What if you had an ArrayList, or perhaps an object[] that you
wanted to perform a query on? It would be a pity if LINQ couldn’t be applied in those
situations. Fortunately, there are two standard query operators that come to the res-
cue: Cast and OfType. Only Cast is supported directly by the query expression syntax,
but we’ll look at both in this section.

 The two operators are similar: both take an arbitrary untyped sequence (they’re
extension methods on the nongeneric IEnumerable type) and return a strongly typed
sequence. Cast does this by casting each element to the target type (and failing on any
element that isn’t of the right type), and OfType does a test first, skipping any ele-
ments of the wrong type.

4 In order to allow all the methods’ signatures in this chapter to fit on the printed page, I’ve omitted the public

modifier. In reality they are all public though.
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 The following listing demonstrates both of these operators, used as simple exten-
sion methods from Enumerable. For a change, we won’t use the SkeetySoft defect sys-
tem for sample data—after all, that’s all strongly typed! Instead, we’ll use two
ArrayList objects.

ArrayList list = new ArrayList { "First", "Second", "Third" };
IEnumerable<string> strings = list.Cast<string>();
foreach (string item in strings)
{

Console.WriteLine(item);
}

list = new ArrayList { 1, "not an int", 2, 3 };
IEnumerable<int> ints = list.OfType<int>();
foreach (int item in ints)
{

Console.WriteLine(item);
}

The first list contains only strings, so it’s safe to use Cast<string> to obtain a
sequence of strings. The second list has mixed content, so in order to fetch just the
integers from it you use OfType<int>. If you’d used Cast<int> on the second list, an
exception would’ve been thrown when you tried to cast “not an int” to int. Note that
this would only have happened after you’d returned 1—both operators stream their
data, converting elements as they fetch them.

IDENTITY, REFERENCE, AND UNBOXING CONVERSIONS ONLY The behavior of Cast
changed subtly in .NET 3.5 SP1. In the original .NET 3.5, it would perform
more conversions, so using Cast<int> on a List<short> would convert each
short into a int as it was fetched. In .NET 3.5 service pack 1 and all later
releases, this will throw an exception. If you want any conversion other than a
reference conversion or an unboxing conversion (or the no-op identity con-
version), use a Select projection instead. OfType only performs these conver-
sions too, but it doesn’t throw an exception if they fail.

When you introduce a range variable with an explicit type, the compiler uses a call
to Cast to make sure the sequence used by the rest of the query expression is of
the appropriate type. The following listing shows this, with a projection using
the Substring method to prove that the sequence generated by the from clause is a
sequence of strings.

ArrayList list = new ArrayList { "First", "Second", "Third"};
var strings = from string entry in list

select entry.Substring(0, 3);

Listing 11.5 Using Cast and OfType to work with weakly typed collections

Listing 11.6 Using an explicitly typed range variable to automatically call Cast
foreach (string start in strings)
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{
Console.WriteLine(start);

}

The output of listing 11.6 is Fir, Sec, Thi, but what’s more interesting is the translated
query expression:

list.Cast<string>().Select(entry => entry.Substring(0,3));

Without the cast, you wouldn’t be able to call Select at all, because the extension
method is only defined for IEnumerable<T> rather than IEnumerable. Even when
you’re using a strongly typed collection, you might still want to use an explicitly typed
range variable. For instance, you could have a collection that’s defined to
be a List<ISomeInterface> but you know that all the elements are instances of
MyImplementation. Using a range variable with an explicit type of MyImplementation
allows you to access all the members of MyImplementation without manually insert-
ing casts all over the code.

 We’ve covered a lot of important conceptual ground so far, even though we
haven’t achieved any impressive results. To recap the most important points briefly:

 LINQ is based on sequences of data, which are streamed wherever possible.
 Creating a query doesn’t usually execute it; most operations use deferred 

execution.
 Query expressions in C# 3 involve a preprocessing phase that converts the

expression into normal C#, which is then compiled properly with all the normal
rules of type inference, overloading, lambda expressions, and so forth.

 The variables declared in query expressions don’t act like anything else; they’re
range variables that allow you to refer to data consistently within the query
expression.

I know that there’s been a lot of somewhat abstract information to take in. Don’t
worry if you’re beginning to wonder if LINQ is worth all this trouble. I promise you
that it is. With a lot of the groundwork out of the way, we can start doing genuinely
useful things—such as filtering data and then ordering it. 

11.3 Filtering and ordering a sequence
You may be surprised to learn that filtering and ordering are two of the simplest oper-
ations to explain in terms of compiler translations. This is because they always return a
sequence with the same element type as their input, which means you don’t need to
worry about any new range variables being introduced. It also helps that you’ve seen
the corresponding extension methods in chapter 10.

11.3.1 Filtering using a where clause

It’s remarkably easy to understand the where clause. The syntax is just

where filter-expression
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The compiler translates this into a call to the Where method with a lambda expression,
which uses the appropriate range variable as the parameter and the filter expression
as the body. The filter expression is applied as a predicate to each element of the
incoming stream of data, and only those that return true are present in the resulting
sequence. 

 Using multiple where clauses results in multiple chained Where calls—only ele-
ments that match all of the predicates are part of the resulting sequence. The following
listing demonstrates a query expression that finds all open defects assigned to Tim.

User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed

           where defect.AssignedTo == tim
select defect.Summary;

foreach (var summary in query)
{

Console.WriteLine(summary);
}

The query expression in listing 11.7 is translated into this:

SampleData.AllDefects.Where (defect => defect.Status != Status.Closed)
.Where(defect => defect.AssignedTo == tim)
.Select(defect => defect.Summary)

The output of listing 11.7 is as follows:

Installation is slow
Subtitles only work in Welsh
Play button points the wrong way
Webcam makes me look bald
Network is saturated when playing WAV file

Of course, you could write a single where clause that combined the two conditions as an
alternative to using multiple where clauses. In some cases this might improve perfor-
mance, but it’s worth bearing the readability of the query expression in mind too, and
this is likely to be fairly subjective. My personal inclination is to combine conditions that
are logically related but keep others separate. In this case both parts of the expression
deal directly with a defect (as that’s all our sequence contains), so it’d be reasonable to
combine them. As before, it’s worth trying both forms to see which is clearer.

 In a moment you’ll start applying some ordering rules to the query, but first we
should look at a small detail to do with the select clause. 

11.3.2 Degenerate query expressions

While we have a fairly simple translation to work with, let’s revisit a point I glossed
over earlier in section 11.2.2 when I first introduced the compiler translations. So far,

Listing 11.7 Query expression using multiple where clauses
all our translated query expressions have included a call to Select. What happens if
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the select clause does nothing, effectively returning the same sequence it’s given?
The answer is that the compiler removes that call to Select, but only if there are other
operations being performed within the query expression. 

 For example, the following query expression just selects all the defects in the system:

from defect in SampleData.AllDefects
select defect

This is known as a degenerate query expression. The compiler deliberately generates a call
to Select even though it seems to do nothing:

SampleData.AllDefects.Select(defect => defect)

There’s a big difference between this and using SampleData.AllDefects as a simple
expression, though. The items returned by the two sequences are the same, but the
result of the Select method is just the sequence of items, not the source itself. The
result of a query expression is never the same object as the source data, unless the LINQ
provider has been poorly coded. This can be important from a data integrity point of
view—a provider can return a mutable result object, knowing that changes to the
returned data sequence won’t affect the master, even in the face of a degenerate query.

 When other operations are involved, there’s no need for the compiler to keep
no-op select clauses. For example, suppose you change the query expression in
listing 11.7 to select the whole defect rather than just the name:

from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == SampleData.Users.TesterTim
select defect

You now don’t need the final call to Select, so the translated code is just this:

SampleData.AllDefects.Where(defect => defect.Status != Status.Closed)
.Where(defect => defect.AssignedTo == tim)

These rules rarely get in the way when you’re writing query expressions, but they can
cause confusion if you decompile the code with a tool such as Reflector—it can be sur-
prising to see the Select call go missing for no apparent reason.

 With that knowledge in hand, it’s time to improve the query so that you know what
Tim should work on next. 

11.3.3 Ordering using an orderby clause

It’s not uncommon for developers and testers to be asked to work on the most critical
defects before they tackle more trivial ones. You can use a simple query to tell Tim the
order in which he should tackle the open defects assigned to him. The following list-
ing does exactly this using an orderby clause, printing out all the details of the defects
in descending order of priority.
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User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
orderby defect.Severity descending
select defect;

foreach (var defect in query)
{

Console.WriteLine("{0}: {1}", defect.Severity, defect.Summary);
}

The output of listing 11.8 shows that you’ve sorted the results appropriately:

Showstopper: Webcam makes me look bald
Major: Subtitles only work in Welsh
Major: Play button points the wrong way
Minor: Network is saturated when playing WAV file
Trivial: Installation is slow

You have two major defects. Which order should those be tackled in? Currently no
clear ordering is involved. 

 Let’s change the query so that after sorting by severity in descending order, you
sort by last modified time in ascending order. This means that Tim will test the defects
that were fixed a long time ago before those addressed more recently. This just
requires an extra expression in the orderby clause, as shown in the following listing.

User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
orderby defect.Severity descending, defect.LastModified
select defect;

foreach (var defect in query)
{

Console.WriteLine("{0}: {1} ({2:d})",
defect.Severity, defect.Summary, defect.LastModified);

}

The results of listing 11.9 are shown here. Note how the order of the two major
defects has been reversed:

Showstopper: Webcam makes me look bald (05/27/2013)
Major: Play button points the wrong way (05/17/2013)
Major: Subtitles only work in Welsh (05/23/2013)
Minor: Network is saturated when playing WAV file (05/31/2013)
Trivial: Installation is slow (05/15/2013)

Listing 11.8 Sorting by the severity of a defect, from high to low priority

Listing 11.9 Ordering by severity and then last modified time
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That’s what the query expression looks like, but what does the compiler do? It simply
calls the OrderBy and ThenBy methods (or OrderByDescending/ThenByDescending
for descending orders). Your query expression is translated into this:

SampleData.AllDefects.Where(defect => defect.Status != Status.Closed)
.Where(defect => defect.AssignedTo == tim)
.OrderByDescending(defect => defect.Severity)
.ThenBy(defect => defect.LastModified)

Now that you’ve seen an example, we can look at the general syntax of orderby
clauses. They’re basically the contextual keyword orderby followed by one or more
orderings. An ordering is just an expression (which can use range variables) optionally
followed by ascending or descending, which have the obvious meanings. (The
default order is ascending.) The translation for the primary ordering is a call to
OrderBy or OrderByDescending, followed by as many calls to ThenBy or ThenBy-
Descending as you have subsequent orderings.

 The difference between OrderBy and ThenBy is simple: OrderBy assumes it has pri-
mary control over the ordering, whereas ThenBy understands that it’s subservient to
one or more previous orderings. For LINQ to Objects, ThenBy is only defined as an
extension method for IOrderedEnumerable<T>, which is the type returned by OrderBy
(and by ThenBy itself, to allow further chaining).

 It’s important to note that although you can use multiple orderby clauses, each
one will start with its own OrderBy or OrderByDescending clause, which means the last
one will effectively win. I’ve yet to see a situation in which this is useful unless you do
something else to the query between orderby clauses; you should almost always use a
single clause containing multiple orderings instead.

 As noted in chapter 10, applying an ordering requires all the data to be loaded (at
least for LINQ to Objects)—you can’t order an infinite sequence, for example. Hope-
fully the reason for this is obvious: you don’t know which element should come at the
start of the resulting sequence until you’ve seen all the elements.

 We’re about halfway through learning about query expressions, and you may be
surprised that we haven’t looked at any joins yet. Obviously they’re important in LINQ,
just as they’re important in SQL, but they’re also complicated. I promise we’ll get to
them in due course, but in order to introduce just one new concept at a time, we’ll
detour through let clauses first. That way we can discuss transparent identifiers
before we hit joins. 

11.4 Let clauses and transparent identifiers
Most of the rest of the operators we still need to look at involve transparent identifiers.
Just like range variables, you can get along perfectly well without understanding trans-
parent identifiers if you only want to have a fairly shallow grasp of query expressions.
If you’ve bought this book, though, you probably want to know C# at a deeper level,
which will (among other things) enable you to look compilation errors in the face and

know what they’re talking about.
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 You don’t need to know everything about transparent identifiers, but I’ll teach you
enough so that if you see one in the language specification, you won’t feel like run-
ning and hiding. You’ll also understand why they’re needed at all—and that’s where
an example will come in handy. The let clause is the simplest transformation avail-
able that uses transparent identifiers.

11.4.1 Introducing an intermediate computation with let

A let clause introduces a new range variable with a value that can be based on other
range variables. The syntax is as easy as pie:

let identifier = expression

To explain this operator in terms that don’t use any other complicated operators, I’ll
resort to a very artificial example. Suspend your disbelief, and imagine that finding
the length of a string is a costly operation. Now imagine that you have a completely
bizarre system requirement to order your users by the lengths of their names and then
display the name and its length. Yes, I know it’s unlikely. The following listing shows
one way of doing this without a let clause.

var query = from user in SampleData.AllUsers
orderby user.Name.Length
select user.Name;

foreach (var name in query)
{

Console.WriteLine("{0}: {1}", name.Length, name);
}

That works fine, but it uses the dreaded Length property twice—once to sort the
users, and once in the display side. Surely not even the fastest supercomputer could
cope with finding the lengths of six strings twice! No, you need to avoid that redundant
computation. 

 You can do so with the let clause, which evaluates an expression and introduces it
as a new range variable. The following code achieves the same result as listing 11.10,
but only uses the Length property once per user.

var query = from user in SampleData.AllUsers
let length = user.Name.Length
orderby length
select new { Name = user.Name, Length = length };

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}", entry.Length, entry.Name);
}

Listing 11.10 Sorting by the lengths of user names without a let clause

Listing 11.11 Using a let clause to remove redundant calculations
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Listing 11.11 introduces a new range variable called length, which contains the
length of the user’s name (for the current user in the original sequence). You then
use that new range variable both for sorting and the projection at the end. Have you
spotted the problem yet? You need to use two range variables, but the lambda expres-
sion passed to Select only takes one parameter! This is where transparent identifiers
come on the scene. 

11.4.2 Transparent identifiers

In listing 11.11 you have two range variables involved in the final projection, but
the Select method only acts on a single sequence. How can you combine the range
variables? 

 The answer is to create an anonymous type that contains both variables, and then
to apply a clever translation to make it look as if you actually have two parameters for
the select and orderby clauses. Figure 11.5 shows the sequences involved.

 The let clause achieves its objectives by using another call to Select, creating an
anonymous type for the resulting sequence, and effectively creating a new range

from user in
SampleData.AllUsers

User: { Name="Tim Trotter" ... }
User: { Name="Tara Tutu" ... }
User: { Name="Dave Denton" ... }
...

user=User: { Name="Tim Trotter" ... }, length=11
user=User: { Name="Tara Tutu" ... }, length=9
user=User: { Name="Dave Denton" ... }, length=11 
...

user=User: { Name="Tara Tutu" ... }, length=9
user=User: { Name="Tim Trotter" ...}, length=11
user=User: { Name="Dave Denton" ... }, length=11 
...

(Result of query)

{ Name="Tara Tutu", Length=9 }
{ Name="Tim Trotter", Length=11 }
{ Name="Dave Denton", Length=11 }
...

Two range variables: 
user and length

Same sequence, 
ordered by length

Name and length in 
an anonymous type

let length = user.Name.Length

orderby length

{ Name "Tara Tutu

select new { Name=user.Name,
Length=length }

Figure 11.5 Sequences involved 
in listing 11.11, where a let
clause introduces the length
range variable



307Joins

variable whose name can never be seen or used in source code. The query expression
from listing 11.11 is translated into something like this:

SampleData.AllUsers
.Select(user => new { user, length = user.Name.Length })
.OrderBy(z => z.length)
.Select(z => new { Name = z.user.Name, Length = z.length })

Each part of the query has been adjusted appropriately: where the original query
expression referenced user or length directly, if the reference occurs after the let
clause, it’s replaced by z.user or z.length. The choice of z as the name here is arbi-
trary—it’s all hidden by the compiler.

ANONYMOUS TYPES ARE AN IMPLEMENTATION DETAIL Strictly speaking, it’s up
to the C# compiler implementation to decide how to group together differ-
ent range variables to make transparent identifiers work. The Microsoft
implementation uses anonymous types, and the specification shows the trans-
lations in those terms as well, so I’ve followed the trend. Even if another com-
piler chose a different approach, it shouldn’t affect the results.

If you consult the language specification about let clauses (section 7.16.2.4), you’ll
see that the translation it describes is from one query expression to another. It uses an
asterisk (*) to represent the transparent identifier introduced. The transparent identi-
fier is then erased as a final step in translation. I won’t use that notation in this chapter,
as it’s hard to come to grips with and unnecessary at the level of detail we’re going
into. Hopefully with this background the specification won’t be quite as impenetrable
as it might be otherwise, should you need to refer to it.

 The good news is that we can now look at the rest of the translations making up
C# 3’s query expression support. I won’t go into the details of every transparent iden-
tifier introduced, but I’ll mention the situations in which they occur. Let’s look at the
support for joins first. 

11.5 Joins
If you’ve ever read anything about SQL, you probably have an idea what a database join
is. It takes two tables (or views, or table-valued functions, and so forth) and creates a
result by matching one set of rows against another set of rows. A LINQ join is similar,
except it works on sequences. Three types of join are available, although not all of
them use the join keyword in the query expression. We’ll start with the join that’s
closest to a SQL inner join.

11.5.1 Inner joins using join clauses

Inner joins involve two sequences. One key selector expression is applied to each ele-
ment of the first sequence, and another key selector (which may be totally different) is
applied to each element of the second sequence. The result of the join is a sequence
of all the pairs of elements where the key from the first element is the same as the key

from the second element.
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TERMINOLOGY CLASH! INNER AND OUTER SEQUENCES The MSDN documentation
for the Join method used to evaluate inner joins calls the sequences involved
inner and outer, and the real method parameters are based on these names
too. This has nothing to do with inner joins and outer joins—it’s just a way of
differentiating between the sequences. You can think of them as first and sec-
ond, left and right, Bert and Ernie—anything you like that helps you. I’ll use
left and right for this chapter, so that it’s clear which is which in the diagrams.
Usually, outer corresponds with left and inner corresponds with right.

The two sequences can be anything you like; the right sequence can even be the same
as the left sequence, if that’s useful. (Imagine finding pairs of people who were born
on the same day, for example.) The only thing that matters is that the two key selector
expressions must result in the same type of key.5

 You can’t join a sequence of people to a sequence of cities by saying that the birth
date of the person is the same as the population of the city—it doesn’t make any
sense. But one important possibility is to use an anonymous type for the key; this
works because anonymous types implement equality and hashing appropriately. If you
need to effectively create a multicolumn key, anonymous types are the way to go. This
is also applicable for the grouping operations we’ll look at later.

 The syntax for an inner join looks more complicated than it is:

[query selecting the left sequence]
join right-range-variable in right-sequence

on left-key-selector equals right-key-selector

Seeing equals as a contextual keyword rather than using symbols can be disconcert-
ing, but it makes it easier to distinguish the left key selector from the right key selec-
tor. Often (but not always) at least one of the key selectors is a trivial one that just
selects the exact element from that sequence. The contextual keyword is used by the
compiler to separate the key selectors into different lambda expressions. The query
processor’s ability to obtain the keys for each value (on each side of the join) is impor-
tant both for performance in LINQ to Objects and for the feasibility of translating the
query into other forms, such as SQL.

 Let’s look at an example from our defect system. Suppose you’ve just added the
notification feature and want to send the first batch of emails for all the existing
defects. You need to join the list of notifications against the list of defects where their
projects match. The following listing performs just such a join.

var query = from defect in SampleData.AllDefects
join subscription in SampleData.AllSubscriptions

on defect.Project equals subscription.Project

5 It’s also valid for there to be two key types involved, with an implicit conversion from one to the other. One
of the types must be a better choice than the other, in the same way that the compiler infers the type of an

Listing 11.12 Joining the defects and notification subscriptions based on project
implicitly typed array. In my experience, you rarely need to consciously consider this detail.
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select new { defect.Summary, subscription.EmailAddress };

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}", entry.EmailAddress, entry.Summary);
}

Listing 11.12 will show each of the media player defects twice—once for mediabugs
@skeetysoft.com and once for theboss@skeetysoft.com (because the boss really cares
about the media player project).

 In this particular case, you could easily have made the join the other way around,
reversing the left and right sequences. The result would’ve been the same entries but
in a different order. The implementation in LINQ to Objects returns entries such that
all the pairs using the first element of the left sequence are returned (in the order of
the right sequence), then all the pairs using the second element of the left sequence,
and so on. The right sequence is buffered, but the left sequence is streamed, so if you
want to join a massive sequence to a tiny one, it’s worth using the tiny one as the right
sequence if you can. The operation is still deferred: it waits until you ask for the first
pair before reading any data from either sequence. At that point, it reads the entirety
of the right sequence in order to build a lookup from keys to the values producing
those keys. After that, it doesn’t need to read from the right sequence again, and can
begin to iterate over the left sequence, yielding pairs appropriately.

 One error that might trip you up is putting the key selectors the wrong way
around. In the left key selector, only the left sequence range variable is in scope; in the
right key selector, only the right range variable is in scope. If you reverse the left and
right sequences, you have to reverse the left and right key selectors too. Fortunately,
the compiler knows that this is a common mistake and suggests the appropriate
course of action.

 Just to make it more obvious what’s going on, figure 11.6 shows the sequences as
they’re processed.

 Often you’ll want to filter the sequence, and filtering before the join occurs is
more efficient than filtering it afterward. At this stage, the query expression is simpler
if the left sequence is the one requiring filtering. For instance, if you wanted to show
only defects that are closed, you could use this query expression:

from defect in SampleData.AllDefects
where defect.Status == Status.Closed
join subscription in SampleData.AllSubscriptions

on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

You can perform the same query with the sequences reversed, but it’s messier:

from subscription in SampleData.AllSubscriptions
join defect in (from defect in SampleData.AllDefects

where defect.Status == Status.Closed
select defect)

on subscription.Project equals defect.Project

select new { defect.Summary, subscription.EmailAddress }
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Note how you can use one query expression inside another—the language specifica-
tion describes many of the compiler translations in these terms. Nested query expres-
sions are useful but hurt readability as well; it’s often worth looking for an alternative,
or using a variable for the sequence on the right in order to make the code clearer.

ARE INNER JOINS USEFUL IN LINQ TO OBJECTS? Inner joins are used all the time
in SQL. They’re effectively the way that you navigate from one entity to a
related one, usually joining a foreign key in one table to the primary key in
another. In the object-oriented model, you tend to navigate from one object
to another via references. For instance, retrieving the summary of a defect
and the name of the user assigned to work on it would require a join in SQL—
in C# you often just use a chain of properties. If you’d had a reverse associa-
tion from Project to the list of NotificationSubscription objects associ-

Defect: { ID=1, Project=Media player, Summary="MP3 files ..." ... }
Defect: { ID=2, Project=Media player, Summary="Text is too big", ...}
Defect: { ID=3, Project=Talk, Summary="Sky is wrong ..." ...}
...

defect = { ID=1 ... }, subscription = { Media player, "media-bugs@..." }
defect = { ID=1 ... }, subscription = { Media player, "theboss@..." }
defect = { ID=2 ... }, subscription = { Media player, "media-bugs@..." }
defect = { ID=2 ... }, subscription = { Media player, "theboss@..." }
defect = { ID=3 ... }, subscription = { Talk, "talk-bugs@..." }

{ Summary="MP3 files ...", EmailAddress="media-bugs@..." }
{ Summary="MP3 files ...", EmailAddress="theboss@..." }
{ Summary="Text is too big", EmailAddress="media-bugs@..." }
{ Summary="Text is too big", EmailAddress="theboss@... }
{ Summary="Sky is wrong ...", EmailAddress="talk-bugs@..." }

(Result of query)

NotificationSubscription sequence: 
{ Media player, "media-bugs@..." },
{ Talk, "talk-bugs@..." },
{ Office, "office-bugs@..." }
{ Media player, "theboss@..."}

All known defects

All subscriptions

Defects and subscriptions 
in two range variables; 

each can appear multiple 
times if the join matches 

more than once

The same sequence 
projected into an 
anonymous type

from defect in SampleData.AllDefects

join subscription in SampleData.AllSubscriptions
on defect.Project equals subscription.Project

from subscription in
SampleData.AllSubscriptions

select new { defect.Summary,
subscription.EmailAddress }

Figure 11.6 The join from listing 11.12 in graphical form, showing two different sequences 
(defects and subscriptions) used as data sources
ated with it in the model, you wouldn’t have needed the join to achieve the
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goal of this example, either. That’s not to say that inner joins aren’t some-
times useful within object-oriented models, but they don’t naturally occur as
often as in relational models.

Inner joins are translated by the compiler into calls to the Join method, like this:

leftSequence.Join(rightSequence,
leftKeySelector,
rightKeySelector,
resultSelector)

The signature of the overload used for LINQ to Objects is as follows (this is the real sig-
nature, with the real parameter names—hence the inner and outer references):

static IEnumerable<TResult> Join<TOuter,TInner,TKey,TResult> (
this IEnumerable<TOuter> outer,
IEnumerable<TInner> inner,
Func<TOuter,TKey> outerKeySelector,
Func<TInner,TKey> innerKeySelector,
Func<TOuter,TInner,TResult> resultSelector

)

The first three parameters are self-explanatory when you’ve remembered to treat inner
and outer as right and left, respectively, but the last one is more interesting. It’s a projec-
tion from two elements (one from the left sequence and one from the right
sequence) into a single element of the resulting sequence. 

 When the join is followed by anything other than a select clause, the C# 3 com-
piler introduces a transparent identifier in order to make the range variables used in
both sequences available for later clauses, and creates an anonymous type and a sim-
ple mapping to use for the resultSelector parameter.

 But if the next part of the query expression is a select clause, the projection from
the select clause is used directly as the resultSelector parameter—there’s no point
in creating a pair and then calling Select when you can do the transformation in one
step. You can still think about it as a “join” step followed by a “select” step, despite the
two being squished into a single method call. This leads to a more consistent mental
model in my view, and one that’s easier to reason about. Unless you’re looking at the
generated code, just ignore the optimization the compiler is performing for you.

 The good news is that, having learned about inner joins, you’ll find the next type
of join much easier to approach. 

11.5.2 Group joins with join...into clauses

You’ve seen that the result sequence from a normal join clause consists of pairs of ele-
ments, one from each of the input sequences. A group join looks similar in terms of the
query expression but has a significantly different outcome. Each element of a group
join result consists of an element from the left sequence (using its original range vari-
able) and a sequence of all the matching elements of the right sequence, exposed as a
new range variable specified by the identifier coming after into in the join clause.
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 Let’s change the previous example to use a group join. The following listing again
shows all the defects and the notifications required for each of them, but it breaks
them out in a per-defect manner. Pay particular attention to how the results are dis-
played with a nested foreach loop.

var query = from defect in SampleData.AllDefects
join subscription in SampleData.AllSubscriptions

on defect.Project equals subscription.Project
into groupedSubscriptions

select new { Defect = defect,
Subscriptions = groupedSubscriptions };

foreach (var entry in query)
{

Console.WriteLine(entry.Defect.Summary);
foreach (var subscription in entry.Subscriptions)
{

Console.WriteLine (" {0}", subscription.EmailAddress);
}

}

The Subscriptions property of each entry is the embedded sequence of subscrip-
tions matching that entry’s defect. Figure 11.7 shows how the two initial sequences are
combined.

 One important difference between an inner join and a group join—and between a
group join and a normal grouping—is that a group join has a one-to-one correspon-
dence between the left sequence and the result sequence, even if some of the ele-
ments in the left sequence don’t match any elements of the right sequence. This can
be important and is sometimes used to simulate a left outer join from SQL. The embed-
ded sequence is empty when the left element doesn’t match any right elements. As
with an inner join, a group join buffers the right sequence but streams the left one.

 Listing 11.14 shows an example of this, counting the number of defects created on
each day in May. It uses a DateTimeRange type to generate a sequence of dates in May
as the left sequence, and a projection that calls Count() on the embedded sequence
in the result of the group join.6

var dates = new DateTimeRange(SampleData.Start, SampleData.End);

var query = from date in dates
join defect in SampleData.AllDefects

on date equals defect.Created.Date
into joined

select new { Date = date, Count = joined.Count() };

Listing 11.13 Joining defects and subscriptions with a group join

Listing 11.14 Counting the number of defects raised on each day in May
6 This is a simple implementation for the sake of the example—not a full-blown, general-purpose range.
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foreach (var grouped in query)
{

Console.WriteLine("{0:d}: {1}", grouped.Date, grouped.Count);
}

The Count() method uses immediate execution, iterating through all the elements of
the sequence it’s called on—but you’re only calling it in the projection part of the
query expression, so it becomes part of a lambda expression. This means you still have
deferred execution; nothing is evaluated until you start the foreach loop.

Defect: { ID=1, Project=Media player, ... }
Defect: { ID=2, Project=Media player, ...}
Defect: { ID=3, Project=Talk, ...}
...

(Result of query)

defect = Defect: { ID=1, Project=Media player ... },
groupedSubscriptions= { Media player, "media-bugs@..." ... }

{ Media player, "theboss@..." ...}

defect = Defect: { ID=2, Project=Media player ... },
groupedSubscriptions=

defect = Defect: { ID=3, Project=Talk ... },
groupedSubscriptions= { Talk, "talk-bugs@..." ... }

...

(NotificationSubscription sequence)

{ Media player, "media-bugs@..." ... }
{ Media player, "theboss@..." ...}

{ Defect=Defect: { ID=1, Project=Media player ... },
Subscriptions= { Media player, "media-bugs@..." ... }

{ Media player, "theboss@..." ...}

{ Defect=Defect: { ID=2, Project=Media player ... },
Subscriptions=

{ Defect=Defect: { ID=3, Project=Talk ... },
Subscriptions= { Talk, "talk-bugs@..." ... }

...

{ Media player, "media-bugs@..." ... }
{ Media player, "theboss@..." ...}

d f f { 1

join subscription in SampleData.AllSubscriptions
on defect.Project equals subscription.Project
into groupedSubscriptions

from subscription in
SampleData.AllSubscriptions

from defect in SampleData.AllDefects

f f

select new { Defect =   defect,
Subscriptions = groupedSubscriptions }

Two range variables: 
defect is only a single 

defect per sequence entry, 
but groupedSubscriptions

has all the matching 
subscriptions

The same sequence 
projected into an 
anonymous type

All known defects

Figure 11.7 Sequences involved in the group join from listing 11.13. The short arrows indicate 
embedded sequences within the result entries. In the output, some entries contain multiple email 

addresses for the same defect.
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Here’s the first part of the results of listing 11.14, showing the number of defects cre-
ated each day in the first week of May:

05/01/2013: 1
05/02/2013: 0
05/03/2013: 2
05/04/2013: 1
05/05/2013: 0
05/06/2013: 1
05/07/2013: 1

The compiler translation involved for a group join is simply a call to the GroupJoin
method in the same way that an inner join translates to a call to Join. Here’s the signa-
ture for Enumerable.GroupJoin:

static IEnumerable<TResult> GroupJoin<TOuter,TInner,TKey,TResult>(
this IEnumerable<TOuter> outer,
IEnumerable<TInner> inner,
Func<TOuter,TKey> outerKeySelector,
Func<TInner,TKey> innerKeySelector,
Func<TOuter,IEnumerable<TInner>,TResult> resultSelector

)

This is exactly the same as for inner joins, except that the resultSelector parameter
has to work with a sequence of right-hand elements, not just a single one. As with
inner joins, if a group join is followed by a select clause, the projection is used as the
result selector of the GroupJoin call; otherwise, a transparent identifier is introduced.
In this case you have a select clause immediately after the group join, so the trans-
lated query looks like this:

dates.GroupJoin(SampleData.AllDefects,
date => date,

                defect => defect.Created.Date,
                (date, joined) => new { Date = date,
                   Count = joined.Count() })

The final type of join is known as a cross join, but it’s not as straightforward as it might
initially seem. 

11.5.3 Cross joins and flattening sequences using multiple from clauses

So far all our joins have been equijoins—a match has been performed between ele-
ments of the left and right sequences. Cross joins don’t perform any matching
between the sequences; the result contains every possible pair of elements. This is
achieved by simply using two (or more) from clauses. For the sake of sanity, we’ll only
consider two from clauses for the moment—when there are more, just mentally per-
form a cross join on the first two from clauses, then cross join the resulting sequence
with the next from clause, and so on. Each extra from clause adds its own range vari-
able via a transparent identifier.
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 The following listing shows a simple (but useless) cross join in action, producing a
sequence where each entry consists of a user and a project. I’ve deliberately picked
two completely unrelated initial sequences to show that no matching is performed.

var query = from user in SampleData.AllUsers
           from project in SampleData.AllProjects

select new { User = user, Project = project };
foreach (var pair in query)
{

Console.WriteLine("{0}/{1}",
pair.User.Name,
pair.Project.Name);

}

The output of listing 11.15 begins like this:

Tim Trotter/Skeety Media Player
Tim Trotter/Skeety Talk
Tim Trotter/Skeety Office
Tara Tutu/Skeety Media Player
Tara Tutu/Skeety Talk
Tara Tutu/Skeety Office

Figure 11.8 shows the sequences involved to get this result.
 If you’re familiar with SQL, you’re probably comfortable so far—it looks just like a

Cartesian product obtained from a query specifying multiple tables. But more power
is available when you want it: the right sequence can depend on the current value of
the left sequence. In other words, each element of the left sequence is used to gener-
ate a right sequence, and then that left element is paired with each element of the
new sequence. When this is the case, it’s not a cross join in the normal sense of the
term. Instead, it’s effectively flattening a sequence of sequences into one single
sequence. The query expression translation is the same whether or not you’re using a
true cross join, so you need to understand the more complicated scenario in order to
understand the translation process.

 Before we dive into the details, let’s see the effect it produces. The following listing
shows a simple example, using sequences of integers.

var query = from left in Enumerable.Range(1, 4)
from right in Enumerable.Range(11, left)
select new { Left = left, Right = right };

foreach (var pair in query)
{

Console.WriteLine("Left={0}; Right={1}",
pair.Left, pair.Right);

}

Listing 11.15 Cross joining users against projects

Listing 11.16 Cross join where the right sequence depends on the left element
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Listing 11.16 starts with a simple range of integers, 1 to 4. For each of those integers,
you create another range, beginning at 11 and having as many elements as the origi-
nal integer. By using multiple from clauses, the left sequence is joined with each of the
generated right sequences, resulting in this output:

Left=1; Right=11
Left=2; Right=11
Left=2; Right=12
Left=3; Right=11
Left=3; Right=12
Left=3; Right=13
Left=4; Right=11
Left=4; Right=12
Left=4; Right=13

User: { Name="Tim Trotter" ... }
User: { Name="Tara Tutu" ... }
User: { Name="Dave Denton" ... }
User: { Name="Darren Dahlia" ...}
User: { Name="Mary Malcop" ...}
User: { Name="Colin Carton" ...}

user = User (Tim Trotter), project = Project (Media Player)
user = User (Tim Trotter), project = Project (Talk)
user = User (Tim Trotter), project = Project (Office)
user = User (Tara Tutu), project = Project (Media Player)
user = User (Tara Tutu), project = Project (Talk)
user = User (Tara Tutu), project = Project (Office)
...

(Result of query)

Project: { Name="Skeety Media Player }
Project: { Name="Skeety Talk" }
Project: { Name="Skeety Office" }

{ User = User (Tim Trotter), Project = Project (Media Player) 
{ User = User (Tim Trotter), Project = Project (Talk) }
{ User = User (Tim Trotter), Project = Project (Office) }
{ User = User (Tara Tutu), Project = Project (Media Player) }
{ User = User (Tara Tutu), Project = Project (Talk) }
{ User = User (Tara Tutu), Project = Project (Office) }
...

from user in SampleData.AllUsers

from project in SampleData.AllProjects

}
SampleData.AllProjects

select new { User = user, Project = project }

All users

Two range variables: 
each project occurs 

with each user, pair-wise

The same sequence 
projected into an 
anonymous type

Figure 11.8 Sequences from listing 11.15, cross joining users and projects. All possible 
combinations are returned in the results.
Left=4; Right=14
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The method the compiler calls to generate this sequence is SelectMany. It takes a sin-
gle input sequence (the left sequence in our terminology), a delegate to generate
another sequence from any element of the left sequence, and a delegate to generate a
result element given an element of each of the sequences. Here’s the signature of
Enumerable.SelectMany:

static IEnumerable<TResult> SelectMany<TSource,TCollection,TResult>(
this IEnumerable<TSource> source,
Func<TSource,IEnumerable<TCollection>> collectionSelector,
Func<TSource,TCollection,TResult> resultSelector

)

As with the other joins, if the part of the query expression following the join is a
select clause, that projection is used as the final argument; otherwise, a transparent
identifier is introduced to make the range variables of both the left and right
sequences available later in the query.

 Just to make this all a bit more concrete, here’s the query expression of listing
11.16 as the translated source code:

Enumerable.Range(1, 4)
.SelectMany(left => Enumerable.Range(11, left),

                (left, right) => new {Left = left, Right = right})

One interesting feature of SelectMany is that the execution is completely streamed—
it only needs to process one element of each sequence at a time, because it uses a
freshly generated right sequence for each different element of the left sequence.
Compare this with inner joins and group joins: they both load the right sequence
completely before starting to return any results. 

 The flattening behavior of SelectMany can be very useful. Consider a situation
where you want to process a lot of log files, a line at a time. You can process a seamless
sequence of lines with barely any work. The following pseudocode is filled in more
thoroughly in the downloadable source code, but the overall meaning and usefulness
should be clear:

var query = from file in Directory.GetFiles(logDirectory, "*.log")
from line in ReadLines(file)
let entry = new LogEntry(line)
where entry.Type == EntryType.Error
select entry;

In just five lines of code, you can retrieve, parse, and filter a whole collection of log
files, returning a sequence of entries representing errors. Crucially, you don’t have to
load even a single full log file into memory in one go, let alone all of the files—all the
data is streamed.

 Having tackled joins, the last items we need to look at are slightly easier to under-
stand. We’ll look at grouping elements by a key and continuing a query expression
after a group ... by or select clause. 
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11.6 Groupings and continuations
One common requirement is to group a sequence of elements by one of its proper-
ties. LINQ makes this easy with the group ... by clause. In addition to describing this
final type of clause in this section, we’ll also revisit select to see a feature called query
continuations that can be applied to both groupings and projections. Let’s start with a
simple grouping.

11.6.1 Grouping with the group...by clause

Grouping is largely intuitive, and LINQ makes it simple. To group a sequence in a
query expression, all you need to do is use the group ... by clause, with this syntax:

group projection by grouping

This clause comes at the end of a query expression in the same way a select clause
does. The similarities between these clauses don’t end there: the projection expres-
sion is the same kind of projection that select clauses use. The outcome is somewhat
different, though.

 The grouping expression determines what the sequence is grouped by—it’s the key
selector of the grouping operation. The overall result is a sequence where each element
is a group. Each group is a sequence of projected elements that also has a Key property,
which is the key for that group; this combination is encapsulated in the
IGrouping<TKey,TElement> interface, which extends IEnumerable<TElement>. Again,
if you want to group by multiple values, you can use an anonymous type for the key.

 Let’s look at a simple example from the SkeetySoft defect system: grouping defects
by their current assignee. The following listing does this with the simplest form of pro-
jection, so that the resulting sequence has the assignee as the key and a sequence of
defects embedded in each entry.

var query = from defect in SampleData.AllDefects

where defect.AssignedTo != null

group defect by defect.AssignedTo;

foreach (var entry in query)

{

Console.WriteLine(entry.Key.Name);

foreach (var defect in entry)

{

Console.WriteLine(" ({0}) {1}",

defect.Severity, defect.Summary);

}

Console.WriteLine();

}

Listing 11.17 Grouping defects by assignee—trivial projection

Filters out 
unassigned defects

B

Groups by assigneeC

Uses key of each 
entry: the assignee

D

Iterates over entry’s 
subsequenceE
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Listing 11.17 might be useful in a daily build report, to quickly see what defects each
person needs to look at. It filters out all the defects that don’t need any more atten-
tion B and then groups using the AssignedTo property. Although this time you’re
just using a property, the grouping expression can be anything you like—it’s applied
to each entry in the incoming sequence, and the sequence is grouped based on the
result of the expression. Note that grouping can’t stream the results; it applies the key
selection and projection to each element in the input and buffers the grouped
sequences of projected elements. But even though it’s not streamed, execution is still
deferred until you start retrieving the results.

 The projection applied in the grouping C is trivial—it just selects the original ele-
ment. As you go through the resulting sequence, each entry has a Key property, which
is of type User D, and each entry also implements IEnumerable<Defect>, which is the
sequence of defects assigned to that user E.

 The results of listing 11.17 start like this:

Darren Dahlia
(Showstopper) MP3 files crash system
(Major) Can't play files more than 200 bytes long
(Major) DivX is choppy on Pentium 100
(Trivial) User interface should be more caramelly

After all of Darren’s defects have been returned, you’ll see Tara’s, then Tim’s, and so
on. The implementation effectively keeps a list of the assignees it’s seen so far, and
adds a new one every time it needs to. Figure 11.9 shows the sequences generated
throughout the query expression, which may make this ordering more clear.

 Within each entry’s subsequence, the order of the defects is the same as in the
original defect sequence. If you actively care about the ordering, consider explicitly
stating it in the query expression, to make it more readable.

 If you run listing 11.17, you’ll see that Mary Malcop doesn’t appear in the output at
all, because she doesn’t have any defects assigned to her. If you wanted to produce a
full list of users and defects assigned to each of them, you’d need to use a group join
like the one in listing 11.14.

 The compiler always uses a method called GroupBy for grouping clauses. When
the projection in a grouping clause is trivial—when each entry in the original
sequence maps directly to the exact same object in a subsequence—the compiler uses
a simple method call that only requires the grouping expression, so it knows how to
map each element to a key. For instance, the query expression in listing 11.17 is
translated into this:

SampleData.AllDefects.Where(defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo)
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When the projection is nontrivial, a slightly more complicated version is used. The fol-
lowing listing gives an example of a projection where you only capture the summary of
each defect rather than the Defect object itself.

var query = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect.Summary by defect.AssignedTo;

foreach (var entry in query)
{

Console.WriteLine(entry.Key.Name);
foreach (var summary in entry)
{

Console.WriteLine(" {0}", summary);
}
Console.WriteLine();

Listing 11.18 Grouping defects by assignee—projection retains just the summary

Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=2, AssignedTo=null ...}
Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

(Result of query)

Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

Key=Darren Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

Key=Tara Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=13, AssignedTo=Tara ...}
...

Key=Tim Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=8, AssignedTo=Tim ...}
...

D f { ID 1 A i

from defect in SampleData.AllDefects

where defect.AssignedTo != null

group defect by defect.AssignedTo

All known defects

Defects assigned 
to a user

Groups of defects, 
keyed by the user 

the defects are 
assigned to

Figure 11.9 Sequences used when grouping defects 
by assignee. Each entry of the result has a Key property 
and is also a sequence of defect entries.
}
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I’ve highlighted the differences between listings 11.18 and 11.17 in bold. Because
each defect is projected to just its summary, the embedded sequence in each entry is
just an IEnumerable<string>. In this case the compiler uses an overload of GroupBy
with another parameter to represent the projection. The query expression in listing
11.18 is translated into the following expression:

SampleData.AllDefects.Where(defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo,

defect => defect.Summary)

Grouping clauses are relatively simple but useful. Even in the defect-tracking system,
you could easily imagine wanting to group defects by project, creator, severity, or sta-
tus, as well as by the assignee used in these examples.

 So far, you’ve ended each query expression with a select or group ... by clause,
and that’s been the end of the expression. But there are times when you’ll want to do
more with the results, and that’s when query continuations are used. 

11.6.2 Query continuations

Query continuations provide a way of using the result of one query expression as the
initial sequence of another. They apply to both group ... by and select clauses, and
the syntax is the same for both—you simply use the contextual keyword into and then
provide the name of a new range variable. That range variable can then be used in the
next part of the query expression.

 The specification explains this in terms of a translation from one query expression
to another, changing

first-query into identifier
second-query-body

into

from identifier in (first-query)
second-query-body

An example will make this clearer. Let’s go back to the grouping of defects by assignee,
but this time imagine you only want the count of the defects assigned to each person.
You can’t do that with the projection in the grouping clause, because that only applies
to each individual defect. You want to project each group, which contains an assignee
and the sequence of their defects, into a single element consisting of the assignee and
the count of defects in the group. This can be achieved with the following code.

var query = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo into grouped

           select new { Assignee = grouped.Key,
                        Count = grouped.Count() };

Listing 11.19 Continuing a grouping with another projection
foreach (var entry in query)
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{
Console.WriteLine("{0}: {1}",

entry.Assignee.Name, entry.Count);
}

The changes to the query expression are highlighted in bold. You can use the grouped
range variable in the second part of the query, but the defect range variable is no lon-
ger available—you can think of it as being out of scope. This projection simply creates
an anonymous type with Assignee and Count properties, using the key of each group
as the assignee, and counting the sequence of defects associated with each group. 

 The results of listing 11.19 are as follows:

Darren Dahlia: 14
Tara Tutu: 5
Tim Trotter: 5
Deborah Denton: 9
Colin Carton: 2

Following the specification, the query expression from listing 11.19 is translated into
this one:

from grouped in (from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo)

select new { Assignee = grouped.Key, Count = grouped.Count() }

The rest of the translations are then performed, resulting in the following code:

SampleData.AllDefects
.Where(defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo)
.Select(grouped => new { Assignee = grouped.Key,

Count = grouped.Count() })

An alternative way of understanding continuations is to think of two separate state-
ments. This isn’t as accurate in terms of the actual compiler translation, but I find it
makes it easier to see what’s going on. In this case, the query expression (and assign-
ment to the query variable) can be thought of as the following two statements:

var tmp = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo;

var query = from grouped in tmp
select new { Assignee = grouped.Key,

Count = grouped.Count() };

Of course, if you find this easier to read, there’s nothing to stop you from breaking
up the original expression into this form in your source code. Nothing will be evalu-
ated until you start trying to step through the query results anyway, due to deferred
execution.

JOIN...INTO ISN’T A CONTINUATION It’s easy to fall into the trap of thinking that
wherever you see the contextual keyword into, you have a continuation. This

isn’t true for joins—the join ... into clause (which is used for group joins)
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doesn’t form a continuation. The important difference is that with a group
join, all the earlier range variables (apart from the one used to name the right
side of the join) can still be used. Compare that with the queries we’re looking
at in this section, where the continuation wipes the slate clean; the only range
variable available afterward is the one declared by the continuation.

Let’s extend this example to see how multiple continuations can be used. The results
are currently unordered—let’s change that so you can see who has the most defects
assigned to them first. You could use a let clause after the first continuation, but the
following listing shows an alternative with a second continuation after the current
expression.

var query = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo into grouped
select new { Assignee = grouped.Key,

Count = grouped.Count() } into result
            orderby result.Count descending
            select result;

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}",
entry.Assignee.Name,
entry.Count);

}

The changes between listings 11.19 and 11.20 are highlighted in bold. You didn’t
need to change any of the output code, because you had the same type of sequence—
you just needed to apply an ordering to it. 

 This time the translated query expression is as follows:

SampleData.AllDefects
.Where(defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo)
.Select(grouped => new { Assignee = grouped.Key,

Count = grouped.Count() })
.OrderByDescending(result => result.Count);

By pure coincidence, this is remarkably similar to the first defect-tracking query we
looked at, in section 10.3.6. The final select clause effectively does nothing, so the C#
compiler ignores it. It’s required in the query expression, though, as all query expres-
sions must end with either a select or a group ... by clause. There’s nothing to stop
you from using a different projection or performing other operations with the contin-
ued query—joins, further groupings, and so forth. Just keep an eye on the readability
of the query expression as it grows. 

 Speaking of readability, there are options to consider when you’re writing LINQ

Listing 11.20 Query expression continuations from group and select
queries. 
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11.7 Choosing between query expressions and dot notation
As you’ve seen throughout this chapter, query expressions are translated into normal
C# before being compiled any further. There isn’t an official name for a call to the LINQ
query operators written using normal C# rather than as a query expression, but many
developers now refer to this as dot notation.7 Every query expression can be written in
dot notation, but the reverse isn’t true: many LINQ operators don’t have a query expres-
sion equivalent in C#. The big question is this: When should you use which syntax?

11.7.1 Operations that require dot notation

The most obvious situation where you’re forced to use dot notation is when you’re
calling a method such as Reverse or ToDictionary that isn’t represented in query
expression syntax at all. But even when you use a query operator that’s supported by
query expressions, it’s quite possible for the overload you want to be unavailable. 

 For example, Enumerable.Where has an overload where the index into the parent
sequence is supplied as another argument to the delegate. In such a situation, you
could use code like the following to take every other item from a sequence:

sequence.Where((item, index) => index % 2 == 0)

There’s a similar overload for Select, so if you wanted to be able to get at the original
index in a sequence after ordering, you could do something like this:

sequence.Select((Item, Index) => new { Item, Index })
.OrderBy(x => x.Item.Name)

This example shows another option you might want to consider: if you’re going to use
a lambda expression parameter directly in an anonymous type, you could buck the nor-
mal convention of starting the parameter name with a lowercase letter, and then use a
projection initializer to avoid writing new { Item = item, Index = index }, which can be
distracting. Of course, you can ignore the convention about property names instead,
and make your anonymous type have properties beginning with a lowercase letter
(item and index, for example). All of this is entirely up to you, and it’s worth experi-
menting. Although consistency is usually important, it doesn’t matter too much here,
as the impact of inconsistency is confined to the method in question; you’re not expos-
ing these names in your public API or throughout the rest of your class.

 Many of the query operators also support custom comparisons—ordering and
joining being the most obvious examples. These are unlikely to be required often, in
my experience, but they’re occasionally invaluable. For example, if you want to per-
form a join on a person’s name in a case-insensitive manner, you can specify String-
Comparer.OrdinalIgnoreCase (or a culture-specific comparer) as the final argument
to a Join call. Again, if you feel that an operator nearly does what you want but doesn’t
quite cut it, check the documentation for other overloads.

7 That’s the term I’ll use from now on, but if you hear others talking about fluent notation, they probably mean

the same thing.
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 When you’re forced to use dot notation, the decision to use it is easy, but what
about cases where a query expression could be used?

11.7.2 Query expressions where dot notation may be simpler

Some developers use query expressions everywhere they can get away with it; person-
ally, I look at what the query is doing and decide which approach will be more readable. 

 For example, take this query expression, which is similar to one near the start of
this chapter:

var adults = from person in people
where person.Age >= 18
select person;

This is three lines of code with a lot of baggage, even though all it’s doing is filtering.
In this case I’d use dot notation:

var adults = people.Where(person => person.Age >= 18);

I find that clearer—every part of it mentions something you’re actually interested in.
 Another area where using dot notation throughout a query expression can give

more clarity is when you’re forced to use it for part of the query anyway. For example,
suppose you’re going to use the ToList() extension method to end up with a list of
the names of adults. (I’m performing a projection as well, in this case, so that it’s a
more balanced comparison.) Here’s the query expression:

var adultNames = (from person in people
where person.Age >= 18
select person.Name).ToList();

Here’s the dot notation equivalent:

var adultNames = people.Where(person => person.Age >= 18)
.Select(person => person.Name)
.ToList();

Something about the need for parentheses around the query expression in the first
case makes it seem uglier to me. This is very much a case of personal choice—this sec-
tion is really just raising your awareness that there is a choice, and that you can pick
and choose. If you’re going to use LINQ to any significant extent, you really should be
comfortable with both notations, and there’s no harm in switching style based on the
query in question. As you’ve seen, the generated code is absolutely equivalent. None
of this is to say that I dislike query expressions, of course. 

11.7.3 Where query expressions shine

Having explained where you might find dot notation beneficial, I should point out
that when it comes to any operations where the query expression would use transpar-
ent identifiers—particularly joins—dot notation starts to suffer in terms of readability.
The beauty of transparent identifiers is that they’re transparent—so transparent that

you can’t see them at all when you only have to look at the query expression. Even a
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simple let clause can be enough to swing the decision in favor of query expressions;
introducing a new anonymous type just to propagate context through the query gets
annoying quickly.

 The other area where query expressions win is in situations where multiple lambda
expressions would be required, or even multiple method calls. Again, this includes
joins, where you have to specify the key selector for each side of the join as well as the
result selector. For example, here’s a cut-down version of an earlier query where I
introduced inner joins:

from defect in SampleData.AllDefects
join subscription in SampleData.AllSubscriptions

on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

In an IDE, it’d be reasonable to put the whole join clause on one line, leading to fairly
easy-to-read code. The dot notation equivalent is fairly horrible, though:

SampleData.AllDefects.Join(SampleData.AllSubscriptions,
defect => defect.Project,
subscription => subscription.Project,
(defect, subscription) => new { defect.Summary,

subscription.EmailAddress })

The last argument could all fit on one line in an IDE, but it’s still pretty ugly because
the lambda expressions don’t have much context; you can’t immediately tell which
argument means what. Named arguments in C# 4 can help there, but that adds even
more bulk to the query.

 Complex orderings can be similarly unpleasant in dot notation. Consider which
you’d rather read—this orderby clause

orderby item.Rating descending, item.Price, item.Name

or three method calls:

.OrderByDescending(item => item.Rating)

.ThenBy(item => item.Price)

.ThenBy(item => item.Name)

Changing the priority of these orderings is simple in the query expression—just
switch them around. In dot notation, you may also have to switch from OrderBy to
ThenBy or vice versa.

 To reiterate, I’m not trying to press my own personal preferences onto your code. I
simply want you to know what’s available, and to think about the choices you make. Of
course, this is only one aspect of writing readable code, but it’s a whole new area to
consider in C#. 

11.8 Summary
In this chapter, we’ve looked at how LINQ to Objects and C# 3 interact, focusing on
the way query expressions are first translated into code that doesn’t involve query
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expressions and then are compiled in the usual way. You’ve seen how all query expres-
sions form a series of sequences, applying a transformation of some description at
each step. In many cases these sequences are evaluated using deferred execution,
fetching data only when it’s first required.

 Compared with all the other features of C# 3, query expressions look somewhat
alien—more like SQL than the C# you’re used to. One of the reasons they look so odd
is that they’re declarative instead of imperative—a query talks about the features of the
end result rather than the exact steps required to achieve it. This goes hand in hand
with a more functional way of thinking. It can take a while to click, and it’s not suitable
for every situation, but where declarative syntax is appropriate, it can vastly improve
readability as well as make code easier to test and parallelize.

 Don’t be fooled into thinking that LINQ should only be used with databases. Plain
in-memory manipulation of collections is common, and you’ve seen how well it’s sup-
ported by query expressions and the extension methods in Enumerable.

 In a real sense, you’ve now seen all the features introduced in C# 3! We haven’t
looked at any other LINQ providers yet, but you have a clearer understanding of what
the compiler will do for you when you ask it to handle XML and SQL. The compiler
itself doesn’t know the difference between LINQ to Objects, LINQ to SQL, or any of the
other providers; it just follows the same rules blindly. 

 In the next chapter you’ll see how these rules form the final piece of the LINQ jig-
saw puzzle when they convert lambda expressions into expression trees so that the var-
ious clauses of query expressions can be executed on different platforms. You’ll also
see some other examples of what LINQ can do.



LINQ beyond collections
Suppose an alien visited you and asked you to describe culture. How could you cap-
ture the diversity of human culture in a short space of time? You might decide to
spend that time showing him culture rather than describing it in the abstract: a visit
to a New Orleans jazz club, opera in La Scala, the Louvre gallery in Paris, a Shake-
speare play in Stratford-upon-Avon, and so on.

 Would this alien know everything about culture afterward? Could he compose a
tune, write a book, dance a ballet, craft a sculpture? Absolutely not. But he’d hope-
fully leave with a sense of culture—its richness and variety, its ability to light up peo-
ple’s lives.

 So it is with this chapter. You’ve now seen all of the features of C# 3, but without
seeing more of LINQ, you don’t have enough context to really appreciate them.

This chapter covers
 LINQ to SQL

 IQueryable and expression tree queries

 LINQ to XML

 Parallel LINQ

 Reactive Extensions for .NET

 Writing your own operators
328
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When the first edition of this book was published, not many LINQ technologies were
available, but now there’s a glut of them, both from Microsoft and from third parties.
That in itself hasn’t surprised me, but I’ve been fascinated to see the different natures
of these technologies.

 We’ll look at various ways in which LINQ manifests itself, with an example of each.
I’ve chosen to demonstrate Microsoft technologies in the main, because they’re the
most typical ones. This isn’t meant to imply that third parties aren’t welcome in the
LINQ ecosystem: there are a number of projects, both commercial and open source,
providing access to varied data sources and building extra features on top of existing
providers. 

 In contrast to the rest of this book, we’ll only skim the surface of each of the topics
here—the point isn’t to learn the details, but to immerse yourself in the spirit of LINQ.
To investigate any of these technologies further, I recommend that you get a book
dedicated to the subject or read the relevant documentation carefully. I’ve resisted the
temptation to say, “There’s more to LINQ to [xxx] than this” at the end of each sec-
tion, but please take it as read. Each technology has many capabilities beyond query-
ing, but I’ve focused here on the areas that are directly related to LINQ.

 Let’s start off with the provider that generally got the most attention when LINQ
was first introduced: LINQ to SQL.

12.1 Querying a database with LINQ to SQL
I’m sure by now you’ve absorbed the message that LINQ to SQL converts query expres-
sions into SQL, which is then executed on the database. It’s more than that—it’s a full
ORM solution—but I’ll concentrate on the query side of LINQ to SQL rather than go
into concurrency handling and the other details that an ORM has to deal with. I’ll
show you just enough so that you can experiment with it yourself—the database and
code are available on the book’s website (http://csharpindepth.com). The database is
in SQL Server 2005 format to make it easy to play with, even if you don’t have the latest
version of SQL Server installed, although obviously Microsoft has made sure that LINQ
to SQL works against newer versions too.

WHY LINQ TO SQL RATHER THAN THE ENTITY FRAMEWORK? Speaking of “newer
versions,” you may be wondering why I’ve chosen to demonstrate LINQ to SQL
instead of the Entity Framework, which is now Microsoft’s preferred solution
(and which also supports LINQ). The answer is merely simplicity; the Entity
Framework is undoubtedly more powerful than LINQ to SQL in various ways,
but it requires extra concepts that would take too much space to explain
here. I’m trying to give you a sense of the consistency (and occasional incon-
sistency) that LINQ provides, and that’s as applicable to LINQ to SQL as to the
Entity Framework.

Before you start writing any queries, you need a database and a model to represent it
in code.

http://csharpindepth.com
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12.1.1 Getting started: the database and model

LINQ to SQL needs metadata about the database to know which classes correspond to
which database tables, and so on. There are various ways of representing that meta-
data, and this section will use the LINQ to SQL designer built into Visual Studio. You
can design the entities first and ask LINQ to create the database, or design your data-
base and let Visual Studio work out what the entities should look like. Personally, I
favor the second approach, but there are pros and cons for both ways.

CREATING THE DATABASE SCHEMA

The mapping from the classes in chapter 11 to database tables is straightforward. Each
table has an auto-incrementing integer ID column with an appropriate name:
ProjectID, DefectID, and so on. The references between tables simply use the same
name, so the Defect table has a ProjectID column, for instance, with a foreign key
constraint. 

 There are a few exceptions to this simple set of rules:

 User is a reserved word in T-SQL, so the User class is mapped to the DefectUser
table.

 The enumerations (status, severity, and user type) don’t have tables. Their val-
ues are mapped to tinyint columns in the Defect and DefectUser tables.

 The Defect table has two links to the DefectUser table: one for the user who
created the defect and one for the current assignee. These are represented with
the CreatedByUserId and AssignedToUserId columns, respectively. 

CREATING THE ENTITY CLASSES

Once your tables are created, generating the entity classes from Visual Studio is easy.
Simply open Server Explorer (View > Server Explorer) and add a data source to
the SkeetySoftDefects database (right-click on Data Connections and select Add Con-
nection). You should be able to see four tables: Defect, DefectUser, Project, and
NotificationSubscription.

 You can then add a new item of type “LINQ to SQL classes” to the project. This
name will be the basis for a generated class representing the overall database model;
I’ve used the name DefectModel, which leads to a class called DefectModelData-
Context. The designer will open when you’ve created the new item. 

 You can then drag the four tables from Server Explorer into the designer, and it’ll
figure out all the associations. After that, you can rearrange the diagram and adjust
various properties of the entities. Here’s a list of what I changed:

 I renamed the DefectID property to ID to match the previous model.
 I renamed DefectUser to User (so although the table is still called DefectUser,

it’ll generate a class called User, just like before).
 I changed the type of the Severity, Status, and UserType properties to their

enum equivalents (having copied those enumerations into the project).



331Querying a database with LINQ to SQL

 I renamed the parent and child properties used for the associations between
Defect and DefectUser—the designer guessed suitable names for the other
associations but had trouble here because there were two associations between
the same pair of tables. I named the relationships AssignedTo/Assigned-
Defects and CreatedBy/CreatedDefects.

Figure 12.1 shows the designer diagram after all of these changes. As you can see, it
looks much like the class diagram in figure 11.3, but without the enumerations.

 If you look in the C# code generated by the designer (DefectModel.designer.cs),
you’ll find five partial classes: one for each of the entities, and the DefectModelData-
Context class I mentioned earlier. The fact that they’re partial is useful; in this case I
added extra constructors to match the ones from the original in-memory classes, so
the code from chapter 11 to create the sample data can be reused without much extra
work. For the sake of brevity, I didn’t include the insertion code here, but if you look
at PopulateDatabase.cs in the source code, you should be able to follow it easily
enough. Of course, you don’t have to run this yourself—the downloadable database is
already populated.

 Now that you have a schema in SQL, an entity model in C#, and some sample data,
it’s time to get querying. 

Figure 12.1 The LINQ to SQL classes 
designer showing the rearranged and 

modified entities
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12.1.2 Initial queries

I’m sure you’ve guessed what’s coming, but hopefully that won’t make it any less
impressive. We’ll execute query expressions against the data source, watching LINQ to
SQL convert the query into SQL on the fly. For the sake of familiarity, we’ll use some of
the same queries we executed against the in-memory collections in chapter 11.

FIRST QUERY: FINDING DEFECTS ASSIGNED TO TIM

I’ll skip over the trivial examples from early in chapter 11 and start instead with the
query from listing 11.7 that checks for open defects assigned to Tim. Here’s the query
part of listing 11.7, for the sake of comparison:

User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
select defect.Summary;

The full LINQ to SQL equivalent of listing 11.7 is as follows.

using (var context = new DefectModelDataContext())
{

context.Log = Console.Out;

User tim = context.Users
.Where(user => user.Name == "Tim Trotter")

 .Single();

var query = from defect in context.Defects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
select defect.Summary;

foreach (var summary in query)
{

Console.WriteLine(summary);
}

}

Listing 12.1 requires a certain amount of explanation, because it’s all new. First you
create a new data context to work with B. Data contexts are pretty multifunctional, tak-
ing responsibility for connection and transaction management, query translation,
tracking changes in entities, and dealing with identity. For the purposes of this chapter,
you can regard a data context as your point of contact with the database. I don’t show
the more advanced features here, but you do take advantage of one useful capability
here: you tell the data context to write out all the SQL commands it executes to the
console C. The model-related properties used in the code for this section (Defects,
Users, and so on) are all of type Table<T> for the relevant entity type. They act as the
data sources for your queries.

Listing 12.1 Querying the database to find all Tim’s open defects

Creates context 
to work withB

Enables console loggingCueries
tabase

ind Tim D

Queries database 
to find Tim’s 
open defectsE
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 You can’t use SampleData.Users.TesterTim to identify Tim in the main query
because that object doesn’t know the ID of the relevant row in the DefectUser table.
Instead, you use a separate query to load Tim’s user entity D. I used dot notation for
this, but a query expression would’ve worked just as well. The Single method just
returns a single result from a query, throwing an exception if there isn’t exactly one
element. In a real-life situation, you may have the entity as a product of other opera-
tions, such as logging in, and if you don’t have the full entity, you may have its ID,
which can be used equally well within the main query. As an alternative in this case,
you could’ve change the open defects query to filter based on the assignee’s name.
That wouldn’t have quite been in the spirit of the original query, though.

 Within the query expression E, the only difference between the in-memory query
and the LINQ to SQL query is the data source—instead of using SampleData.All-
Defects, you use context.Defects. The final results are the same (although the
ordering isn’t guaranteed), but the work has been done on the database.

 Because you asked the data context to log the generated SQL, you can see exactly
what’s going on when you run the code. The console output shows both of the queries
executed on the database, along with the query parameter values:1

SELECT [t0].[UserID], [t0].[Name], [t0].[UserType]
FROM [dbo].[DefectUser] AS [t0]
WHERE [t0].[Name] = @p0
-- @p0: Input String (Size = 11; Prec = 0; Scale = 0) [Tim Trotter]

SELECT [t0].[Summary]
FROM [dbo].[Defect] AS [t0]
WHERE ([t0].[AssignedToUserID] = @p0) AND ([t0].[Status] <> @p1)
-- @p0: Input Int32 (Size = 0; Prec = 0; Scale = 0) [2]
-- @p1: Input Int32 (Size = 0; Prec = 0; Scale = 0) [4]

Note how the first query fetches all of the properties of the user because you’re popu-
lating a whole entity, but the second query only fetches the summary, as that’s all you
need. LINQ to SQL has also converted the two separate where clauses in the second
query into a single filter on the database.

LINQ to SQL is capable of translating a wide range of expressions. Let’s try a
slightly more complicated query from chapter 11, just to see what SQL is generated. 

SQL GENERATION FOR A MORE COMPLEX QUERY: A LET CLAUSE

The next query shows what happens when you introduce a sort of temporary variable
with a let clause. In chapter 11 we considered a bizarre situation, if you remember—
pretending that calculating the length of a string took a long time. Again, the query
expression here is exactly the same as in listing 11.11, with the exception of the data
source. The following listing shows the LINQ to SQL code.

1 Additional log output is generated showing some details of the data context, which I’ve omitted here to avoid
distracting from the SQL. The console output also contains the summaries printed by the foreach loop, of

course.
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using (var context = new DefectModelDataContext())
{

context.Log = Console.Out;

var query = from user in context.Users
let length = user.Name.Length
orderby length
select new { Name = user.Name, Length = length };

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}", entry.Length, entry.Name);
}

}

The generated SQL is close to the spirit of the sequences we saw in figure 11.5. The
innermost sequence (the first one in that diagram) is the list of users; that’s trans-
formed into a sequence of name/length pairs (as the nested select), and then the
no-op projection is applied, with an ordering by length:

SELECT [t1].[Name], [t1].[value]
FROM (

SELECT LEN([t0].[Name]) AS [value], [t0].[Name]
FROM [dbo].[DefectUser] AS [t0]
) AS [t1]

ORDER BY [t1].[value]

This is a good example of where the generated SQL is wordier than it needs to be.
Although you couldn’t reference the elements of the final output sequence when per-
forming an ordering on the query expression, you can in SQL. This simpler query
would’ve worked fine:

SELECT LEN([t0].[Name]) AS [value], [t0].[Name]
FROM [dbo].[DefectUser] AS [t0]
ORDER BY [value]

Of course, what’s important is what the query optimizer does on the database—the
execution plan displayed in SQL Server Management Studio Express is the same for
both queries, so it doesn’t look like you’re losing out.

 The final set of LINQ to SQL queries we’ll look at are all joins. 

12.1.3 Queries involving joins

We’ll try both inner joins and group joins, using the examples of joining notification
subscriptions against projects. I suspect you’re used to the drill now—the pattern of
the code is the same for each query, so from here on I’ll just show the query expres-
sion and the generated SQL, unless something else is going on.

EXPLICIT JOINS: MATCHING DEFECTS WITH NOTIFICATION SUBSCRIPTIONS

The first query is the simplest kind of join—an inner equijoin using a LINQ join

Listing 12.2 Using a let clause in LINQ to SQL
clause:
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// Query expression (modified from listing 11.12)
from defect in context.Defects
join subscription in context.NotificationSubscriptions

on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

-- Generated SQL
SELECT [t0].[Summary], [t1].[EmailAddress]
FROM [dbo].[Defect] AS [t0]
INNER JOIN [dbo].[NotificationSubscription] AS [t1]
ON [t0].[ProjectID] = [t1].[ProjectID]

Unsurprisingly, it uses an inner join in SQL. It’d be easy to guess at the generated SQL
in this case. How about a group join, though? This is where things get slightly more
hectic:

// Query expression (modified from listing 11.13)
from defect in context.Defects
join subscription in context.NotificationSubscriptions

on defect.Project equals subscription.Project
into groupedSubscriptions

select new { Defect = defect, Subscriptions = groupedSubscriptions }

-- Generated SQL
SELECT [t0].[DefectID] AS [ID], [t0].[Created],
[t0].[LastModified], [t0].[Summary], [t0].[Severity],
[t0].[Status], [t0].[AssignedToUserID],
[t0].[CreatedByUserID], [t0].[ProjectID],
[t1].[NotificationSubscriptionID],
[t1].[ProjectID] AS [ProjectID2], [t1].[EmailAddress],

(SELECT COUNT(*)
FROM [dbo].[NotificationSubscription] AS [t2]
WHERE [t0].[ProjectID] = [t2].[ProjectID]) AS [count]

FROM [dbo].[Defect] AS [t0]
LEFT OUTER JOIN [dbo].[NotificationSubscription] AS [t1]
ON [t0].[ProjectID] = [t1].[ProjectID]
ORDER BY [t0].[DefectID], [t1].[NotificationSubscriptionID]

That’s a major change in the amount of SQL generated! There are two important
things to notice. First, it uses a left outer join instead of an inner join, so you’d still see a
defect even if it didn’t have anyone subscribing to its project. If you want a left outer
join but without the grouping, the conventional way of expressing this is to use a
group join and then an extra from clause, using the DefaultIfEmpty extension
method on the embedded sequence. It looks odd, but it works well.

 The second odd thing about the previous query is that it calculates the count for
each group within the database. This is effectively a trick performed by LINQ to SQL to
make sure that all the processing can be done on the server. A naive implementation
would have to perform the grouping in memory after fetching all the results. In some
cases, the provider could do tricks to avoid needing the count, simply spotting when
the grouping ID changes, but there are issues with this approach for some queries. It’s
possible that a later implementation of LINQ to SQL will be able to switch courses of

action depending on the exact query.
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 You don’t need to explicitly write a join in the query expression to see one in the
SQL. Our final queries will show joins implicitly created through property access
expressions. 

IMPLICIT JOINS: SHOWING DEFECT SUMMARIES AND PROJECT NAMES

Let’s take a simple example. Suppose you want to list each defect, showing its sum-
mary and the name of the project it’s part of. The query expression is just a matter of
a projection:

// Query expression
from defect in context.Defects
select new { defect.Summary, ProjectName = defect.Project.Name }

-- Generated SQL
SELECT [t0].[Summary], [t1].[Name]
FROM [dbo].[Defect] AS [t0]
INNER JOIN [dbo].[Project] AS [t1]
ON [t1].[ProjectID] = [t0].[ProjectID]

Note how you navigate from the defect to the project via a property—LINQ to SQL has
converted that navigation into an inner join. It can use an inner join here because the
schema has a non-nullable constraint on the ProjectID column of the Defect table—
every defect has a project. Not every defect has an assignee, though, because the
AssignedToUserID field is nullable, so if you use the assignee in a projection instead, a
left outer join is generated:

// Query expression
from defect in context.Defects
select new { defect.Summary, Assignee = defect.AssignedTo.Name }

-- Generated SQL
SELECT [t0].[Summary], [t1].[Name]
FROM [dbo].[Defect] AS [t0]
LEFT OUTER JOIN [dbo].[DefectUser] AS [t1]
ON [t1].[UserID] = [t0].[AssignedToUserID]

Of course, if you navigate via more properties, the joins get more and more compli-
cated. I’m not going into the details here—the important thing is that LINQ to SQL
has to do a lot of analysis of the query expression to work out what SQL is required. In
order to perform that analysis, it clearly needs to be able to look at the query you’ve
specified. 

 Let’s move away from LINQ to SQL specifically, and think in general terms about
what LINQ providers of this kind need to do. This will apply to any provider that needs
to introspect the query, rather than just being handed a delegate. At long last, it’s time
to see why expression trees were added as a feature of C# 3. 

12.2 Translations using IQueryable and IQueryProvider
In this section I’ll show you the basics of how LINQ to SQL manages to convert your

query expressions into SQL. This is the starting point for implementing your own
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LINQ provider, should you wish to. (Please don’t underestimate the technical difficul-
ties involved in doing so—but if you like a challenge, implementing a LINQ provider is
certainly interesting.) This is the most theoretical section in the chapter, but it’s useful
to have some insight as to how LINQ decides whether to use in-memory processing, a
database, or some other query engine.

 In all the query expressions we’ve looked at in LINQ to SQL, the source has been a
Table<T>. But if you look at Table<T>, you’ll see it doesn’t have a Where method, or
Select, or Join, or any of the other standard query operators. Instead, it uses the
same trick that LINQ to Objects does; just as the source in LINQ to Objects always
implements IEnumerable<T> (possibly after a call to Cast or OfType) and then uses
the extension methods in Enumerable, so Table<T> implements IQueryable<T> and
then uses the extension methods in Queryable. You’ll see how LINQ builds up an
expression tree and then allows a provider to execute it at the appropriate time. 

 Let’s start by looking at what IQueryable<T> consists of.

12.2.1 Introducing IQueryable<T> and related interfaces

If you look up IQueryable<T> in the documentation and see what members it con-
tains directly (rather than inheriting), you may be disappointed. There aren’t any.
Instead, it inherits from IEnumerable<T> and the nongeneric IQueryable, which in
turn inherits from the nongeneric IEnumerable. So IQueryable is where the new and
exciting members are, right? Well, nearly. In fact, IQueryable just has three proper-
ties: QueryProvider, ElementType, and Expression. The QueryProvider property is
of type IQueryProvider—yet another new interface to consider.

 Lost? Perhaps figure 12.2 will help out—it’s a class diagram of all the interfaces
directly involved.

 The easiest way of thinking about IQueryable is that it represents a query that’ll
yield a sequence of results when you execute it. The details of the query in LINQ terms
are held in an expression tree, as returned by the Expression property of the
IQueryable. The query is executed by iterating through the IQueryable (in other
words, calling the GetEnumerator method and then MoveNext on the result) or by call-
ing the Execute method on an IQueryProvider, passing in an expression tree.

 Now that you have at least some grasp of what IQueryable is for, what’s IQuery-
Provider? You can do more with a query than just execute it; you can also use it to build
a bigger query, which is the purpose of the standard query operators in LINQ.2 To build
up a query, you need to use the CreateQuery method on the relevant IQueryProvider.3

 Think of a data source as a simple query (SELECT * FROM SomeTable in SQL, for
instance)—calling Where, Select, OrderBy, and similar methods results in a different

2 Well, the ones that keep deferring execution, such as Where and Join. You’ll see what happens with the
aggregations such as Count in a while.

3 Both Execute and CreateQuery have generic and nongeneric overloads. The nongeneric versions make it

easier to create queries dynamically in code. Compile-time query expressions use the generic version.
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query based on the first one. Given any IQueryable query, you can create a new query
by performing the following steps:

1 Ask the existing query for its query expression tree (using the Expression
property).

2 Build a new expression tree that contains the original expression and the extra
functionality you want (a filter, projection, or ordering, for instance).

3 Ask the existing query for its query provider (using the Provider property).
4 Call CreateQuery on the provider, passing in the new expression tree.

Of those steps, the only tricky one is creating the new expression tree. Fortunately,
there are a bunch of extension methods on the static Queryable class that can do all
that for you. Enough theory—let’s start implementing the interfaces so we can see all
this in action.

12.2.2 Faking it: interface implementations to log calls

Before you get too excited, you’re not going to build a full-fledged query provider in
this chapter. But if you understand everything in this section, you’ll be in a much bet-
ter position to build one if you ever need to—and possibly more important, you’ll
understand what’s going on when you issue LINQ to SQL queries. Most of the hard
work of query providers goes on at the point of execution, where they need to parse
an expression tree and convert it into the appropriate form for the target platform.

Figure 12.2 Class diagram of the 
interfaces involved in IQueryable<T>



339Translations using IQueryable and IQueryProvider

We’ll concentrate on the work that happens before that—how LINQ prepares to exe-
cute a query.

 We’ll look at implementations of IQueryable and IQueryProvider and then try to
run a few queries against them. The interesting part isn’t the results—the queries
won’t do anything useful—but the series of calls made up to the point of execution.
We’ll focus on two types: FakeQueryProvider and FakeQuery. The implementation of
each interface method writes out the current expression involved, using a simple log-
ging method (not shown here). 

 Let’s look first at FakeQuery, as shown in the following listing.

class FakeQuery<T> : IQueryable<T>
{

public Expression Expression { get; private set; }
public IQueryProvider Provider { get; private set; }
public Type ElementType { get; private set; }

internal FakeQuery(IQueryProvider provider,
Expression expression)

{
Expression = expression;
Provider = provider;
ElementType = typeof(T);

}

internal FakeQuery() : this(new FakeQueryProvider(), null)
{

Expression = Expression.Constant(this);
}

   public IEnumerator<T> GetEnumerator()
   {

Logger.Log(this, Expression);
return Enumerable.Empty<T>().GetEnumerator();

   }

IEnumerator IEnumerable.GetEnumerator()
{

Logger.Log(this, Expression);
return Enumerable.Empty<T>().GetEnumerator();

}

public override string ToString()
{

return "FakeQuery";
}

}

The property members of IQueryable are implemented in FakeQuery with automatic
properties B, which are set by the constructors. There are two constructors: a param-
eterless one that’s used by the main program to create a plain source for the query,
and one that’s called by FakeQueryProvider with the current query expression.

Listing 12.3 A simple implementation of IQueryable that logs method calls
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 The use of Expression.Constant(this) as the initial source expression C is just a
way of showing that the query initially represents the original object. (Imagine an
implementation representing a table, for example—until you apply any query opera-
tors, the query would just return the whole table.) When the constant expression is
logged, it uses the overridden ToString method, which is why you give a short, con-
stant description e. This makes the final expression much cleaner than it would’ve
been without the override. When you’re asked to iterate over the results of the query,
you always return an empty sequence D to make life easy. Production implementa-
tions would parse the expression here, or (more likely) call Execute on their query
provider and return the result.

 As you can see, not a lot is going on in FakeQuery, and the following listing shows
that FakeQueryProvider is simple too.

class FakeQueryProvider : IQueryProvider
{

public IQueryable<T> CreateQuery<T>(Expression expression)
{

Logger.Log(this, expression);
return new FakeQuery<T>(this, expression);

}

public IQueryable CreateQuery(Expression expression)
{

Type queryType = typeof(FakeQuery<>).MakeGenericType(expression.Type);
object[] constructorArgs = new object[] { this, expression };
return (IQueryable)Activator.CreateInstance(queryType, constructorArgs);

}

public T Execute<T>(Expression expression)
{

Logger.Log(this, expression);
return default(T);

}

public object Execute(Expression expression)
{

Logger.Log(this, expression);
return null;

}
}

There’s even less to say about the implementation of FakeQueryProvider than there
was for FakeQuery<T>. The CreateQuery methods do no real processing but act as fac-
tory methods for the query. The only tricky bit is that the nongeneric overload still
needs to provide the right type argument for FakeQuery<T> based on the Type prop-
erty of the given expression. The Execute method overloads return empty results after
logging the call. This is where a lot of analysis would normally be done, along with the
actual call to the web service, database, or other target platform.

Listing 12.4 An implementation of IQueryProvider that uses FakeQuery
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 Even though you’ve done no real work, interesting things start to happen when
you start to use FakeQuery as the source in a query expression. I’ve already let slip that
you’re able to write query expressions without explicitly writing methods to handle
the standard query operators: it’s all about extension methods—this time the ones in
the Queryable class. 

12.2.3 Gluing expressions together: the Queryable extension methods

Just as the Enumerable type contains extension methods on IEnumerable<T> to imple-
ment the LINQ standard query operators, the Queryable type contains extension
methods on IQueryable<T>. There are two big differences between the implementa-
tions in Enumerable and those in Queryable.

 First, the Enumerable methods all use delegates as their parameters—the Select
method takes a Func<TSource,TResult>, for example. That’s fine for in-memory
manipulation, but for LINQ providers that execute the query elsewhere, you need a
format you can examine more closely—expression trees. For example, the correspond-
ing overload of Select in Queryable takes a parameter of type Expression<Func
<TSource,TResult>>. The compiler doesn’t mind at all—after query translation, it has
a lambda expression that it needs to pass as an argument to the method, and lambda
expressions can be converted to either delegate instances or expression trees.

 This is how LINQ to SQL can work so seamlessly. The four key elements involved
are all new features of C# 3: lambda expressions, the translation of query expressions
into normal expressions that use lambda expressions, extension methods, and expres-
sion trees. Without all four, there’d be problems. If query expressions were always
translated into delegates, for instance, they couldn’t be used with a provider such as
LINQ to SQL, which requires expression trees. Figure 12.3 shows two possible paths
taken by query expressions; they differ only in what interfaces their data source
implements.

 Note how in figure 12.3 the early parts of the compilation process are independent
of the data source. The same query expression is used, and it’s translated in exactly
the same way. It’s only when the compiler looks at the translated query to find the
appropriate Select and Where methods to use that the data source is truly important.
At that point, the lambda expressions can be converted to either delegate instances or
expression trees, potentially giving radically different implementations: typically in-
memory for the left path, and SQL executing against a database in the right path.

 Just to hammer home a familiar point, the decision in figure 12.3 of whether to use
Enumerable or Queryable has no explicit support in the C# compiler. These aren’t the
only two possible paths, as you’ll see later with Parallel LINQ and Reactive LINQ. You
can create your own interface and implement extension methods following the query
pattern, or even create a type with appropriate instance methods.

 The second big difference between Enumerable and Queryable is that the
Enumerable extension methods do the actual work associated with the corresponding

query operator (or at least they build iterators that do the work). There’s code in



342 CHAPTER 12 LINQ beyond collections

Enumerable.Where to execute the specified filter and only yield appropriate elements
as the result sequence, for example. By contrast, the query operator implementations
in Queryable do little: they just create a new query based on the parameters or they
call Execute on the query provider, as described at the end of section 12.2.1. In other
words, they’re only used to build up queries and request that they be executed—they
don’t contain the logic behind the operators. This means they’re suitable for any
LINQ provider that uses expression trees, but they’re useless on their own. They’re
the glue between your code and the details of the provider.

 With the Queryable extension methods available and ready to use the IQueryable
and IQueryProvider implementations, it’s finally time to see what happens when you
use a query expression with your custom provider. 

12.2.4 The fake query provider in action

Listing 12.5 shows a simple query expression, which (supposedly) finds all the strings
in the fake source, beginning with abc, and projects the results into a sequence listing
the lengths of the matching strings. You iterate through the results but don’t do any-

Overload resolution

Query expression translation

IQueryable<T> implementationPlain IEnumerable<T>
implementation

from user in users 
where user.Name.StartsWith("D") 
select user.Name

users.Where(user => user.Name.StartsWith("D")) 
     .Select(user => user.Name)

IL to create expression trees, with 
calls to Queryable.Where   and
Queryable.Select

Extension methods on Queryable
are chosen, which use expression 
trees as parameters

Extension methods on Enumerable
are chosen, which use delegates 
as parameters

IL to create delegate instances, 
with calls to Enumerable.Where
and Enumerable.Select

Figure 12.3 A query taking two paths, depending on whether the data source 
implements IQueryable or only IEnumerable
thing with them, as you know already that they’ll be empty. That’s because you have
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no source data, and you haven’t written any code to do any real filtering—you’re just
logging which calls are made by LINQ in the course of creating the query expression,
and iterating through the results.

var query = from x in new FakeQuery<string>()
where x.StartsWith("abc")
select x.Length;

foreach (int i in query) { }

What would you expect the results of running listing 12.5 to be? In particular, what
would you like to be logged last, at the point where you’d normally expect to do some
real work with the expression tree? Here are the results, reformatted slightly for clarity:

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

.Select(x => x.Length)

FakeQuery<Int32>.GetEnumerator
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

.Select(x => x.Length)

The two important things to note are that GetEnumerator is only called at the end, not
on any intermediate queries; by the time GetEnumerator is called, you have all the
information present in the original query expression. You haven’t manually had to
keep track of earlier parts of the expression in each step—a single expression tree cap-
tures all the information so far.

 Don’t be fooled by the concise output, by the way—the actual expression tree is
deep and complicated, particularly due to the where clause including an extra
method call. This expression tree is what LINQ to SQL will examine to work out what
query to execute. LINQ providers could build up their own queries (in whatever form
they may need) when calls to CreateQuery are made, but usually looking at the final
tree when GetEnumerator is called is simpler, because all the necessary information is
available in one place.

 The final call logged by listing 12.5 was to FakeQuery.GetEnumerator, and you may
be wondering why you also need an Execute method on IQueryProvider. Well, not all
query expressions generate sequences. If you use an aggregation operator such as Sum,
Count, or Average, you’re no longer really creating a source—you’re evaluating a
result immediately. That’s when Execute is called, as shown by the following listing
and its output.

var query = from x in new FakeQuery<string>()
where x.StartsWith("abc")

Listing 12.5 A simple query expression using the fake query classes

Listing 12.6 IQueryProvider.Execute 
select x.Length;
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double mean = query.Average();

// Output
FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

.Select(x => x.Length)

FakeQueryProvider.Execute
Expression=FakeQuery.Where(x => x.StartsWith("abc"))
 .Select(x => x.Length)
 .Average()

The FakeQueryProvider can be quite useful when it comes to understanding what the
C# compiler is doing behind the scenes with query expressions. It’ll show the trans-
parent identifiers introduced within a query expression, along with the translated calls
to SelectMany, GroupJoin, and the like. 

12.2.5 Wrapping up IQueryable

You haven’t written any of the significant code that a real query provider would need
in order to get useful work done, but hopefully this fake provider has given you
insight into how LINQ providers get their information from query expressions. It’s all
built up by the Queryable extension methods, given an appropriate implementation
of IQueryable and IQueryProvider.

 We’ve gone into a bit more detail in this section than we will for the rest of the
chapter, as it involved the foundations that underpin the LINQ to SQL code we saw
earlier. Even though you’re unlikely to need to implement query interfaces yourself,
the steps involved in taking a C# query expression and (at execution time) running
some SQL on a database are quite profound and lie at the heart of the big features of
C# 3. Understanding why C# has gained these features will help keep you more in
tune with the language.

 This is the end of our coverage of LINQ using expression trees. The rest of the chap-
ter involves in-process queries using delegates, but as you’ll see, there can still be a great
deal of variety and innovation in how LINQ can be used. Our first port of call is LINQ
to XML, which is “merely” an XML API designed to integrate well with LINQ to Objects.

12.3 LINQ-friendly APIs and LINQ to XML
LINQ to XML is by far the most pleasant XML API I’ve ever used. Whether you’re con-
suming existing XML, generating a new document, or a bit of both, it’s easy to use and
understand. Part of that is completely independent of LINQ, but a lot of it’s due to
how well it interacts with the rest of LINQ. As in section 12.1, I’ll give you just enough
introductory information to understand the examples, and then you’ll see how LINQ
to XML blends its own query operators with those in LINQ to Objects. By the end of
the section, you may have some ideas about how you can make your own APIs work in

harmony with the framework.
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12.3.1 Core types in LINQ to XML

LINQ to XML lives in the System.Xml.Linq assembly, and most of the types are in the
System.Xml.Linq namespace too.4 Almost all of the types in that namespace have a
prefix of X, so whereas the normal DOM API has an XmlElement type, the LINQ to XML
equivalent is XElement. This makes it easy to spot when code is using LINQ to XML,
even if you’re not immediately familiar with the exact type involved. Figure 12.4 shows
the types you’ll use most often.

Here’s a brief rundown of the types shown:

 XName is used for names of elements and attributes. Instances are usually cre-
ated using an implicit conversion from a string (in which case no namespace is
used) or via the +(XNamespace, string) overloaded operator.

 XNamespace represents an XML namespace—a URI, basically. Instances are usu-
ally created by the implicit conversion from string.

 XObject is the common ancestor of both XNode and XAttribute; unlike in the
DOM API, an attribute isn’t a node in LINQ to XML. Methods returning child
nodes don’t include attributes, for example.

 XNode represents a node in the XML tree. It defines various members to manip-
ulate and query the tree. There are several other classes derived from XNode
that aren’t shown in figure 12.4, such as XComment and XDeclaration. These are

4 I used to forget whether it was System.Xml.Linq or System.Linq.Xml. If you remember that it’s an XML

Figure 12.4 Class diagram for 
LINQ to XML, showing the most 
commonly used types
API first and foremost, you should be okay.



346 CHAPTER 12 LINQ beyond collections

used relatively infrequently—the most common node types are documents, ele-
ments, and text.

 XAttribute is an attribute with a name and a value. The value is intrinsically
text, but there are explicit conversions to many other data types, such as int
and DateTime.

 XContainer is a node in the XML tree that can have child content—it’s an ele-
ment or a document, basically.

 XText is a text node, and a further derived type XCData is used to represent
CDATA text nodes. (A CDATA node is roughly equivalent to a verbatim string lit-
eral—less escaping is required.) XText is rarely instantiated directly in user
code; instead, when a string is used as the content of an element or document,
that’s converted into an XText instance.

 XElement is an element. This is the most commonly used class in LINQ to XML,
along with XAttribute. Unlike in the DOM API, you can create an XElement
without creating a document to contain it. Unless you really need a document
object (for a custom XML declaration, perhaps), you can often just use elements.

 XDocument is a document. Its root element is accessed using the Root prop-
erty—this is the equivalent to XmlDocument.DocumentElement. As noted earlier,
this often isn’t required.

More types are available even within the document model, and there are a few other
types for things such as loading and saving options—but this list covers the most
important ones. Of the preceding types, the only ones you regularly need to reference
explicitly are XElement and XAttribute. If you use namespaces, you’ll use XNamespace
as well, but most of the rest of the types can be ignored the rest of the time. It’s amaz-
ing how much you can do with so few types. 

 Speaking of amazing, I can’t resist showing you how the namespace support works
in LINQ to XML. We won’t use namespaces anywhere else, but it’s a good example of
how a well-designed set of conversions and operators can make life easier. It’ll also
ease us into our next topic: constructing elements.

 If you only need to specify the name of an element or attribute without a
namespace, you can use a string. You won’t find any constructors for either type with
parameters of type string though—they all accept an XName. An implicit conversion
exists from string to XName, and also from string to XNamespace. Adding together a
namespace and a string also gives you an XName. There’s a fine line between operator
abuse and genius, but in this case LINQ to XML really makes it work. 

 Here’s some code to create two elements—one within a namespace and one not:

XElement noNamespace = new XElement("no-namespace");
XNamespace ns = "http://csharpindepth.com/sample/namespace";
XElement withNamespace = new XElement(ns + "in-namespace");

This makes for readable code even when namespaces are involved, which comes as a
welcome relief from some other APIs. But this just creates two empty elements. How

do you give them some content?
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12.3.2 Declarative construction

Normally in the DOM API, you create an element and then add content to it. You can
do that in LINQ to XML via the Add method inherited from XContainer, but that’s not
the idiomatic LINQ to XML way of doing things.5 It’s still worth looking at the signa-
ture of XContainer.Add though, because it introduces the content model. You
might’ve expected a signature of Add(XNode) or perhaps Add(XObject), but it’s just
Add(object). The same pattern is used for the XElement (and XDocument) construc-
tor signatures. The XElement constructors all have one parameter for the name of the
element, but after that you can specify nothing (to create an empty element), a single
object (to create an element with a single child node), or an array of objects to create
multiple child nodes. In the multiple children case, a parameter array is used (the
params keyword in C#), which means the compiler will create the array for you—you
can just keep listing arguments.

 The use of plain object for the content type may sound crazy, but it’s incredibly
useful. When you add content—whether it’s through a constructor or the Add
method—the following points are considered:

 Null references are ignored.
 XNode and XAttribute instances are added in a relatively straightforward man-

ner; they’re cloned if they already have parents, but otherwise no conversion is
required. (Some other sanity checks are performed, such as making sure you
don’t have duplicate attributes in a single element.)

 Strings, numbers, dates, times, and so on are added by converting them into
XText nodes using standard XML formatting.

 If the argument implements IEnumerable (and isn’t covered by anything else),
Add will iterate over its contents and add each value in turn, recursing where
necessary.

 Anything that doesn’t have special-case handling is converted into text by just
calling ToString().

This means that you often don’t need to prepare your content in a special way before
adding it to an element—LINQ to XML does the right thing for you. The details are
explicitly documented, so you don’t need to worry about it being too magical—but it
really works.

 Constructing nested elements leads to code that naturally resembles the hierarchi-
cal structure of the tree. This is best shown with an example. Here’s a snippet of LINQ
to XML code:

new XElement("root",
new XElement("child",

new XElement("grandchild", "text")),
new XElement("other-child"));

5 In some ways, it’s a shame that XElement doesn’t implement IEnumerable, as otherwise collection initializ-

ers would be another approach to construction. But using the constructor works neatly anyway.
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And here’s the XML of the created element—note the visual similarity between the
code and the output:

<root>
<child>

<grandchild>text</grandchild>
</child>
<other-child />

</root>

So far, so good, but the important part is the fourth bullet in the earlier list, where
sequences are processed recursively, because that lets you build an XML structure out
of a LINQ query in a natural way. For example, the book’s website has some code to
generate an RSS feed from its database. The statement to construct the XML docu-
ment is 28 lines long—which I’d normally expect to be an abomination—but it’s
remarkably pleasant to read.6 That statement contains two LINQ queries—one to pop-
ulate an attribute value, and the other to provide a sequence of elements, each repre-
senting a news item. As you read the code, it’s obvious what the resulting XML will
look like.

 To make this more concrete, let’s take two simple examples from the defect-
tracking system. I’ll demonstrate using the LINQ to Objects sample data, but you
could use almost identical queries to work with another LINQ provider instead. First,
you need to build an element containing all the users in the system. In this case, you
just need a projection, so the following listing uses dot notation.

var users = new XElement("users",
SampleData.AllUsers.Select(user => new XElement("user",

new XAttribute("name", user.Name),
new XAttribute("type", user.UserType)))

);
Console.WriteLine(users);

// Output
<users>

<user name="Tim Trotter" type="Tester" />
<user name="Tara Tutu" type="Tester" />
<user name="Deborah Denton" type="Developer" />
<user name="Darren Dahlia" type="Developer" />
<user name="Mary Malcop" type="Manager" />
<user name="Colin Carton" type="Customer" />

</users>

If you want to make a slightly more complex query, it’s probably worth using a query
expression. The following listing creates another list of users, but this time only the

6 One contributing factor to the readability is an extension method I created to convert anonymous types into
elements, using the properties for child elements. If you’re interested, the code is freely available as part of
my MiscUtil project (see http://mng.bz/xDMt). It only helps when the XML structure you need fits a certain

Listing 12.7 Creating elements from the sample users
pattern, but in that case it can reduce the clutter of XElement constructor calls significantly.

http://mng.bz/xDMt
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developers within SkeetySoft. For a bit of variety, this time each developer’s name is a
text node within an element instead of an attribute value.

var developers = new XElement("developers",
from user in SampleData.AllUsers
where user.UserType == UserType.Developer
select new XElement("developer", user.Name)

);
Console.WriteLine(developers);

// Output
<developers>

<developer>Deborah Denton</developer>
<developer>Darren Dahlia</developer>

</developers>

This sort of thing can be applied to all the sample data, producing a document struc-
ture like this:

<defect-system>
<projects>

<project name="..." id="...">
<subscription email="..." />

</project>
</projects>
<users>

<user name="..." id="..." type="..." />
</users>
<defects>

<defect id="..." summary="..." created="..." project="..."
assigned-to="..." created-by="..." status="..."
severity="..." last-modified="..." />

</defects>
</defect-system>

You can see the code to generate all of this in XmlSampleData.cs in the downloadable
solution. It demonstrates an alternative to the one-huge-statement approach: each of
the elements under the top level is created separately, and then glued together like this:

XElement root = new XElement("defect-system", projects, users, defects);

We’ll use this XML to demonstrate the next LINQ integration point: queries. Let’s start
with the query methods available on a single node. 

12.3.3 Queries on single nodes

You may be expecting me to reveal that XElement implements IEnumerable and that
LINQ queries come for free. It’s not quite that simple, because there are so many differ-
ent things that an XElement could iterate through. XElement contains a number of
axis methods that are used as query sources. If you’re familiar with XPath, the idea of an
axis will no doubt be familiar to you. 

Listing 12.8 Creating elements with text nodes
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 Here are the axis methods used directly for querying a single node, each of which
returns an appropriate IEnumerable<T>:

 Ancestors  DescendantNodes

 Annotations  Elements

 Descendants  ElementsBeforeSelf

 AncestorsAndSelf  DescendantNodesAndSelf

 Attributes  ElementsAfterSelf

 DescendantsAndSelf  Nodes

All of these are fairly self-explanatory (and the MSDN documentation provides more
details). There are useful overloads to retrieve only nodes with an appropriate name;
calling Descendants("user") on an XElement will return all user elements under-
neath the element you call it on, for instance.

 In addition to these calls returning sequences, some methods return a single
result—Attribute and Element are the most important, returning the named attri-
bute and the first child element with the specified name, respectively. Additionally,
there are explicit conversions from an XAttribute or XElement to any number of
other types, such as int, string, and DateTime. These are important for both filtering
and projecting results. Each conversion to a non-nullable value type also has a conver-
sion to its nullable equivalent—these (and the conversion to string) return a null
value if you invoke them on a null reference. This null propagation means you don’t
have to check for the presence or absence of attributes or elements within the query—
you can use the query results instead.

 What does this have to do with LINQ? Well, the fact that multiple search results are
returned in terms of IEnumerable<T> means you can use the normal LINQ to Objects
methods after finding some elements. The following listing shows an example of find-
ing the names and types of the users, this time starting off with the sample data in XML.

XElement root = XmlSampleData.GetElement();

var query = root.Element("users").Elements().Select(user => new
{

Name = (string) user.Attribute("name"),
UserType = (string) user.Attribute("type")

});
foreach (var user in query)
{

Console.WriteLine ("{0}: {1}", user.Name, user.UserType);
}

After creating the data at the start, you navigate down to the users element and ask it
for its direct child elements. This two-step fetch could be shortened to just
root.Descendants("user"), but it’s good to know about the more rigid navigation so

Listing 12.9 Displaying the users within an XML structure
you can use it where necessary. It’s also more robust in the face of changes to the
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document structure, such as another (unrelated) user element being added else-
where in the document.

 The rest of the query expression is merely a projection of an XElement into an
anonymous type. I’ll admit that this is slightly cheating with the user type: it’s kept as a
string instead of calling Enum.Parse to convert it into a proper UserType value. The
latter approach works perfectly well, but it’s quite long-winded when you only need
the string form, and the code becomes hard to format sensibly within the strict limits
of the printed page.

 There’s nothing particularly special here—returning query results as sequences is
fairly common, after all. It’s worth noting how seamlessly you can go from domain-
specific query operators to general-purpose ones. That’s not the end of the story,
though. LINQ to XML has some extra extension methods to add as well. 

12.3.4 Flattened query operators

You’ve seen how the result of one part of a query is often a sequence, and in LINQ to
XML it’s often a sequence of elements. What if you wanted to then perform an XML-
specific query on each of those elements? To present a somewhat contrived example,
you can find all the projects in the sample data with root.Element("projects")
.Elements(), but how can you find the subscription elements within them? You
need to apply another query to each element and then flatten the results. (Again, you
could use root.Descendants("subscription"), but imagine a more complex docu-
ment model where that wouldn’t work.)

 This may sound familiar, and it is—LINQ to Objects already provides the Select-
Many operator (represented by multiple from clauses in a query expression) to do this.
You could write the query as follows:

from project in root.Element("projects").Elements()
from subscription in project.Elements("subscription")
select subscription

As there are no elements within a project other than subscription, you could use
the overload of Elements that doesn’t specify a name. I find it clearer to specify the
element name in this case, but it’s often just a matter of taste. (The same argument
could be made for calling Element("projects").Elements("project") to start with,
admittedly.) 

 Here’s the same query written using dot notation and an overload of SelectMany
that only returns the flattened sequence, without performing any further projections:

root.Element("projects").Elements()
.SelectMany(project => project.Elements("subscription"))

Neither of these queries are completely unreadable by any means, but they’re not
ideal. LINQ to XML provides a number of extension methods (in the System
.Xml.Linq.Extensions class), which either act on a specific sequence type or are
generic with a constrained type argument, to cope with the lack of generic interface

covariance prior to C# 4. There’s InDocumentOrder, which does exactly what it sounds
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like, and most of the axis methods mentioned in section 12.4.3 are also available as
extension methods. This means that you can convert the previous query into this sim-
pler form:

root.Element("projects").Elements().Elements("subscription")

This sort of construction makes it easy to write XPath-like queries in LINQ to XML
without everything being a string. If you want to use XPath, that’s available too via
more extension methods, but the query methods have served me well more often
than not. You can also mix the axis methods with the operators of LINQ to Objects.
For example, to find all the subscriptions for projects with a name including Media,
you could use this query:

root.Element("projects").Elements()
.Where(project => ((string) project.Attribute("name"))

 .Contains("Media"))
.Elements("subscription")

Before we move on to Parallel LINQ, let’s think about how the design of LINQ to XML
merits the “LINQ” part of its title, and how you could potentially apply the same tech-
niques to your own API. 

12.3.5 Working in harmony with LINQ

Some of the design decisions in LINQ to XML seem odd if you take them in isolation
as part of an XML API, but in the context of LINQ they make perfect sense. The design-
ers clearly imagined how their types could be used within LINQ queries, and how they
could interact with other data sources. If you’re writing your own data access API, in
whatever context that might be, it’s worth taking the same things into account. If
someone uses your methods in the middle of a query expression, are they left with
something useful? Will they be able to use some of your query methods, then some
from LINQ to Objects, and then some more of yours in one fluent expression?

 We’ve seen three ways in which LINQ to XML has accommodated the rest of LINQ:

 It’s good at consuming sequences with its approach to construction. LINQ is
deliberately declarative, and LINQ to XML supports this with a declarative way of
creating XML structures.

 It returns sequences from its query methods. This is probably the most obvious
step that data access APIs would already take: returning query results as
IEnumerable<T> or a class implementing it is pretty much a no-brainer.

 It extends the set of queries you can perform on sequences of XML types; this
makes it feel like a unified querying API, even though some of it is XML-specific.

You may be able to think of other ways in which your own libraries can play nicely with
LINQ; these aren’t the only options you should consider, but they’re a good starting
point. Above all, I’d urge you to put yourself in the shoes of a developer wanting to
use your API within code that’s already using LINQ. What might such a developer want
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to achieve? Can LINQ and your API be mixed easily, or are they really aiming for differ-
ent goals?

 We’re roughly halfway through our whirlwind tour of different approaches to
LINQ. Our next stop is in some ways reassuring and in some ways terrifying: we’re back
to querying simple sequences, but this time in parallel… 

12.4 Replacing LINQ to Objects with Parallel LINQ
I’ve been following Parallel LINQ for a long time. I first came across it when Joe Duffy
introduced it in his blog on September 2006 (see http://mng.bz/vYCO). The first
Community Technology Preview (CTP) was released in November 2007, and the over-
all feature set has evolved over time too. It’s now part of a wider effort called Parallel
Extensions, which is part of .NET 4, aiming to provide higher-level building blocks for
concurrent programming than the relatively small set of primitives we’ve had to work
with until now. There’s a lot more to Parallel Extensions than Parallel LINQ—or
PLINQ, as it’s often known—but we’ll only look at the LINQ aspect here.

 The idea behind Parallel LINQ is that you should be able to take a LINQ to Objects
query that’s taking a long time and make it run faster by using multiple threads to take
advantage of multiple cores—with as few changes to the query as possible. As with any-
thing to do with concurrency, it’s not quite as simple as that, but you may be surprised
at what can be achieved. Of course, we’re still trying to think bigger than individual
LINQ technologies—we’re thinking about the different models of interaction
involved, rather than the precise details. But if you’re interested in concurrency, I
heartily recommend that you dive into Parallel Extensions—it’s one of the most prom-
ising approaches to parallelism that I’ve come across recently.

 I’ll use a single example for this section: rendering a Mandelbrot set image (see
Wikipedia for an explanation of Mandelbrot sets: http://en.wikipedia.org/wiki/
Mandelbrot_set). Let’s start off by trying to get it right with a single thread before
moving into trickier territory.

12.4.1 Plotting the Mandelbrot set with a single thread

Before any mathematicians attack me, I should point out that I’m using the term Man-
delbrot set loosely here. The details aren’t really important, but these aspects are:

 You’ll create a rectangular image, given various options such as width, height,
origin, and search depth.

 For each pixel in the image, you’ll calculate a byte value that will end up as the
index into a 256-entry palette.

 The calculation of one pixel value doesn’t rely on any other results.

The last point is absolutely crucial—it means this task is embarrassingly parallel. In
other words, there’s nothing in the task itself that makes it hard to parallelize. You
still need a mechanism for distributing the workload across threads and then gather-
ing the results together, but the rest should be easy. PLINQ will be responsible for the

http://mng.bz/vYCO
http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set
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distribution and collation (with a little help and care); you just need to express the
range of pixels, and how each pixel’s color should be computed. 

 For the purposes of demonstrating multiple approaches, I’ve put together an
abstract base class that’s responsible for setting things up, running the query, and dis-
playing the results; it also has a method to compute the color of an individual pixel.
An abstract method is responsible for creating a byte array of values, which are then
converted into the image. The first row of pixels comes first, left to right, then the sec-
ond row, and so on. Each example here is just an implementation of this method.

 I should note that using LINQ really isn’t an ideal solution here—there are various
inefficiencies in this approach. Don’t focus on that side of things: concentrate on the
idea that we have an embarrassingly parallel query, and we want to execute it across
multiple cores. 

 The following listing shows the single-threaded version of the method in all its sim-
ple glory.

var query = from row in Enumerable.Range(0, Height)
from column in Enumerable.Range(0, Width)
select ComputeIndex(row, column);

return query.ToArray();

You iterate over every row and every
column within each row, computing
the index of the relevant pixel. Calling
ToArray() evaluates the resulting
sequence, converting it into an array.
Figure 12.5 shows the beautiful results.

 This took about 5.5 seconds to gener-
ate on my old dual-core laptop. The
ComputeIndex method performs more
iterations than you really need, but it
makes the timing differences more obvi-
ous.7 Now that you have a benchmark in
terms of both timing and what the results
should look like, it’s time to parallelize
the query. 

12.4.2 Introducing ParallelEnumerable, ParallelQuery, and AsParallel

Parallel LINQ brings with it several new types, but in many cases you’ll never
see their names mentioned. They live in the System.Linq namespace, so you don’t

Listing 12.10 Single-threaded Mandelbrot generation query

7 Proper benchmarking is hard, particularly when threading is involved. I haven’t attempted to do rigorous
measurements here. The timings given are just meant to indicate faster and slower; please take the numbers

Figure 12.5 Mandelbrot image generated on a 
single thread
with a pinch of salt.
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even need to change using directives.
ParallelEnumerable is a static class, similar
to Enumerable—it mostly contains exten-
sion methods, the majority of which extend
a new ParallelQuery type.

 This latter type has both nongeneric and
generic forms (ParallelQuery and
ParallelQuery<TSource>), but most of the
time you’ll use the generic form, just as
IEnumerable<T> is more widely used than
IEnumerable. Additionally, there’s Ordered-
ParallelQuery<TSource>, which is the par-
allel equivalent of IOrderedEnumerable<T>.
The relationships between all of these types
are shown in figure 12.6.

 As you can see, ParallelQuery<TSource>
implements IEnumerable<TSource>, so once
you’ve constructed a query appropriately, you can iterate through the results in the nor-
mal way. When you have a parallel query, the extension methods in Parallel-
Enumerable take precedence over the ones in Enumerable (because ParallelQuery<T>
is more specific than IEnumerable<T>; see section 10.2.3 if you need a reminder of the
rules); this is how the parallelism is maintained throughout a query. There’s a parallel
equivalent to all the LINQ standard query operators, but you should be careful if you’ve
created any of your own extension methods. You’ll still be able to call them, but they’ll
force the query to be single-threaded from that point onward.

 How do you get a parallel query to start with? By calling AsParallel, an extension
method in ParallelEnumerable that extends IEnumerable<T>. This means you can
parallelize the Mandelbrot query incredibly simply, as shown in the following listing.

var query = from row in Enumerable.Range(0, Height)
.AsParallel()

from column in Enumerable.Range(0, Width)
select ComputeIndex(row, column);

return query.ToArray();

Job done? Well, not quite. This query does run in parallel, but the results aren’t quite
what you need: it doesn’t maintain the order in which you process the rows. Instead of
the beautiful Mandelbrot image, we get something like figure 12.7, but the exact
details change every time, of course.

 Oops. On the bright side, this rendered in about 3.2 seconds, so my machine was
clearly making use of its second core. But getting the right answer is pretty important.

Listing 12.11 First attempt at a multithreaded Mandelbrot generation query

Figure 12.6 Class diagram for Parallel LINQ, 
including relationship to normal LINQ 
interfaces
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 You may be surprised to hear that this
is a deliberate feature of Parallel LINQ.
Ordering a parallel query requires more
coordination between the threads, and
the whole purpose of parallelization is to
improve performance, so PLINQ defaults
to an unordered query. It’s a bit of a nui-
sance in this case, though. 

12.4.3 Tweaking parallel queries

Fortunately, there’s a way out of this—
you just need to force the query to be
treated as ordered, which can be done
with the AsOrdered extension method.
The following listing shows the fixed
code, which produces the original image.
It’s slightly slower than the unordered query, but still significantly faster than the sin-
gle-threaded version.

var query = from row in Enumerable.Range(0, Height)
.AsParallel().AsOrdered()

from column in Enumerable.Range(0, Width)
select ComputeIndex(row, column);

return query.ToArray();

The nuances of ordering are beyond the scope of this book, but I recommend that
you read the “PLINQ Ordering” MSDN blog post (http://mng.bz/9x9U), which goes
into the gory details. 

 A number of other methods can be used to alter how the query behaves:

 AsUnordered—Makes an ordered query unordered; if you only need results to
be ordered for the first part of a query, this allows later stages to be executed
more efficiently.

 WithCancellation—Specifies a cancellation token to be used with this query.
Cancellation tokens are used throughout Parallel Extensions to allow tasks to
be canceled in a safe, controlled manner.

 WithDegreeOfParallelism—Allows you to specify the maximum number of
concurrent tasks used to execute the query. You could use this to limit the num-
ber of threads used if you wanted to avoid swamping the machine, or to
increase the number of threads used for a query that wasn’t CPU-bound.

 WithExecutionMode—Can be used to force the query to execute in parallel,
even if Parallel LINQ thinks it’d execute faster as a single-threaded query.

Listing 12.12 Multithreaded Mandelbrot query maintaining ordering

Figure 12.7 Mandelbrot image generated using 
an unordered query, resulting in some sections 
being incorrectly placed

http://mng.bz/9x9U
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 WithMergeOptions—Allows you to tweak how the results are buffered. Dis-
abling buffering gives the shortest time before the first result is returned, but
also lower throughput; full buffering gives the highest throughput, but no
results are returned until the query has executed completely. The default is a
compromise between the two.

The important point is that aside from ordering, these methods shouldn’t affect the
results of the query. You can design your query and test it in LINQ to Objects, then par-
allelize it, work out your ordering requirements, and tweak it if necessary to perform
just how you want it to. If you showed the final query to someone who knew LINQ but
not PLINQ, you’d only have to explain the PLINQ-specific method calls—the rest of the
query would be familiar. Have you ever seen such an easy way to achieve concurrency?
(The rest of Parallel Extensions is aimed at achieving simplicity where possible too.)

PLAY WITH THE CODE YOURSELF A couple of further points are demonstrated
in the downloadable source code. If you parallelize across the whole query of
pixels rather than just the rows, then an unordered query looks even weirder,
and there’s a ParallelEnumerable.Range method that gives PLINQ a bit
more information than calling Enumerable.Range(...).AsParallel(). I
used AsParallel() in this section, because that’s the more general way of
parallelizing a query; most queries don’t start with a range.

Changing the in-process query model from single-threaded to parallel is quite a small
conceptual leap, really. In the next section we’ll turn the model on its head. 

12.5 Inverting the query model with LINQ to Rx
All of the LINQ libraries you’ve seen so far have one thing in common: you pull data
from them using IEnumerable<T>. At first sight, that seems so obvious that it’s not
worth saying—what would be the alternative? Well, how about if you push the data
instead of pulling it? Instead of the data consumer being in control, the provider can
be in the driving seat, letting the data consumer react when new data is available.
Don’t worry too much if this sounds dauntingly different; you actually know about
the fundamental concept already, in the form of events. If you’re comfortable with
the idea of subscribing to an event, reacting to it, and unsubscribing later, that’s a
good starting point.

 Reactive Extensions for .NET is a Microsoft project (http://mng.bz/R7ip); there are
multiple versions available, including one targeting JavaScript. These days, the simplest
way of obtaining the latest version is via NuGet. You may hear Reactive Extensions going
by various names, but Rx and LINQ to Rx are the most common abbreviations, and
they’re the ones I’ll use here. Even more so than for the other technologies covered in
this chapter, we’ll barely scratch the surface here. Not only is there a lot to learn about
the library itself, but it’s a whole different way of thinking. There are loads of videos on
Channel 9 (see http://channel9.msdn.com/tags/Rx/)—some are based on the math-
ematical aspects, whereas others are more practical. In this section I’ll emphasize the

way that the LINQ concepts can be applied to this push model for data flow.

http://mng.bz/R7ip
http://channel9.msdn.com/tags/Rx/
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 Enough of the introduction…let’s meet the two interfaces that form the basis of
LINQ to Rx. 

12.5.1 IObservable<T> and IObserver<T>

The data model of LINQ to Rx is the mathematical dual of the normal IEnumerable<T>
model.8 When you iterate over a pull collection, you effectively start off by saying,
“Please give me an iterator” (the call to GetEnumerator) and then repeatedly ask, “Is
there another item? If so, I’d like it now” (via calls to MoveNext and Current). LINQ to
Rx reverses this. Instead of requesting an iterator, you provide an observer. Then,
instead of requesting the next item, your code is told when one is ready—or when an
error occurs or the end of the data is reached. 

 Here are the declarations of the two interfaces involved:

public interface IObservable<T>
{

IDisposable Subscribe(IObserver<T> observer);
}

public interface IObserver<T>
{

void OnNext(T value);
void OnCompleted();
void OnException(Exception error);

}

These interfaces are actually part of .NET 4 (in the System namespace), even though
the rest of LINQ to Rx is in a separate download. In fact, they’re IObservable<out T>
and IObserver<in T> in .NET 4, expressing the covariance of IObservable and the
contravariance of IObserver. You’ll learn more about generic variance in the next
chapter, but I’m presenting the interfaces here as if they were invariant for the sake of
simplicity. One concept at a time!

 Figure 12.8 shows the duality in terms of how data flows in each model.
 I suspect I’m not alone in finding the push model harder to think about, as it has

the natural ability to work asynchronously. But look at how much simpler it is than the
pull model, in terms of the flow diagram. This is partly due to the multiple method
approach of the pull model; if IEnumerator<T> just had a method with a signature of
bool TryGetNext(out T item), it’d be somewhat simpler.

 Earlier I mentioned that LINQ to Rx is similar to the events you’re already familiar
with. Calling Subscribe on an observable is like using += with an event to register a
handler. The disposable value returned by Subscribe remembers the observer you
passed in; disposing of it is like using -= with the same handler. In many cases, you
don’t need to unsubscribe from the observable; this is just available in case you need
to unsubscribe halfway through a sequence—the equivalent of breaking out of a
foreach loop early. Failing to dispose of an IDisposable value may feel like anathema

8 For a more detailed examination of this duality—and the essence of LINQ itself—I recommend Bart de

Smet’s “The Essence of LINQ—MINLINQ” blog post at http://mng.bz/96Wh.

http://mng.bz/96Wh
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to you, but it’s often safe in LINQ to Rx. None of the examples in this chapter use the
return value of Subscribe.

 That’s all there is to IObservable<T>, but what about the observer itself? Why does
it have three methods? Consider the normal pull model where for any MoveNext/
Current pair of calls, three things can happen:

 You may be at the end of the sequence, in which case MoveNext returns false.
 You may not have reached the end of the sequence, in which case MoveNext

returns true and Current returns the new value.
 An error may occur—reading the next line from a network connection could

fail, for example. In this case, an exception would be thrown.

The IObserver<T> interface represents each of these options as a separate method.
Typically an observer will have its OnNext method called repeatedly, and then finally
OnCompleted, unless there’s an error of some kind, in which case OnError will be
called instead. After the sequence has completed or encountered an error, no further
method calls will be made. You rarely need to implement IObserver<T> directly,
though. There are many extension methods on IObservable<T>, including overloads
for Subscribe, and these allow you to subscribe to an observable by just providing
appropriate delegates. Usually you provide a delegate to be executed for each item,
and then optionally one to be executed on completion, on error, or both.

 With that bit of theory out of the way, let’s look at some actual code using LINQ to Rx. 

Pull model

Caller IEnumerable<T> IEnumerator<T>

GetEnumerator()

Return: IEnumerator<T>

MoveNext()

Return: true

Current

Return: first value

MoveNext()

Return: false

Caller IObservable<T> IObserver<T>

Subscribe(observer)

Return: IDisposable

...(more items)...

OnNext(first value)

...(more items)...

OnCompleted()

Push model

Figure 12.8 Sequence diagram showing the duality of IEnumerable<T> and IObservable<T>
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12.5.2 Starting simply (again)

We’ll demonstrate LINQ to Rx in the same way we started off with LINQ to Objects—
using a range. Instead of Enumerable.Range, we’ll use Observable.Range, which cre-
ates an observable range. Each time an observer subscribes to the range, the numbers
are emitted to that observer using OnNext, followed by OnCompleted. We’ll start off as
simply as we can, just printing out each value as it’s received, and printing a confirma-
tion message at the end or if an error occurs. 

 The following listing shows that this involves less code than you’d need for the pull
model.

var observable = Observable.Range(0, 10);
observable.Subscribe(x => Console.WriteLine("Received {0}", x),

e => Console.WriteLine("Error: {0}", e),
() => Console.WriteLine("Finished"));

In this case, it’s hard to see how you could get an error, but I’ve included the error
notification delegate for completeness. The results are as you’d expect:

Received 0
Received 1
...
Received 9
Finished

The observable returned by the Range method is known as a cold observable: it lies dor-
mant until an observer subscribes to it, at which point it’ll emit the values to that indi-
vidual observer. If you subscribe with another observer, that will see another copy of
the range. This isn’t quite the same as a normal event such as a button click, where
several observers could be subscribed to the same actual sequence of values, and the
values may be effectively yielded whether there are any observers or not. (You can
click a button even if there aren’t any event handlers attached, after all.) Sequences
like this are known as hot observables. It’s important to know which type you’re dealing
with, even though the same set of operations applies to both kinds.

 Now that you’ve done the simplest thing possible, let’s try some familiar LINQ
operators. 

12.5.3 Querying observables

By now I’m sure you’re familiar with the pattern—there are various extension meth-
ods in a static class (called Observable, somewhat predictably) that perform appropri-
ate transformations. We’ll look at just a few of the available operators and think a little
about what’s not available, and why it’s not.

FILTERING AND PROJECTING

Let’s jump straight into a query expression that takes a sequence of numbers, filters

Listing 12.13 First contact with IObservable<T>
out the odd ones, and squares anything that’s left. Then we’ll subscribe Console
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.WriteLine to the final result of the query, so that any items produced will be dis-
played. The following listing shows the code—look at how the query expression could
easily be a LINQ to Objects query.

var numbers = Observable.Range(0, 10);
var query = from number in numbers

where number % 2 == 0
select number * number;

query.Subscribe(Console.WriteLine);

For simplicity’s sake, I haven’t added handlers for completion or error, and using the
conversion from the Console.WriteLine method group to an Action<int> keeps the
code nice and short. This produces the same results it would in LINQ to Objects: 0, 4,
16 and so on. Let’s move on to grouping. 

GROUPING

A group by query expression in LINQ to Rx produces a new IGroupedObservable<T>
for each group, although what you then do with the grouping isn’t always obvious. For
example, it’s not uncommon to have a nested subscription so that each time a new
group is produced, you subscribe an observer to that group. The results within each
group are produced as they’re received by the grouping construct—effectively it acts
as a sort of redirection choice, like an usher at a play examining each person’s ticket
as they arrive, and directing them to the relevant section of the theater. By contrast,
LINQ to Objects collects a whole group together before returning it, which means it
has to read to the end of the sequence, buffering all the results.

 The following listing shows an example of this nested subscription, and also dem-
onstrates how group results are emitted.

var numbers = Observable.Range(0, 10);
var query = from number in numbers

group number by number % 3;
query.Subscribe(group => group.Subscribe

(x => Console.WriteLine("Value: {0}; Group: {1}", x, group.Key)));

The best way to understand this is probably to remember that dealing with groups in
LINQ to Objects often involves having a nested foreach loop—so you have nested sub-
scriptions in LINQ to Rx. 

 When in doubt, try to find the duality between the two data models. In LINQ to
Objects, you’d normally process each whole group in turn, whereas the order in LINQ
to Rx means the output of listing 12.15 looks like this:

Value: 0; Group: 0
Value: 1; Group: 1
Value: 2; Group: 2

Listing 12.14 Filtering and projecting in LINQ to Rx

Listing 12.15 Grouping numbers mod 3
Value: 3; Group: 0
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Value: 4; Group: 1
Value: 5; Group: 2
Value: 6; Group: 0
Value: 7; Group: 1
Value: 8; Group: 2
Value: 9; Group: 0

This makes perfect sense when you think of the push model, and in some cases it
means that operations that would’ve required a lot of data buffering in LINQ to
Objects can be implemented in LINQ to Rx much more efficiently. 

 As a final example, let’s look at another operator that uses multiple sequences. 

FLATTENING

LINQ to Rx supplies a few overloads of SelectMany, and the idea is still the same as in
LINQ to Objects: each item in the original sequence produces a new sequence, and
the result is the combination of all these new sequences, flattened. The following list-
ing shows this in action—it’s a little like listing 11.16, when we first discussed Select-
Many in LINQ to Objects.

var query = from x in Observable.Range(1, 3)
from y in Observable.Range(1, x)
select new { x, y };

query.Subscribe(Console.WriteLine);

Here are the results, which should be reasonably predictable:

{ x = 1, y = 1 }
{ x = 2, y = 1 }
{ x = 2, y = 2 }
{ x = 3, y = 1 }
{ x = 3, y = 2 }
{ x = 3, y = 3 }

In this case, the results are deterministic, but that’s only because, by default,
Observable.Range emits items on the current thread. It’s entirely possible to have
multiple sequences being produced on multiple threads. 

 For fun, you might want to change the second call to Observable.Range to specify
Scheduler.ThreadPool as a third argument. In that case, each of the inner sequences
comes out in order with respect to itself, but those separate sequences can be mixed
up among each other. Imagine a sports stadium with one official firing a starting pistol
for several different races in quick succession—even if you know the winner of each
race, you don’t know which race will finish first.

 Apologies if this makes you want to go and lie down. If it’s any consolation, it gives
me the same feeling. I do find it fascinating at the same time though. 

WHAT’S IN AND WHAT’S OUT?
You already know that a let clause works by just calling Select, so that naturally works

Listing 12.16 SelectMany producing multiple ranges
in LINQ to Rx, but not all LINQ to Objects operators are implemented in LINQ to Rx.
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The missing operators are generally the ones that would have to buffer all their out-
put and return a new observable. For example, there’s no Reverse method, and no
OrderBy. C# is quite happy with that—it just won’t let you use an orderby clause in a
query expression based on observables. There’s a Join method, but that doesn’t deal
with observables directly—it handles join plans. This is part of the Rx implementation
of the join-calculus, and it’s well beyond the scope of this book. Likewise there’s no
GroupJoin method, so join...into isn’t supported.

 For the various LINQ standard query operators that aren’t covered by the query
expression syntax—and to see the range of extra methods it makes available—see the
System.Reactive documentation. Although you may start off being disappointed
about the familiar functionality from LINQ to Objects that’s missing in LINQ to Rx
(usually because it just doesn’t make sense), you may be surprised by how rich the set
of available methods really is. Many of the new methods are then ported to LINQ to
Objects in the System.Interactive assembly. 

12.5.4 What’s the point?

I’m well aware that I haven’t provided any compelling reasons to use LINQ to Rx yet.
This is deliberate, as I don’t intend to show a full, useful example—it’s incidental to
the point of this chapter, and would take too much space. But Rx provides an elegant
way of thinking about all kinds of asynchronous processes, such as normal .NET events
(which can be viewed as an observable using Observable.FromEvent), asynchronous
I/O, and calls to web services. It provides a way of managing the complexity and con-
currency in an efficient manner. There’s no doubt that it is harder to get your head
around than LINQ to Objects, but if you’re in the kind of situation where it’d be use-
ful, you’re already facing a mountain of complexity.

 The reason I wanted to cover Rx in this book, despite not being able to do it any
sort of justice, is because it shows why LINQ was designed the way it was. Although there
are conversion methods available between IEnumerable<T> and IObservable<T>,
there’s no inheritance relationship. If the language had made any requirement that
the types involved in LINQ had to be pull sequences, there would’ve been no query
expression support for Rx at all. It would’ve been even more disastrous if extension
methods had been limited to IEnumerable<T> in some way. Likewise, you’ve seen that
not all the normal LINQ operators are applicable to Rx, which is why it’s important that
the language specifies query translations in terms of a pattern that should be sup-
ported as far as it makes sense for the given provider. I hope you have a sense that even
though the push and pull models are very different to work with, LINQ acts as a sort of
unifying force where possible.

 You may be relieved to hear that our last topic is a lot simpler—it’s back on the home
ground of LINQ to Objects, but this time we’re writing our own extension methods. 
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12.6 Extending LINQ to Objects
One of the nice things about LINQ is that it’s extensible. Not only can you come up
with your own query providers and data models, you can also add to existing ones. In
my experience, the most common situation where this is useful is with LINQ to
Objects. If you need a particular type of query that isn’t directly supported (or is awk-
ward or inefficient with the standard query operators), you can write your own. Of
course, writing a general-purpose generic method can be more challenging than just
solving your immediate problem, but if you find yourself writing similar code a few
times, it’s worth considering whether you could refactor it into a new operator.

 Personally, I enjoy writing query operators. There are interesting technical chal-
lenges, but it rarely requires a huge amount of code, and the results can be elegant. In
this section, we’ll look at some of the ways you can make your custom operators
behave efficiently and predictably, followed by a full sample for selecting a random
element from a sequence. 

12.6.1 Design and implementation guidelines

Most of these guidelines may seem fairly obvious, but this section can form a useful
checklist when you write an operator.

UNIT TESTS

It’s generally pretty easy to write a good set of unit tests for operators, although you
may be surprised at how many you end up with for what originally appeared to be sim-
ple code. Don’t forget to test corner cases, such as empty sequences, as well as invalid
arguments. MoreLINQ (http://code.google.com/p/morelinq/) has some helper
methods in its unit test project that you might want to use for your own tests. 

ARGUMENT CHECKING

Good methods check their arguments, but there’s a problem when it comes to LINQ
operators. Many operators return another sequence, as you’ve already seen, and itera-
tor blocks are the easiest way to implement this functionality. But you should really
perform the argument checking as soon as your method is called, rather than waiting
until the caller decides to iterate over the results. If you’re going to use an iterator
block, split your method into two: perform argument checking in a public method
and then call a private method to do the iteration. 

OPTIMIZATION

IEnumerable<T> itself is fairly weak in terms of the operations it supports, but the
execution-time type of a sequence you’re working on may have considerably more
functionality. For example, the Count() operator will always work, but it’ll generally
be an O(n) operation. If you call it on an implementation of ICollection<T>,
though, it can use the Count property directly, which will generally be O(1). In
.NET 4, this optimization is extended to cover ICollection as well. Likewise, retriev-
ing a specific element by index is slow in the general case, but can be efficient if the

sequence implements IList<T>. 

http://code.google.com/p/morelinq/
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 If your operator can benefit from these optimizations, you can have different exe-
cution paths depending on the execution-time type. To test the slow path in unit tests,
you can always call Select(x => x) on a List<T> to retrieve a nonlist sequence.
LinkedList<T> can test the case where you want an ICollection<T> that doesn’t
implement IList<T>. 

DOCUMENTATION

It’s important to document what your code will do with its inputs, and also the
expected performance of the operator. This is particularly important if your method
needs to work with multiple sequences: which one will be evaluated first, and how far?
Does your code stream its data, buffer it, or is it a mixture? Does it use deferred or
immediate execution? Can any parameters be null, and if so, does that have a special
meaning?

ITERATE ONCE WHERE POSSIBLE

At an interface level, IEnumerable<T> will let you iterate over the same sequence mul-
tiple times—you can have multiple iterators active at the same time over the same
sequence, potentially. But this is rarely a good idea within an operator. Wherever pos-
sible, it’s wise to iterate over your input sequences just once. This means your code will
work even for nonrepeatable sequences, such as lines read from a network stream. If
you do need to read the sequence multiple times (and you don’t want to buffer the
whole sequence, like Reverse does), you should draw particular attention to this in
the documentation. 

REMEMBER TO DISPOSE OF ITERATORS

In most cases, you can use a foreach statement to iterate over your data source. But
it’s sometimes useful to treat the first item differently, in which case using an iterator
directly can lead to the simplest code. In that situation, remember to include a using
block for the iterator. You probably aren’t used to disposing of iterators yourself
because normally foreach does it for you, which can make it hard to spot the bug. 

SUPPORT CUSTOM COMPARISONS

Many LINQ operators have overloads that allow you to specify an appropriate
IEqualityComparer<T> or IComparer<T>. If you’re building a general-purpose library
for others (potentially developers who you aren’t in contact with), it may be worth pro-
viding similar overloads yourself. On the other hand, if you’re the sole user, or it’s just
going to be members of your team using it, you can do this on a need-to-implement
basis. It’s easy, though: typically the simpler overloads just call a more complex one,
passing EqualityComparer<T>.Default or Comparer<T>.Default as the comparison.

 Now that I’ve talked the talk, let’s check whether I can actually walk the walk. 

12.6.2 Sample extension: selecting a random element

The aim of the extension method we’ll look at here is simple: given a sequence and
an instance of Random, return a random element from the sequence. You could add

an overload that doesn’t require the instance of Random, but I prefer to make the
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dependency on a random number generator explicit. Randomness is a tricky topic
for various reasons, and rather than discuss it here, I’ve included an article on the
book’s website (see http://mng.bz/h483). Also for reasons of space, I haven’t
included the XML documentation or unit tests in the following listing, but of course
they’re in the downloadable code.

public static T RandomElement<T>(this IEnumerable<T> source,
Random random)

{
if (source == null)
{

throw new ArgumentNullException("source");
}
if (random == null)
{

throw new ArgumentNullException("random");
}
ICollection collection = source as ICollection;
if (collection != null)
{

int count = collection.Count;
if (count == 0)
{

throw new InvalidOperationException("Sequence was empty.");
}
int index = random.Next(count);
return source.ElementAt(index);

}
using (IEnumerator<T> iterator = source.GetEnumerator())
{

if (!iterator.MoveNext())
{

throw new InvalidOperationException("Sequence was empty.");
}
int countSoFar = 1;
T current = iterator.Current;
while (iterator.MoveNext())
{

countSoFar++;
if (random.Next(countSoFar) == 0)
{

current = iterator.Current;
}

}
return current;

}
}

Listing 12.17 doesn’t show the technique of splitting an extension method into argu-
ment validation and then implementation, because it doesn’t use an iterator block.

Listing 12.17 Extension method to choose a random element from a sequence

Validates argumentsB

Optimizes for 
collectionsC

ElementAt 
optimizes further

Handles 
slow caseD

Replaces current guess 
with appropriate 
probability

E

Look back at the implementation of the Where operator in section 10.3.3 for an

http://mng.bz/h483
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example of this. No custom comparisons are required either, but apart from that, every
item on the checklist is appropriate.

 First you validate your arguments in the obvious way B. Things get more interest-
ing where the source sequence implements ICollection C.9 This allows you to take
the count cheaply and then generate a single random number to work out which ele-
ment to pick. You don’t explicitly handle the case where the source sequence imple-
ments IList<T>; instead, you rely on ElementAt to do that for you (as it’s documented
to do).

 If you’re dealing with a noncollection sequence (such as the result of another
query operator), you want to avoid taking the count and then picking an element;
that would require you to either buffer the contents of the sequence or iterate over it
twice. Instead you step through it once, explicitly fetching the iterator D so that you
can test for an empty sequence easily. The clever bit10 is at E—you replace your cur-
rent idea of a random element with the element from the iterator with a probability of
1/n, where n is the number of elements you’ve seen so far. There’s a one-half chance
of replacing the first element with the second, a one-third chance of replacing the
result after two elements with the third element, and so on. The final result is that
each element in the sequence has an equal chance of being picked, and you’ve man-
aged to iterate just once.

 Of course, the important point isn’t what this particular method does—it’s the
potential issues that had to be considered as you implemented it. Once you know what
to look for, it really doesn’t take much effort to implement a robust method like this,
and your personal toolbox will grow over time. 

12.7 Summary
Phew! This chapter has been the exact opposite of most of the rest of the book.
Instead of focusing on a single topic in great detail, we’ve covered a range of LINQ
technologies, but at a shallow level.

 I wouldn’t expect you to feel particularly familiar with any one of the specific tech-
nologies we’ve looked at here, but I hope you have a deeper understanding of why
LINQ is important. It’s not about XML, or in-memory queries, SQL queries, observ-
ables, or enumerators—it’s about consistency of expression, and giving the C# com-
piler the opportunity to validate your queries to at least some extent, regardless of
their final execution platform.

 You should now appreciate why expression trees are so important that they’re
among the few framework elements that the C# compiler has direct intimate knowledge
of (along with strings, IDisposable, IEnumerable<T>, and Nullable<T>, for example).
They act as passports, allowing behavior to cross the border of the local machine,
expressing logic in whatever foreign tongue is catered for by a LINQ provider.

9 The downloadable code contains the same test for implementations of ICollection<T>, just like Count()
does in .NET 4. It’s exactly the same block of code, just with a different type and a different variable name.
10 I’m comfortable claiming this is clever because, even though it’s my implementation, it’s not my idea.
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 It’s not just expression trees—we’ve also relied on the query expression translation
employed by the compiler, and the way that lambda expressions can be converted to
both delegates and expression trees. But extension methods are also important, as
without them each provider would have to give implementations of all the relevant
methods. If you look back at all the new features of C#, you’ll find few that don’t con-
tribute significantly to LINQ in some way or another. That’s part of the reason for this
chapter’s existence: to show the connections between all the features.

 I shouldn’t wax lyrical for too long, though. As well as the upsides of LINQ, we’ve
seen a few gotchas. LINQ won’t always allow you to express everything you need in a
query, nor does it hide all the details of the underlying data source. When it comes to
database LINQ providers, the impedance mismatches that have caused developers so
much trouble in the past are still with us: you can reduce their impact with ORM sys-
tems and the like, but without a proper understanding of the query being executed on
your behalf, you’re likely to run into significant issues. In particular, don’t think of
LINQ as a way of removing your need to understand SQL—think of it as a way of hiding
the SQL when you’re not interested in the details. Likewise, in order to plan an effec-
tive parallel query, you’ve got to know where ordering matters and where it doesn’t,
and perhaps help the framework along a bit by giving it more tuning information.

 Since .NET 3.5 came out, I’ve been delighted to see how wholeheartedly the com-
munity has embraced LINQ. Likewise, there have been plenty of interesting uses of
the features of C# 4, which you’ll see in the next part of the book.



Part 4

C# 4: Playing nicely
with others

C# 4 is a funny beast. It doesn’t have the “several, almost unrelated, major
new features” feeling of C# 2, nor the “all in the cause of LINQ” feeling of C# 3.
Instead, the new features of C# 4 fall somewhere between the two. Interoperabil-
ity is a major theme, but many of the features are equally useful even if you never
need to work with other environments.

 My personal favorite features from C# 4 are optional parameters and named
arguments. They’re relatively simple but can be put to good use in many places,
improving the readability of code and generally making life more pleasant. Do
you waste time working out which argument means what? Put some names on
them. Are you tired of writing endless overloads to avoid callers having to specify
everything? Make some parameters optional.

 If you work with COM, C# 4 will be a breath of fresh air for you. To start with,
the features I just described make some APIs much simpler to work with, where
the component designers have pretty much assumed that you’ll be working with
a language supporting optional parameters and named arguments. Beyond that,
there’s a better deployment story, support for named indexers, and a helpful
shortcut to avoid having to pass arguments by reference everywhere. The biggest
feature of C# 4—dynamic typing—also makes COM integration easier.

 We’ll look at all of these areas in chapter 13, along with the brain-busting
topic of generic variance applied to interfaces and delegates. Don’t worry; we’ll
take that reasonably slowly, and the best part is that most of the time you don’t



need to know the details—it just makes code work where you might’ve expected it to
in C# 3 anyway!

 Chapter 14 covers dynamic typing and the Dynamic Language Runtime (DLR).
This is an enormous topic. I’ve concentrated on how the C# language implements
dynamic typing, but we’ll also look at a few examples of interoperating with dynamic
languages such as IronPython, and see examples of how a type can dynamically
respond to method calls, property accesses, and so on. It’s worth applying a little per-
spective here: the fact that this is a major feature doesn’t mean that you should expect
to see dynamic expressions cropping up all over your code base. This won’t be as per-
vasive as LINQ, for example, but when you do want dynamic typing, you’ll find it well
implemented in C# 4.



Minor changes
to simplify code
Just as with previous versions, C# 4 has a few minor features that don’t merit indi-
vidual chapters to themselves. In fact, there’s only one really big feature in C# 4—
dynamic typing—which we’ll cover in the next chapter. The changes we’ll cover
here just make C# that little bit more pleasant to work with, particularly if you work
with COM on a regular basis. These features generally make code clearer, remove
drudgery from COM calls, or simplify deployment.

This chapter covers
 Optional parameters

 Named arguments

 Streamlining ref parameters in COM

 Embedding COM Primary Interop Assemblies

 Calling named indexers declared in COM

 Generic variance for interfaces and delegates

 Changes in locking and field-like events
371
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 Will any of these features make your heart race with excitement? It’s unlikely. But
they’re nice features all the same, and some of them may be widely applicable. Let’s
start by looking at how we call methods.

13.1 Optional parameters and named arguments
These are perhaps the Batman and Robin1 features of C# 4. They’re distinct, but usu-
ally seen together. I’ll keep them apart for the moment so we can examine each in
turn, but then we’ll use them together for some more interesting examples.

We’ll start by looking at optional parameters.

13.1.1 Optional parameters

Visual Basic has had optional parameters for ages, and they’ve been in the CLR from
.NET 1.0. The concept is as obvious as it sounds: some parameters are optional, so
their values don’t have to be explicitly specified by the caller. Any parameter that
hasn’t been specified as an argument by the caller is given a default value.

MOTIVATION

Optional parameters are usually used when several values are required for an opera-
tion, and the same values are used a lot of the time. For example, suppose you wanted
to read a text file; you might want to provide a method that allows the caller to specify
the name of the file and the encoding to use. The encoding is almost always UTF-8,
though, so it’s nice to be able to use that automatically if it’s all you need.

 Historically the idiomatic way of allowing this in C# has been to use method over-
loading: declare one method with all the possible parameters, and others that call that

Parameters and arguments
This section obviously talks about parameters and arguments a lot. In casual conver-
sation, the two terms are often used interchangeably, but I’ll use them in line with
their formal definitions. Just to remind you, a parameter (also known as a formal
parameter) is the variable that’s part of the method or indexer declaration. An argu-
ment is an expression used when calling the method or indexer. For example, con-
sider this snippet:
void Foo(int x, int y)
{

// Do something with x and y
}
...
int a = 10;
Foo(a, 20);

Here the parameters are x and y, and the arguments are a and 20.
1 Or Cavalleria rusticana and Pagliacci if you’re feeling more highly cultured.
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method, passing in default values where appropriate. For instance, you might create
methods like this:

public IList<Customer> LoadCustomers(string filename,
Encoding encoding)

{
...

}

public IList<Customer> LoadCustomers(string filename)
{

return LoadCustomers(filename, Encoding.UTF8);
}

This works fine for a single parameter, but it becomes complicated when there are
multiple options, as each extra option doubles the number of possible overloads. If
two of them are of the same type, this approach would naturally lead to multiple
methods with the same signature, which is invalid. Often the same set of overloads is
also required for multiple parameter types. For example, the XmlReader.Create()
method can create an XmlReader from a Stream, a TextReader, or a string, but it also
provides the option of specifying an XmlReaderSettings and other arguments. Due to
this duplication, there are 12 overloads for the method. 

 This could be significantly reduced with optional parameters. Let’s see how it’s
done. 

DECLARING OPTIONAL PARAMETERS AND OMITTING THEM WHEN SUPPLYING ARGUMENTS

Making a parameter optional is as simple as
supplying a default value for it, using what
looks like a variable initializer. Figure 13.1
shows a method with three parameters: two
are optional, one is required.

 All this method does is print out the
arguments, but that’s enough to see what’s
going on. The following listing gives the full
code and calls the method three times, spec-
ifying a different number of arguments for
each call.

static void Dump(int x, int y = 20, int z = 30)
{

Console.WriteLine("x={0} y={1} z={2}", x, y, z);
}
...
Dump(1, 2, 3);
Dump(1, 2);
Dump(1);

Listing 13.1 Declaring and calling a method with optional parameters 

Do real work here

Default to UTF-8

Declares method 
with optional 
parametersB

Calls method with 
all arguments

C

Omits one argumentD

void Dump(int x, int y = 20, int z = 30)

Required
parameter

Default
values

Optional
parameters

Figure 13.1 Declaring optional 
parameters
Omits two argumentsE
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The optional parameters are the ones with default values specified B. If the caller
doesn’t specify y, its initial value will be 20, and likewise z has a default value of 30.
The first call C explicitly specifies all the arguments; the remaining calls (D and E)
omit one or two arguments, respectively, so the default values are used. When there’s
one argument missing, the compiler assumes that the final parameter has been omit-
ted, then the penultimate one, and so on. The output is as follows:

x=1 y=2 z=3
x=1 y=2 z=30
x=1 y=20 z=30

Note that although the compiler could use some clever analysis of the types of the
optional parameters and the arguments in order to work out what’s been left out, it
doesn’t: it assumes that you’re supplying arguments in the same order as the parame-
ters.2 This means that the following code is invalid:

static void TwoOptionalParameters(int x = 10,
string y = "default")

{
Console.WriteLine("x={0} y={1}", x, y);

}
...
TwoOptionalParameters("second parameter");

This tries to call the TwoOptionalParameters method specifying a string for the first
argument. There’s no overload with a first parameter that’s convertible from a string,
so the compiler issues an error. This is a good thing—overload resolution is tricky
enough (particularly when generic type inference gets involved) without the compiler
trying all kinds of different permutations to find something you might be trying to call.
If you want to omit the value for one optional parameter but specify a later one, you
need to use named arguments. 

RESTRICTIONS ON OPTIONAL PARAMETERS

There are a few rules for optional parameters. All optional parameters must come
after required parameters. The exception to this is a parameter array (as declared with
the params modifier), which still has to come at the end of a parameter list, but can
come after optional parameters. A parameter array can’t be declared as an optional
parameter—if the caller doesn’t specify any values for it, an empty array will be used
instead. Optional parameters can’t have ref or out modifiers either.

 An optional parameter can be of any type, but there are restrictions on the default
value specified. You can always use constants: numeric and string literals, null, const
members, enum members, and the default(T) operator. Additionally, for value types,
you can call the parameterless constructor, although this is equivalent to using the
default (...) operator anyway. There has to be an implicit conversion from the
specified value to the parameter type, but this must not be a user-defined conversion.
Table 13.1 shows some examples of valid parameter lists.

NVALID

Error!
2 Unless you’re using named arguments, of course—you’ll learn about those soon.



375Optional parameters and named arguments

In contrast, table 13.2 shows some invalid parameter lists and explains why they’re not
allowed.

The fact that the default value has to be constant is a pain in two different ways. One
of them is familiar from a slightly different context, as we’ll look at now. 

VERSIONING AND OPTIONAL PARAMETERS

The restrictions on default values for optional parameters may remind you of the
restrictions on const fields or attribute values, and they behave very similarly. In both
cases, when the compiler references the value, it copies it directly into the output. The
generated IL acts exactly as if your original source code had contained the default
value. This means if you ever change the default value without recompiling everything
that references it, the old callers will still be using the old default value. 

 To make this concrete, imagine this set of steps:

Table 13.1 Valid method parameter lists using optional parameters

Declaration Notes

Foo(int x, int y = 10) Numeric literal used for default value

Foo(decimal x = 10) Implicit built-in conversion from int to 
decimal

Foo(string name = "default") String literal used for default value

Foo(DateTime dt = new DateTime()) Zero value of DateTime

Foo(DateTime dt = default(DateTime)) Alternative syntax for the zero value

Foo<T>(T value = default(T)) Default value operator works with type param-
eters

Foo(int? x = null) Nullable conversion

Foo(int x, int y = 10, params int[] z) Parameter array after optional parameters

Table 13.2 Invalid method parameter lists using optional parameters

Declaration (invalid) Notes

Foo(int x = 0, int y) Required non-params parameter after optional 
parameter

Foo(DateTime dt = DateTime.Now) Default values must be constants

Foo(XName name = "default") Conversion from string to XName is user-defined

Foo(params string[] names = null) Parameter arrays can’t be optional

Foo(ref string name = "default") ref/out parameters can’t be optional
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1 Create a class library (Library.dll) with a class like this:
public class LibraryDemo
{

public static void PrintValue(int value = 10)
{

System.Console.WriteLine(value);
}

}

2 Create a console application (Application.exe) that references the class library:
public class Program
{

static void Main()
{

LibraryDemo.PrintValue();
}

}

3 Run the application—it’ll print 10, predictably.
4 Change the declaration of PrintValue as follows, and then recompile just the

class library:
public static void PrintValue(int value = 20)

5 Rerun the application—it’ll still print 10. The value has been compiled directly
into the executable.

6 Recompile the application and rerun it—this time it’ll print 20.

This versioning issue can cause bugs that are hard to track down, because all the code
looks correct. Essentially, you’re restricted to using genuine constants that should
never change as default values for optional parameters.3 There’s one benefit of this
setup: it gives the caller a guarantee that the value it knew about at compile time is the
one that’ll be used. Developers may feel more comfortable with that than with a
dynamically computed value, or one that depends on the version of the library used at
execution time.

 Of course, this also means you can’t use any values that can’t be expressed as con-
stants anyway. You can’t create a method with a default value of “the current time,” for
example. 

MAKING DEFAULTS MORE FLEXIBLE WITH NULLITY

Fortunately, there’s a way around the restriction that default values must be constants.
Essentially, you introduce a magic value to represent the default, and then replace
that magic value with the real default within the method itself. If the phrase magic value
bothers you, I’m not surprised, but we’ll use null for the magic value, which already
represents the absence of a normal value. If the parameter type would normally be a
value type, we’ll simply make it the corresponding nullable value type, at which point
we can still specify that the default value is null.

3 Or you could just accept that you’ll need to recompile everything if you change the value. In many contexts

that’s a reasonable trade-off.
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 As an example of this, let’s look at a situation similar to the one I used to introduce
the whole topic: allowing the caller to supply an appropriate text encoding to a
method, but defaulting to UTF-8. You can’t specify the default encoding as
Encoding.UTF8 as that’s not a constant value, but you can treat a null parameter value
as “use the default.” To demonstrate how you can handle value types, let’s make the
method append a timestamp to a text file with a message. We’ll default the encoding
to UTF-8 and the timestamp to the current time. The following listing shows the com-
plete code and a few examples of using it.

static void AppendTimestamp(string filename,
string message,
Encoding encoding = null,
DateTime? timestamp = null)

{
Encoding realEncoding = encoding ?? Encoding.UTF8;
DateTime realTimestamp = timestamp ?? DateTime.Now;
using (TextWriter writer = new StreamWriter(filename,

true,
realEncoding))

{
writer.WriteLine("{0:s}: {1}", realTimestamp, message);

}
}
...
AppendTimestamp("utf8.txt", "First message");
AppendTimestamp("ascii.txt", "ASCII", Encoding.ASCII);
AppendTimestamp("utf8.txt", "Message in the future", null,

new DateTime(2030, 1, 1));

Listing 13.2 shows a few nice features of this approach. First, it solves the versioning
problem. The default values for the optional parameters are null B, but the effective val-
ues are “the UTF-8 encoding” and “the current date and time.” Neither of these could
be expressed as constants, and should you ever want to change the effective default—
for example, to use the current UTC time instead of the local time—you could do so
without having to recompile everything that called AppendTimestamp. Of course,
changing the effective default changes the behavior of the method; you need to take
the same sort of care with this as you would with any other code change. At this point,
you (as the library author) are in charge of the versioning story—you’re taking respon-
sibility for not breaking clients, effectively. At least it’s more familiar territory; you know
that all callers will experience the same behavior, regardless of recompilation.

 This listing also introduces an extra level of flexibility. Not only do optional param-
eters mean you can make the calls shorter, but having a specific “use the default” value
means that should you ever wish to, you can explicitly make a call allowing the method
to choose the appropriate value. At the moment, this is the only way you know to spec-
ify the timestamp explicitly without also providing an encoding D, but that’ll change

Listing 13.2 Using null default values to handle nonconstant situations

Two 
required 
parametersTwo

tional
eters B

Null 
coalescing 
operator 
for 
convenienceC

Explicit use 
of null

D

when we look at named arguments.
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 The optional parameter values are simple to deal with, thanks to the null coalesc-
ing operator C. This example uses separate variables for the sake of printed format-
ting, but in real code you’d probably use the same expressions directly in the calls to
the StreamWriter constructor and the WriteLine method.

 There are two downsides to this approach: first, it means that if a caller accidentally
passes in null due to a bug, it’ll get the default value instead of an exception. In cases
where you’re using a nullable value type and callers will either explicitly use null or
have a non-nullable argument, that’s not much of a problem, but for reference types it
could be an issue.

 On a related note, it requires that you don’t want to use null as a “real” value.4

There are occasions where you want null to mean null, and if you don’t want that to be
the default value, you’ll have to find a different constant or just leave the parameter as
a required one. But in other cases, where there isn’t an obvious constant value that’ll
clearly always be the right default, I recommend this approach to optional parameters
as one that’s easy to follow consistently and removes some of the normal difficulties.

 We’ll need to look at how optional parameters affect overload resolution, but it
makes sense to wait until you’ve seen how named arguments work. Speaking of
which… 

13.1.2 Named arguments

The basic idea of named arguments is that when you specify an argument value, you
can also specify the name of the parameter it’s supplying the value for. The compiler
then makes sure that there is a parameter of the right name and uses the value for that
parameter. Even on its own, this can increase readability in some cases. In practice,
named arguments are most useful in cases where optional parameters are also likely
to appear, but we’ll look at the simple situation first.

INDEXERS, OPTIONAL PARAMETERS, AND NAMED ARGUMENTS You can use
optional parameters and named arguments with indexers as well as methods.
But this is only useful for indexers with more than one parameter: you can’t
access an indexer without specifying at least one argument anyway. Given this
limitation, I don’t expect to see the feature used much with indexers, and I
haven’t demonstrated it in the book. It works exactly as you’d expect it to,
though.

I’m sure you’ve seen code that looks something like this:

MessageBox.Show("Please do not press this button again", // text
"Ouch!"); // title

I’ve chosen a pretty tame example; it can get a lot worse when there are loads of argu-
ments, especially if a lot of them are the same type. But this is still realistic; even with

4 We almost need a second null-like special value, meaning “please use the default value for this parameter,”
and then we could allow that special value to be supplied either automatically for missing arguments or explic-
itly in the argument list. I’m sure this would cause dozens of problems, but it’s an interesting thought exper-

iment.
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just two parameters, I’d find myself guessing which argument meant what based on
the text when reading this code, unless it had comments like the ones I have here.
There’s a problem though: comments can lie about the code they describe. Nothing is
checking them at all. In contrast, named arguments ask the compiler to help. 

SYNTAX

All you need to do to the previous example to make the code clearer is prefix each
argument with the name of the corresponding parameter and a colon:

MessageBox.Show(text: "Please do not press this button again",
caption: "Ouch!");

Admittedly, you now don’t get to choose the name you find most meaningful (I prefer
title to caption), but at least you’ll know if you get something wrong. 

 Of course, the most common way in which you could get something wrong here is
to get the arguments the wrong way around. Without named arguments, this would be
a problem: you’d end up with the pieces of text switched in the message box. With
named arguments, the ordering becomes largely irrelevant. You can rewrite the previ-
ous code like this:

MessageBox.Show(caption: "Ouch!",
text: "Please do not press this button again");

You’d still have the right text in the right place, because the compiler would work out
what you meant based on the names. 

 For another example, look at the StreamWriter constructor call in listing 13.2.
The second argument is just true—what does this mean? Is it going to force a stream
flush after every write? Include a byte order mark? Append to an existing file instead
of creating a new one? Here’s the equivalent call using named arguments:

new StreamWriter(path: filename,
append: true,
encoding: realEncoding)

In both of these examples, you’ve seen how named arguments effectively attach
semantic meaning to values. In the never-ending quest to make code communicate bet-
ter with humans as well as computers, this is a definite step forward. 

 I’m not suggesting that named arguments should be used when the meaning is
already obvious, of course. Like all features, it should be used with discretion and
thought.

Named arguments with out and ref
If you want to specify the name of an argument for a ref or out parameter, you put
the ref or out modifier after the name and before the argument. Using int.Try-
Parse as an example, you might have code like this:

int number;
bool success = int.TryParse("10", result: out number);
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To explore some other aspects of the syntax, the following listing shows a method
with three integer parameters, just like the one we used to start looking at optional
parameters.

static void Dump(int x, int y, int z)
{

Console.WriteLine("x={0} y={1} z={2}", x, y, z);
}
...
Dump(1, 2, 3);
Dump(x: 1, y: 2, z: 3);
Dump(z: 3, y: 2, x: 1);
Dump(1, y: 2, z: 3);
Dump(1, z: 3, y: 2);

The output is the same for each call in listing 13.3: x=1, y=2, z=3. This code effec-
tively makes the same method call in five different ways. It’s worth noting that there
are no tricks in the method declaration B; you can use named arguments with any
method that has parameters. First, you call the method in the normal way, without
using any new features C. This is a sort of control point to make sure that the other
calls really are equivalent. You then make two calls to the method using just named
arguments D. The second of these calls reverses the order of the arguments, but the
result is still the same, because the arguments are matched up with the parameters by
name, not position. Finally, there are two calls using a mixture of named arguments
and positional arguments E. A positional argument is one that isn’t named, so every
argument in valid C# 3 code is a positional argument from the point of view of C# 4.

 Figure 13.2 shows how the final line of code works.
 All named arguments have to come after positional arguments—you can’t switch

between the styles. Positional arguments always refer to the corresponding parameter
in the method declaration—you can’t make positional arguments skip a parameter by
specifying it later with a named argument. This means that these method calls would
both be invalid:

 Dump(z: 3, 1, y: 2)—Positional argu-
ments must come before named ones.

 Dump(2, x: 1, z: 3)—x has already
been specified by the first positional
argument, so you can’t specify it again
with a named argument.

Now, although in this particular case the method
calls are equivalent, that’s not always the case.
Let’s look at why reordering arguments might
change behavior. 

Listing 13.3 Simple examples of using named arguments

Declares method 
as normalB

Calls method 
as normal

C

Specifies names for 
all argumentsD

Specifies names for 
some argumentsE

static void Dump(int x, int y, int z)

Dump(1, z: 3, y: 2) 

Positional
argument

Named
arguments

Figure 13.2 Positional and named 
arguments in the same call
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ARGUMENT EVALUATION ORDER

You’re used to C# evaluating its arguments in the order they’re specified, which, until
C# 4, has always been the order in which the parameters have been declared too. In
C# 4, only the first part is still true: the arguments are still evaluated in the order
they’re written, even if that’s not the same as the order in which they’re declared as
parameters. This matters if evaluating the arguments has side effects. 

 It’s usually worth trying to avoid having side effects in arguments, but there are
cases where it can make the code clearer. A more realistic rule is to try to avoid side
effects that might interfere with each other. For the sake of demonstrating execution
order, we’ll break both of these rules. Please don’t treat this as a recommendation that
you do the same thing.

 First we’ll create a relatively harmless example, introducing a method that logs its
input and returns it—a sort of logging echo. We’ll use the return values of three calls
to this to call the Dump method (which isn’t shown, as it hasn’t changed). The follow-
ing listing shows two calls to Dump that result in slightly different output.

static int Log(int value)
{

Console.WriteLine("Log: {0}", value);
return value;

}
...
Dump(x: Log(1), y: Log(2), z: Log(3));
Dump(z: Log(3), x: Log(1), y: Log(2));

The results of running listing 13.4 show what happens:

Log: 1
Log: 2
Log: 3
x=1 y=2 z=3
Log: 3
Log: 1
Log: 2
x=1 y=2 z=3

In both cases, the parameters x, y, and z in the Dump method still have the values 1, 2,
and 3, respectively. But you can see that although they were evaluated in that order in
the first call (which was equivalent to using positional arguments), the second call
evaluated the value used for the z parameter first. 

 You can make the effect even more significant by using side effects that change the
results of the argument evaluation, as shown in the following listing, again using the
same Dump method.

Listing 13.4 Logging argument evaluation
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int i = 0;
Dump(x: ++i, y: ++i, z: ++i);
i = 0;
Dump(z: ++i, x: ++i, y: ++i);

The results of listing 13.5 may be best expressed in terms of the blood spatter pattern
at a murder scene, after someone maintaining code like this has gone after the origi-
nal author with an axe. Yes, technically speaking the last line results are x=2 y=3 z=1,
but I’m sure you see what I’m getting at. Just say No to code like this. 

 By all means, reorder your arguments for the sake of readability. You may think
that laying out a call to MessageBox.Show with the title coming above the text in the
code itself reflects the onscreen layout more closely, for example. If you want to rely
on a particular evaluation order for the arguments, though, introduce some local vari-
ables to execute the relevant code in separate statements. The compiler won’t care
either way—it’ll follow the rules of the spec—but this reduces the risk of a “harmless
refactoring” that inadvertently introduces a subtle bug.

 To return to cheerier matters, let’s combine the two features (optional parameters
and named arguments) and see how much tidier the code can be. 

13.1.3 Putting the two together

Optional parameters and named arguments work in tandem with no extra effort
required on your part. It’s not uncommon to have a bunch of parameters where there
are obvious defaults, but where it’s hard to predict which ones a caller will want to
specify explicitly. Figure 13.3 shows just about every combination: a required parame-
ter, two optional parameters, a positional argument, a named argument, and a miss-
ing argument for an optional parameter.

 Going back to an earlier example,
in listing 13.2 you wanted to append a
timestamp to a file using the default
encoding of UTF-8, but with a particu-
lar timestamp. That code used null
for the encoding argument, but now
you can write the same code more sim-
ply, as shown in the following listing.

static void AppendTimestamp(string filename,
string message,
Encoding encoding = null,
DateTime? timestamp = null)

{

}

Listing 13.5 Abusing argument evaluation order

Listing 13.6 Combining named arguments and optional parameters

Same 
implementation 
as before

static void Dump(int x, int y = 20, int z = 30)

Dump(10, z: 3) 

20

Figure 13.3 Mixing named arguments and 
optional parameters
...
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AppendTimestamp("utf8.txt", "Message in the future",
                timestamp: new DateTime(2030, 1, 1));

In this fairly simple situation, the benefit isn’t particularly huge, but in cases where
you want to omit three or four arguments but specify the final one, it’s a real blessing.

 You’ve seen how optional parameters reduce the need for huge long lists of over-
loads, but one specific pattern where this is worth mentioning is with respect to
immutability. 

IMMUTABILITY AND OBJECT INITIALIZATION

One aspect of C# 4 that disappoints me somewhat is that it hasn’t done much explicitly
to make immutability easier. Immutable types are a core part of functional program-
ming, and C# has been gradually supporting the functional style more and more…
except for immutability. Object and collection initializers make it easy to work with
mutable types, but immutable types have been left out in the cold. (Automatically
implemented properties fall into this category too.) Fortunately, though they’re not
particularly designed to aid immutability, named arguments and optional parameters
allow you to write object initializer–like code that calls a constructor or other factory
method. 

 For instance, suppose you were creating a Message class, which required a from
address, a to address, and a body, with the subject and attachment being optional.
(We’ll stick with single recipients in order to keep the example as simple as possible.)
You could create a mutable type with appropriate writable properties, and construct
instances like this:

Message message = new Message {
From = "skeet@pobox.com",
To = "csharp-in-depth-readers@everywhere.com",
Body = "Hope you like the third edition",
Subject = "A quick message"

};

That has two problems: first, it doesn’t enforce the required data to be provided. You
could force those to be supplied to the constructor, but then (before C# 4) it wouldn’t
be obvious which argument meant what:

Message message = new Message(
"skeet@pobox.com",
"csharp-in-depth-readers@everywhere.com",
"Hope you like the third edition")

{
Subject = "A quick message"

};

The second problem is that this initialization pattern simply doesn’t work for immuta-
ble types. The compiler has to call a property setter after it has initialized the object. 

 But you can use optional parameters and named arguments to come up with some-

Encoding is omitted

Named timestamp 
argument
thing that has the nice features of the first form (only specifying what you’re interested
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in and supplying names) without losing the validation of which aspects of the message
are required or the benefits of immutability. The following listing shows a possible con-
structor signature and the construction step for the same message as before.

public Message(string from, string to,
string body, string subject = null,
byte[] attachment = null)

{

}
...
Message message = new Message(

from: "skeet@pobox.com",
to: "csharp-in-depth-readers@everywhere.com",
body: "I hope you like the third edition",
subject: "A quick message"

);

I really like this in terms of readability and general cleanliness. You don’t need hun-
dreds of constructor overloads—just one with some of the parameters being optional.
The same syntax will also work with static creation methods, unlike object initializers.
The only downside is that it really relies on your code being consumed by a language
that supports optional parameters and named arguments; otherwise callers will be
forced to write ugly code to specify values for all the optional parameters. Obviously
there’s more to immutability than getting values to the initialization code, but this is a
welcome step in the right direction nonetheless.

 There are a couple of final points to make about these features before we move on
to COM—points concerning the details of how the compiler handles your code and
the difficulty of good API design. 

OVERLOAD RESOLUTION

Clearly both named arguments and optional parameters affect how the compiler
resolves overloads—if there are multiple method signatures available with the same
name, which one should it pick? Optional parameters can increase the number of
applicable methods (if some methods have more parameters than the number of
specified arguments) and named arguments can decrease the number of applicable
methods (by ruling out methods that don’t have the appropriate parameter names).

 For the most part, the changes are intuitive: to check whether any particular
method is applicable, the compiler tries to build a list of the arguments it would pass
in, using the positional arguments in order, and then matching the named arguments
up with the remaining parameters. If a required parameter hasn’t been specified or if
a named argument doesn’t match any remaining parameters, the method isn’t appli-
cable. The specification gives more detail about this in section 7.5.3, but there are two
situations I’d like to draw particular attention to.

Listing 13.7 Using optional parameters and named arguments for immutability

Normal 
initialization 
code goes here
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 First, if two methods are both applicable and one of them has been given all of its
arguments explicitly, whereas the other uses an optional parameter filled in with a
default value, the method that doesn’t use any default values will win. But this doesn’t
extend to just comparing the number of default values used—it’s a strict “does it use
default values or not” divide. For example, consider the following:

static void Foo(int x = 10) {}
static void Foo(int x = 10, int y = 20) {}
...
Foo();
Foo(1);
Foo(y: 2);
Foo(1, 2);

In the first call B, both methods are applicable because of their optional parameters.
But the compiler can’t work out which one you meant to call; it’ll raise an error. In the
second call C, both methods are still applicable, but the first overload is used because
it can be applied without using any default values, whereas the second overload uses
the default value for y. For both the third and fourth calls, only the second overload is
applicable. The third call D names the y argument, and the fourth call E has two
arguments; both of these mean the first overload isn’t applicable.

OVERLOADS AND INHERITANCE DON’T ALWAYS MIX NICELY All of this assumes
that the compiler has gone as far as finding multiple overloads to choose
between. If some methods are declared in a base type, but there are applica-
ble methods in a more derived type, the latter will win. This has always been
the case, and it can cause some surprising results (see the book’s website for
more details and examples: http://mng.bz/aEmE), but now optional param-
eters mean there may be more applicable methods than you’d expect. I advise
you to avoid overloading a base class method within a derived class unless you
get a huge benefit.

The second point is that sometimes named arguments can be an alternative to casting
in order to help the compiler resolve overloads. Sometimes a call can be ambiguous
because the arguments can be converted to the parameter types in two different meth-
ods, but neither method is better than the other in all respects. For instance, consider
the following method signatures and call:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }
...
Method(10, 10);

Both methods are applicable, and neither is better than the other. There are two ways
to resolve this, assuming you can’t change the method names to make them unam-
biguous that way. (That’s my preferred approach. Make each method name more
informative and specific, which will improve the general readability of the code.) You

Error: ambiguousB

Calls first overloadC
Calls second overloadD

Calls second overloadE

Ambiguous call

http://mng.bz/aEmE
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can either cast one of the arguments explicitly, or use named arguments to resolve
the ambiguity:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }
...
Method(10, (object) 10);
Method(x: 10, y: 10);

Of course, this only works if the parameters have different names in the different
methods, but it’s a handy trick to know. Sometimes the cast will give more readable
code; sometimes the name will. It’s just an extra weapon in the fight for clear code. 

 Unfortunately, it does have a downside, along with named arguments in general:
it’s another thing to be careful about when you change parameter names. 

THE SILENT HORROR OF CHANGING NAMES

In the past, parameter names haven’t mattered much if you’ve only been using C#.
Other languages may have cared, but in C# the only times that parameter names were
important were when you were looking at IntelliSense and when you were looking at
the method code itself. Now the parameter names of a method are effectively part of
the API even if you’re only using C#. If you change them at a later date, code can
break—anything that was using a named argument to refer to one of your parameters
will fail to compile if you decide to change it. This may not be much of an issue if your
code is only consumed by itself, but if you’re writing a public API, be aware that chang-
ing a parameter name is a big deal. It always has been, really, but if everything calling
the code was written in C#, you’ve been able to ignore that until now.

 Renaming parameters is bad; switching the names around is worse. The calling
code may still compile, but with a different meaning. A particularly evil form of this is
to override a method and switch the parameter names in the overridden version. The
compiler will always look at the deepest override it knows about, based on the static
type of the expression used as the target of the method call. You don’t want to get into
a situation where calling the same method implementation with the same argument
list results in different behavior based on the static type of a variable. 

IN CONCLUSION…
Named arguments and optional parameters are possibly two of the simplest-sounding
features of C# 4, and yet they have a fair amount of complexity, as you’ve seen. The
basic ideas are easily expressed and understood, and the good news is that most of the
time that’s all you need to care about. You can take advantage of optional parameters
to reduce the number of overloads you write, and named arguments can make code
much more readable when several easily confusable arguments are used.

 The trickiest bit is probably deciding which default values to use, bearing in mind
potential versioning issues. Likewise, it’s now more obvious than before that parame-
ter names matter, and you need to be careful when overriding existing methods, to
avoid being evil to your callers.

Casting to resolve 
ambiguity

Naming to resolve 
ambiguity
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 Speaking of evil, let’s move on to the new features relating to COM. I’m only kid-
ding…mostly, anyway.

13.2 Improvements for COM interoperability
I readily admit to being far from a COM expert. When I tried to use it before .NET
came along, I always ran into issues that were no doubt partially caused by my lack of
knowledge and partially caused by the components I was working with being poorly
designed or implemented. My overall impression of COM as a sort of black magic has
lingered, though. I’ve been reliably informed that there’s a lot to like about it, but
unfortunately I haven’t found myself going back to learn it in detail—and there seems
to be a lot of detail to study.

THIS SECTION IS MICROSOFT-SPECIFIC The changes for COM interoperability
won’t make sense for all C# compilers, and a compiler can still be deemed
compliant with the specification without implementing these features.

.NET has made COM somewhat friendlier in general, but until now there have been
distinct advantages to using it from Visual Basic instead of C#. The playing field has
been leveled significantly by C# 4, as you’ll see in this section. For the sake of familiar-
ity, I’ll use Word for the example in this chapter and Excel in the next chapter.
There’s nothing Office-specific about the new features, though; you should find the
experience of working with COM to be nicer in C# 4 whatever you’re doing.

13.2.1 The horrors of automating Word before C# 4

Our example is simple—it’s just going to start Word, create a document with a single
paragraph of text, save it, and then exit. Sounds easy, right? If only that were so. The
following listing shows the code required before C# 4.

object missing = Type.Missing;

Application app = new Application { Visible = true };
app.Documents.Add(ref missing, ref missing,

ref missing, ref missing);
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add(ref missing);
para.Range.Text = "Thank goodness for C# 4";

object filename = "demo.doc";
object format = WdSaveFormat.wdFormatDocument97;
doc.SaveAs(ref filename, ref format,

ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing,
ref missing, ref missing);

doc.Close(ref missing, ref missing, ref missing);

Listing 13.8 Creating and saving a document in C# 3

Starts WordB
Creates a new documentC

Saves the documentD

Shuts down WordE

app.Application.Quit(ref missing, ref missing, ref missing);
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Each step in this code sounds simple: first you create an instance of the COM type B
and make it visible using an object initializer expression; then you create and fill in a
new document C. The mechanism for inserting some text into a document isn’t quite
as straightforward as you might expect, but it’s worth remembering that a Word docu-
ment can have a fairly complex structure; this isn’t as bad as it might be. A couple of
the method calls here have optional by-reference parameters; you don’t need them,
so you pass a local variable by reference with a value of Type.Missing. If you’ve ever
done any COM work before, you’re probably very familiar with this pattern.

 Next comes the really nasty bit: saving the document D. Yes, the SaveAs method
really does have 16 parameters, of which you’re only using 2. Even those 2 need to be
passed by reference, which means creating local variables for them. In terms of read-
ability, this is a complete nightmare. Don’t worry—we’ll soon sort it out.

 Finally, you close the document and the application E. Aside from the fact that
both calls have three optional parameters that you don’t care about, there’s nothing
interesting here.

 Let’s start off by using the features we’ve already seen in this chapter—they’re suf-
ficient in themselves to cut the example down significantly. 

13.2.2 The revenge of optional parameters and named arguments

First things first: let’s get rid of all those arguments corresponding to optional param-
eters you’re not interested in. That also means you don’t need the missing variable. 

 That still leaves you with 2 parameters out of a possible 16 for the SaveAs method.
At the moment it’s obvious which is which based on the local variable names, but what
if you have them the wrong way around? All the parameters are weakly typed, so
you’re really going on guesswork. You can easily give the arguments names to clarify
the call. If you wanted to use one of the later parameters, you’d have to specify the
name anyway, just to skip the ones you’re not interested in.

 The following listing shows the code—it looks a lot cleaner already.

Application app = new Application { Visible = true };
app.Documents.Add();
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add();
para.Range.Text = "Thank goodness for C# 4";

object filename = "demo.doc";
object format = WdSaveFormat.wdFormatDocument97;
doc.SaveAs(FileName: ref filename, FileFormat: ref format);

doc.Close();
app.Application.Quit();

That’s much better, although it’s still ugly to have to create local variables for the
SaveAs arguments you are specifying. Also, if you’ve been reading carefully, you may

Listing 13.9 Automating Word using normal C# 4 features
be concerned about the optional parameters that have been removed. They were ref
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parameters—but optional—which isn’t a combination C# normally supports. What’s
going on?

13.2.3 When is a ref parameter not a ref parameter?

C# normally takes a pretty strict line on ref parameters. You have to mark the argu-
ment with ref as well as the parameter, to show that you understand what’s going
on—that your variable may have its value changed by the method you’re calling.
That’s all fine in normal code, but COM APIs often use ref parameters for almost every-
thing, for perceived performance reasons—they usually don’t modify the variable you
pass in. Passing arguments by reference is slightly painful in C#. Not only do you have
to specify the ref modifier, you also must have a variable. You can’t just pass values by
reference.

 In C# 4, the compiler makes this a lot easier by letting you pass an argument by
value into a COM method, even if it’s for a ref parameter. Consider a call like this,
where argument might happen to be a variable of type string, but the parameter is
declared as ref object:

comObject.SomeMethod(argument);

The compiler emits code that’s equivalent to this:

object tmp = argument;
comObject.SomeMethod(ref tmp);

Note that any changes made by SomeMethod are discarded, so the call really does
behave as if you were passing argument by value. This same process is used for
optional ref parameters; each involves a local variable initialized to Type.Missing
and passed by reference into the COM method. If you decompile the slimlined C#
code, you’ll see that the IL emitted is pretty bulky with all of those extra variables.

 You can now apply the finishing touches to the Word example, as shown in the fol-
lowing listing.

Application app = new Application { Visible = true };
app.Documents.Add();
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add();
para.Range.Text = "Thank goodness for C# 4";
doc.SaveAs(FileName: "test.doc",
           FileFormat: WdSaveFormat.wdFormatDocument97);
doc.Close();
app.Application.Quit();

As you can see, the final result is much cleaner code than you started with. With an
API like Word, you still need to work through a somewhat bewildering set of methods,
properties, and events in the core types, such as Application and Document, but at
least your code will be a lot easier to read.

Listing 13.10 Passing arguments by value in COM methods

Arguments passed by value
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 In terms of changes to source code, there’s one final aspect of the COM support to
look at before we move on to the deployment improvements available in C# 4. 

13.2.4 Calling named indexers

Several aspects of C# 4 provide support for features that Visual Basic has enjoyed for a
long time, and this is another one. The CLR, COM, and Visual Basic all permit nonde-
fault properties with parameters—named indexers in C# terms. Until version 4, C# has
not only forbidden you to directly declare your own named indexers,5 but it hasn’t
provided a way of accessing them using property syntax either. The only indexer you
can use from C# is the one declared as the default property for the type. This hasn’t
been a great issue for .NET components written in Visual Basic, as named indexers are
generally discouraged. But COM components, such as those for Office, use them more
heavily. C# 4 allows you to call named indexers in a more natural fashion, but you still
can’t declare them for your own C# types.

TERMINOLOGY CLASHES AGAIN I’ve used the term indexer throughout this sec-
tion to describe what in VB terms would be known as a parameterized property.
The CLI specification calls it an indexed property. Whatever the terminology, it’s
declared as a property in the IL, and it has parameters. The normal indexer
(as far as C# is concerned) is defined by the default member (or default property)
for the type—for example, the default member of StringBuilder is the
Chars property (which has an Int32 parameter). When I talk about named
indexers here, I’m talking about ones that aren’t the default for the type, so you
have to refer to them by name.

We’ll use Word for the example again, this time showing the different meanings for
words. The _Application type in Word defines an indexer called SynonymInfo with a
declaration like this:

SynonymInfo SynonymInfo[string Word,
ref object LanguageId = Type.Missing]

That’s not valid C# syntax, because you can’t declare a named indexer, but hopefully
it’s obvious what it means. The name of the indexer is SynonymInfo. It returns a refer-
ence to a SynonymInfo object and has two parameters, one of which is optional. (The
fact that the name of the indexer and the name of the return type are the same in this
case is entirely coincidental.) 

 The SynonymInfo can be used to find meanings for the word and synonyms for
each meaning. The following listing shows three different ways of using the indexer to
display the number of meanings for three different words.

5 Directly, anyway. You can apply System.Runtime.CompilerServices.IndexerNameAttribute manu-

ally, but it’s not something that C# is aware of as a language.
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static void ShowInfo(SynonymInfo info)
{
 Console.WriteLine("{0} has {1} meanings",
 info.Word, info.MeaningCount);
}
...
Application app = new Application { Visible = false };

object missing = Type.Missing;
ShowInfo(app.get_SynonymInfo("painful", ref missing));

ShowInfo(app.SynonymInfo["nice", WdLanguageID.wdEnglishUS]);

ShowInfo(app.SynonymInfo[Word: "features"]);

app.Application.Quit();

Even without named indexers, the previous features you’ve seen would’ve helped
alleviate the pain of the earlier C# syntax B; you could’ve called
app.get_SynonymInfo("better") and taken advantage of optional parameters, for
example. But you can see from the second and third ShowInfo calls (C and D) that
the indexer syntax looks less awkward than the get_ call. You could argue that this
should be a method call anyway, or that there should be a parameterless SynonymInfo
property that returns a collection with an appropriate default indexer. That’s one
case of the general argument given by the C# designers for not implementing full
support for named indexers, including declaring them within C#. But the point is
that it already is an indexer in Word, so it’s nice to be able to use it that way.6 The sec-
ond ShowInfo call C uses the implicit ref parameter feature from section 13.2.3,
and the third D omits the optional parameter and names the remaining argument
just for kicks.

 There’s one slight twist to optional parameters and indexers: if all of the parame-
ters are optional, and you don’t want to specify any arguments, you have to omit the
square brackets. Instead of writing foo.Indexer[], you’d use foo.Indexer. All of this
applies both for getting from the indexer and setting to it.

 So far, so good—but writing the code is only part of the battle. You usually need to
be able to deploy it onto other machines as well. Again, C# 4 makes this task easier. 

13.2.5 Linking primary interop assemblies

When you build against a COM type, you use an assembly generated for the compo-
nent library. Usually you use a Primary Interop Assembly (PIA), which is the canonical
interop assembly for a COM library, signed by the publisher. You can generate these
using the Type Library Importer tool (tlbimp) for your own COM libraries. PIAs make
life easier in terms of having one true way of accessing the COM types, but they’re a
pain in other ways. They can be quite large, and the whole PIA needs to be present

Listing 13.11 Using the SynonymInfo indexer to count word meanings

6 It might’ve been more interesting to display the actual meanings, but that leads to interop problems that

Uses earlier 
C# syntax

B

Uses indexer
with two 
argumentsC

Takes
advantage
of optional
parameter

D

aren’t relevant to this chapter.
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even if you’re only using a small subset of the functionality. Also, you need to have the
same version of the PIA on the deployment machine as the one you compiled against.
This can be awkward in situations where licensing issues prevent you from redistribut-
ing the PIA itself, relying on the right version being installed already. If there are a
number of versions available, but they all expose the functionality you need, you
might have to ship different versions of your code to make the references work.

 C# 4 allows a very different approach. Instead of referencing a PIA like any other
assembly, you can link it. In Visual Studio 2010 and higher, this is an option in the
properties of the assembly reference, as shown in figure 13.4.

 Command-line fans can use the /l (or /link) option instead of /r (or /refer-
ence) to link instead of reference:

csc /l:Path\To\PIA.dll MyCode.cs

When you link a PIA, the compiler embeds just the bits it needs from the PIA directly
into your own assembly. It only takes the types it needs, and only the members within
those types. For example, the compiler creates these types for the code we’ve looked
at in this chapter:

namespace Microsoft.Office.Interop.Word
{

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface _Application

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface _Document

[ComImport, CompilerGenerated, TypeIdentifier, Guid("...")]
public interface Application : _Application

[ComImport, Guid("..."), TypeIdentifier, CompilerGenerated]

Figure 13.4 Linking PIAs in 
Visual Studio 2010
public interface Document : _Document
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[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface Documents : IEnumerable

[TypeIdentifier("...", "WdSaveFormat"), CompilerGenerated]
public enum WdSaveFormat

}

If you look in the _Application interface, it looks like this:

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface _Application
{

void_VtblGap 1_4();
Documents Documents { [...] get; }
void_VtblGap2_1();
Document ActiveDocument { [...] get; }

}

I’ve omitted the GUIDs and the property attributes here just for the sake of space, but
you can always use Reflector to look at the embedded types. These are just interfaces
and enums—there’s no implementation. Whereas a normal PIA has a CoClass repre-
senting the actual implementation (but proxying everything to the real COM type, of
course), when the compiler needs to create an instance of a COM type via a linked PIA,
it creates the instance using the GUID associated with the type. For example, the line
in the Word example that creates an instance of Application is translated into this
code when linking is enabled:7

Application application = (Application) Activator.CreateInstance(
Type.GetTypeFromCLSID (new Guid("...")));

Figure 13.5 shows how this works at execution time.

7 Well, nearly. The object initializer makes it slightly more complicated, because the compiler uses an extra tem-
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There are various benefits to embedding type libraries:

 Deployment is easier: the original PIA isn’t needed, so you don’t have to rely on
the right version being present already, or have to ship the PIA yourself.

 Versioning is simpler: as long as you only use members from the version of the
COM library that’s actually installed, it doesn’t matter if you compile against an
earlier or later PIA.

 Variants are treated as dynamic types, reducing the amount of casting required.

Don’t worry about the last point for now—I need to explain dynamic typing before
it’ll make much sense. All will be revealed in the next chapter.

 As you can see, Microsoft has really taken COM interoperability seriously for C# 4,
making the whole development process less painful. Of course, the degree of pain has
always been variable depending on the COM library you’re developing against—some
will benefit more than others from the new features.

 The next feature is entirely separate from COM, named arguments, and optional
parameters, but again it eases development a bit. 

13.3 Generic variance for interfaces and delegates
You may remember that in chapter 3 I mentioned that the CLR had some support for
variance in generic types, but that C# hadn’t exposed that support yet. That’s changed
with C# 4. C# has gained the syntax required to declare generic variance, and the
compiler now knows about the possible conversions for interfaces and delegates.

 This isn’t a life-changing feature—it’s more a case of flattening some speed bumps
you may have hit occasionally. It doesn’t even remove all the bumps; there are various
limitations, mostly in the name of keeping generics absolutely type-safe. But it’s still a
nice feature to have up your sleeve.

 Just in case you need a reminder of what variance is all about, let’s start with a
recap of the two basic forms it comes in.

13.3.1 Types of variance: covariance and contravariance

In essence, variance is about being able to use an object of one type as if it were
another, in a type-safe way. You’re used to variance in terms of normal inheritance: if a
method has a declared return type of Stream, you can return a MemoryStream from
the implementation, for example. Generic variance is the same concept, but applied
to generics, where it becomes a bit more complicated. The variance is applied to the
type parameters within the interfaces and delegate types. That’s the bit you need to
concentrate on.

 Ultimately, it doesn’t matter whether you remember the terminology I’ll use in this
section. It’ll be useful while you’re reading the chapter, but you’re unlikely to find
yourself needing it in conversation. The concepts are far more important.

 There are two types of variance: covariance and contravariance. They’re essentially
the same idea but are used in the context of values moving in different directions.

We’ll start with covariance, which is generally easier to understand. 
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COVARIANCE: VALUES COMING OUT OF AN API
Covariance is all about values being returned from an operation back to the caller.
Let’s imagine a very simple generic interface representing the factory pattern. It has a
single method, CreateInstance, which will return an instance of the appropriate
type. Here’s the code:

interface IFactory<T>
{

T CreateInstance();
}

Now, T only occurs once in the interface (aside from the name). It’s only used as the
return value—it’s the output of the method. That means it makes sense to be able to
treat a factory of a specific type as a factory of a more general type. To put it in real-
world terms, you can think of a pizza factory as a food factory. 

CONTRAVARIANCE: VALUES GOING INTO AN API
Contravariance is the opposite way around. It’s about values being passed into the API
by the caller: the API is consuming the values instead of producing them. Let’s imag-
ine another simple interface—one that can pretty-print a particular document type to
the console. Again, there’s just one method, this time called Print:

interface IPrettyPrinter<T>
{

void Print(T document);
}

This time T only occurs in the input positions in the interface, as a parameter. To put
this into concrete terms again, if you had an implementation of IPrettyPrinter
<SourceCode>, you should be able to use it as an IPrettyPrinter<CSharpCode>. 

INVARIANCE: VALUES GOING BOTH WAYS

If covariance applies when values only come out of an API, and contravariance applies
when values only go into the API, what happens when a value goes both ways? In short:
nothing. That type would be invariant. 

 Here’s an interface representing a type that can serialize and deserialize a data
type:

interface IStorage<T>
{

byte[] Serialize(T value);
T Deserialize(byte[] data);

}

This time, if you have an instance of IStorage<T> for a particular type T, you can’t
treat it as an implementation of the interface for either a more or less specific type. If
you try to use it in a covariant way (for example, using an IStorage<Customer> as an
IStorage<Person>), you might make a call to Serialize with an object that it can’t
handle. Similarly, if you try to use it in a contravariant way, you might get an unex-

pected type out when you deserialized some data.
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 If it helps, you can think of invariance as being like ref parameters; to pass a vari-
able by reference, it has to be exactly the same type as the parameter itself, because the
value goes into the method and effectively comes out again too. 

13.3.2 Using variance in interfaces

C# 4 allows you to specify in the declaration of a generic interface or delegate that a
type parameter can be used covariantly by using the out modifier, or contravariantly
using the in modifier. Once the type has been declared, the relevant types of conver-
sion are available implicitly. This works exactly the same way in both interfaces and
delegates, but I’ll show them separately for clarity. Let’s start with interfaces, as they
may be a bit more familiar and we’ve used them already to describe variance.

VARIANT CONVERSIONS ARE REFERENCE CONVERSIONS Any conversion using
variance or covariance is a reference conversion, which means that the same ref-
erence is returned after the conversion. It doesn’t create a new object; it just
treats the existing reference as if it matched the target type. This is the same
as casting between reference types in a hierarchy: if you cast a Stream to
MemoryStream (or use the implicit conversion the other way), there’s still just
one object. The nature of these conversions introduces some limitations, as
you’ll see later, but it means they’re efficient, and it makes the behavior easier
to understand in terms of object identity.

This time we’ll use familiar interfaces to demonstrate the ideas, with some simple
user-defined types for the type arguments.

EXPRESSING VARIANCE WITH IN AND OUT

There are two interfaces that demonstrate variance particularly effectively:
IEnumerable<T> is covariant in T, and IComparer<T> is contravariant in T. Here are
their new type declarations in .NET 4:

public interface IEnumerable<out T>
public interface IComparer<in T>

It’s easy enough to remember: if a type parameter is only used for output, you can use
out; if it’s only used for input, you can use in. The compiler doesn’t know whether you
can remember which form is called covariance and which is called contravariance!

 Unfortunately, the framework doesn’t contain many inheritance hierarchies that
would help me demonstrate variance particularly clearly, so I’ll fall back to the stan-
dard object-oriented example of shapes. The downloadable source code includes the
definitions for IShape, Circle, and Square, which are fairly obvious. The interface
exposes properties for the bounding box of the shape and its area. I’ll use two lists a
lot in the following examples, so I’ll show their construction code just for reference:
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List<Circle> circles = new List<Circle>
{

new Circle(new Point(0, 0), 15),
new Circle(new Point(10, 5), 20),

};

List<Square> squares = new List<Square>
{

new Square(new Point(5, 10), 5),
new Square(new Point(-10, 0), 2)

};

The only important point concerns the types of the variables—they’re declared as
List<Circle> and List<Square> rather than List<IShape>. This can often be use-
ful—if you were to access the list of circles elsewhere, you might want to get at circle-
specific members without having to cast, for example. The actual values involved in
the construction code are entirely irrelevant; I’ll use the names circles and squares
elsewhere to refer to the same lists, but without duplicating the code.8

USING INTERFACE COVARIANCE

To demonstrate covariance, we’ll try to build a list of shapes from a list of circles and a
list of squares. The following listing shows two different approaches, neither of which
would’ve worked in C# 3.

List<IShape> shapesByAdding = new List<IShape>();
shapesByAdding.AddRange(circles);
shapesByAdding.AddRange(squares);

List<IShape> shapesByConcat = circles.Concat<IShape>(squares).ToList();

Effectively, listing 13.12 shows covariance in four places, each converting a sequence
of circles or squares into a sequence of general shapes, as far as the type system is con-
cerned. First you create a new List<IShape> and call AddRange to add the circle and
square lists to it B. (You could’ve passed one of them into the constructor instead,
and then called AddRange once.) The parameter for List<T>.AddRange is of type
IEnumerable<T>, so in this case you’re treating each list as an IEnumerable
<IShape>—something that wouldn’t have been possible before. AddRange could have
been written as a generic method with its own type parameter, but it wasn’t—doing
this would’ve made some optimizations hard or impossible.

 Another way of creating a list that contains the data in two existing sequences is to
use LINQ C. You can’t directly call circles.Concat(squares), as it would confuse
the type inference mechanism, but by specifying the type argument explicitly, all is
well. Both circles and squares are implicitly converted to IEnumerable<IShape> via
covariance. This conversion isn’t actually changing the value—just how the compiler

8 In the full source code solution, these are exposed as properties on the static Shapes class, but in the snippets

Listing 13.12 Using variance to build a list of general shapes from specific lists

Adds lists directlyB

CUses LINQ for concatenation
version I’ve included the construction code where it’s needed, so you can tweak it easily if you want to.
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treats the value. It isn’t building a separate copy, which is the important point. Covari-
ance is particularly important in LINQ to Objects, because so much of the API is
expressed in terms of IEnumerable<T>—contravariance isn’t as important, because
fewer of the types involved are contravariant.

 In C# 3 there would certainly have been other ways to approach the same problem.
You could’ve built List<IShape> instances instead of List<Circle> and
List<Square> for the original shapes; you could’ve used the LINQ Cast operator to
convert the specific lists to more general ones; you could’ve written your own list class
with a generic AddRange method. But none of these would’ve been as convenient or as
efficient as the alternatives offered here. 

USING INTERFACE CONTRAVARIANCE

We’ll use the same shape types to demonstrate contravariance. This time we’ll only
use the list of circles, but a comparer that’s able to compare any two shapes by just
comparing the areas. We couldn’t do this before C# 4 because an IComparer<IShape>
couldn’t be used as an IComparer<Circle>, but the following listing shows contravari-
ance coming to the rescue.

class AreaComparer : IComparer<IShape>
{
 public int Compare(IShape x, IShape y)
 {
  return x.Area.CompareTo(y.Area);
 }
}
...
IComparer<IShape> areaComparer = new AreaComparer();
circles.Sort(areaComparer);

There’s nothing complicated here. The AreaComparer class B is about as simple as an
implementation of IComparer<T> can be; it doesn’t need any state, for example.
There’d normally be some null handling in the Compare method, but that’s not neces-
sary to demonstrate variance.

 Once you have an IComparer<IShape>, you use it to sort a list of circles C. The
argument to circles.Sort needs to be an IComparer<Circle>, but contravariance
allows you to convert your comparer implicitly. It’s as simple as that.

SURPRISE, SURPRISE If someone had presented you with this code as if it
were C# 3, you might’ve looked at it and expected it to work. It seems obvious
that it should be able to work, and this is a common feeling; the invariance in
C# 2 and 3 often is an unwelcome surprise. The new abilities of C# 4 in this
area aren’t introducing new concepts you’d never have thought of before;
they just allow you more flexibility.

These have both been simple examples using single-method interfaces, but the same

Listing 13.13 Sorting circles using a general-purpose comparer and contravariance

Compares shapes by areaB

Sorts using 
contravariance

C

principles apply for more complex APIs. Of course, the more complex the interface is,
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the more likely that a type parameter will be used for both input and output, which
would make it invariant. We’ll come back to some tricky examples later, but first we’ll
look at delegates. 

13.3.3 Using variance in delegates

Now that you’ve seen how to use variance with interfaces, applying the same knowl-
edge to delegates is easy. We’ll use some familiar types again:

delegate T Func<out T>()
delegate void Action<in T>(T obj)

These are really equivalent to the IFactory<T> and IPrettyPrinter<T> interfaces we
started off with. Using lambda expressions, we can demonstrate both of these easily,
and even chain the two together. The following listing shows an example using the
shape types.  

Func<Square> squareFactory = () => new Square(new Point(5, 5), 10);
Func<IShape> shapeFactory = squareFactory;

Action<IShape> shapePrinter = shape => Console.WriteLine(shape.Area);
Action<Square> squarePrinter = shapePrinter;

squarePrinter(squareFactory());
shapePrinter(shapeFactory());

Hopefully by now the code will need little explanation. The square factory always pro-
duces a square at the same position, with sides of length 10. Covariance allows you to
treat a square factory as a general shape factory with no fuss B. You then create a gen-
eral-purpose action that prints out the area of whatever shape is given to it. This time
you use a contravariant conversion to treat the action as one that can be applied to
any square C. Finally, you feed the square action with the result of calling the square
factory, and the shape action with the result of calling the shape factory. Both print
100, as you’d expect.

 Of course, you’ve only used delegates with a single type parameter here. What
happens if you use delegates or interfaces with multiple type parameters? What about
type arguments that are themselves generic delegate types? Well, it can all get quite
complicated. 

13.3.4 Complex situations

Before I try to make your head spin, I should provide a little comfort. Although we’ll
do some weird and wonderful things in this section, the compiler will stop you from
making mistakes. You may still get confused by the error messages if you’ve used

Listing 13.14 Using variance with simple Func<T> and Action<T> delegates

Converts Func<T> 
using covarianceB

Converts Action<T> 
using contravarianceC

Sanity checking…
several type parameters in funky ways, but once you have it compiling, you should be
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safe. Complexity is possible in both the delegate and interface forms of variance,
although the delegate version is usually more concise to work with. Let’s start off with
a relatively simple example.

SIMULTANEOUS COVARIANCE AND CONTRAVARIANCE WITH CONVERTER<TINPUT,
TOUTPUT> The Converter<TInput, TOutput> delegate type has been around
since .NET 2.0. It’s effectively Func<T, TResult>, but with a clearer expected
purpose. In .NET 4 this becomes Converter<in TInput, out TOutput>,
which shows which type parameter has which kind of variance.

The following listing shows a few combinations of variance using a simple converter.

Converter<object, string> converter = x => x.ToString();
Converter<string, string> contravariance = converter;
Converter<object, object> covariance = converter;
Converter<string, object> both = converter;

Listing 13.15 shows the variance conversions available on a delegate of type
Converter<object, string>—a delegate that takes any object and produces a string.
First you implement the delegate using a simple lambda expression that calls
ToString B. As it happens, you never actually call the delegate, so you could’ve used a
null reference, but I find it easier to think about variance if you can pin down a con-
crete action that would happen if you called it.

 The next two lines are relatively straightforward, as long as you only concentrate on
one type parameter at a time. The TInput type parameter is only used in an input posi-
tion, so it makes sense that you can use it contravariantly, using a Converter<object,
string> as a Converter<Button, string>. In other words, if you can pass any object
reference into the converter, you can certainly hand it a Button reference. Likewise,
the TOutput type parameter is only used in an output position (the return type), so it
makes sense to use that covariantly; if the converter always returns a string reference,
you can safely use it where you only need to guarantee that it’ll return an object
reference.

 The final line is just a logical extension of this idea C. It uses both contravariance
and covariance in the same conversion to end up with a converter that only accepts
buttons and only declares that it’ll return an object reference. Note that you can’t con-
vert this back to the original conversion type without a cast—you’ve essentially relaxed
the guarantees at every point, and you can’t tighten them up again implicitly.

 Let’s up the ante a little and see just how complex things can get if you try hard
enough.

HIGHER-ORDER FUNCTION INSANITY

The really weird stuff starts happening when you combine variant types together. I
won’t go into a lot of detail here—I just want you to appreciate the potential for

Listing 13.15 Demonstrating covariance and contravariance with a single type

Converts 
objects to 
stringsB

Converts
strings to

objects

C

complexity. 
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 Let’s look at four delegate declarations:

delegate Func<T> FuncFunc<out T>();
delegate void ActionAction<out T>(Action<T> action);
delegate void ActionFunc<in T>(Func<T> function);
delegate Action<T> FuncAction<in T>();

Each of these declarations is equivalent to nesting one of the standard delegates
inside another. For example, FuncAction<T> is equivalent to Func<Action<T>>. Both
represent a function that will return an Action that can be passed a T. But should this
be covariant or contravariant? Well, the function is going to return something to do
with T, so it sounds covariant, but that something then takes a T, so it sounds contravari-
ant. The answer is that the delegate is contravariant in T, which is why it’s declared
with the in modifier.

 As a quick rule of thumb, you can think of nested contravariance as reversing the
previous variance, whereas covariance doesn’t, so whereas Action<Action<T>> is cova-
riant in T, Action<Action<Action<T>>> is contravariant. Compare that with Func<T>
variance, where you can write Func<Func<Func<...Func<T>...>>> with as many levels
of nesting as you like and still get covariance.

 Just to give a similar example using interfaces, imagine you have something that
can compare sequences. If it can compare two sequences of arbitrary objects, it can
certainly compare two sequences of strings, but not vice versa. Converting this to code
(without implementing the interface!), you can see this as follows:

IComparer<IEnumerable<object>> objectsComparer = ...;
IComparer<IEnumerable<string>> stringsComparer = objectsComparer;

This conversion is legal: IEnumerable<string> is a “smaller” type than IEnumerable
<object> due to the covariance of IEnumerable<T>. The contravariance of IComparer
<T> then allows the conversion from a comparer of a “bigger” type to a comparer of a
smaller type.

 Of course, we’ve only looked at delegates and interfaces with a single type parame-
ter in this section—it can all apply to multiple type parameters too. Don’t worry,
though: you’re unlikely to need this sort of brain-busting variance very often, and
when you do, you have the compiler to help you. I really just wanted to make you
aware of the possibilities.

 On the flip side, there are some things you may expect to be able to do, but that
aren’t supported. 

13.3.5 Restrictions and notes

The variance support provided by C# 4 is mostly limited by what’s provided by the
CLR. It’d be hard for the language to support conversions that were prohibited by the
underlying platform. This can lead to a few surprises.
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NO VARIANCE FOR TYPE PARAMETERS IN CLASSES

Only interfaces and delegates can have variant type parameters. Even if you have a
class that only uses the type parameter for input (or only uses it for output), you can’t
specify the in or out modifiers. For example, Comparer<T>, the common implementa-
tion of IComparer<T>, is invariant—there’s no conversion from Comparer<IShape> to
Comparer<Circle>.

 Aside from any implementation difficulties that this might’ve incurred, I’d say it
makes a certain amount of sense conceptually. Interfaces represent a way of looking at
an object from a particular perspective, whereas classes are more rooted in the
object’s actual type. This argument is weakened somewhat by inheritance letting you
treat an object as an instance of any of the classes in its inheritance hierarchy, admit-
tedly. Either way, the CLR doesn’t allow it. 

VARIANCE ONLY SUPPORTS REFERENCE CONVERSIONS

You can’t use variance between two arbitrary type arguments just because there’s a
conversion between them. It has to be a reference conversion. Basically, that limits it to
conversions that operate on reference types and that don’t affect the binary represen-
tation of the reference. This is so that the CLR can know that operations will be type-
safe without having to inject any actual conversion code anywhere. As I mentioned in
section 13.3.2, variant conversions are themselves reference conversions, so there
wouldn’t be anywhere for the extra code to go anyway.

 In particular, this restriction prohibits any conversions of value types and user-
defined conversions. For example, the following conversions are all invalid:

 IEnumerable<int> to IEnumerable<object>—Boxing conversion
 IEnumerable<short> to IEnumerable<int>—Value type conversion
 IEnumerable<string> to IEnumerable<XName>—User-defined conversion

User-defined conversions aren’t likely to be a problem as they’re relatively rare, but
you may find the restriction around value types a pain. 

OUT PARAMETERS AREN’T OUTPUT POSITIONS

This one came as a surprise to me, although it makes sense in retrospect. Consider a
delegate with the following definition:

delegate bool TryParser<T>(string input, out T value)

You might expect that you could make T covariant—after all, it’s only used in an out-
put position…or is it? 

 The CLR doesn’t really know about out parameters. As far as it’s concerned, they’re
just ref parameters with an [Out] attribute applied to them. C# attaches special
meaning to the attribute in terms of definite assignment, but the CLR doesn’t. ref
parameters mean data going both ways, so if you have a ref parameter of type T, that
means T is invariant.



403Generic variance for interfaces and delegates

 In fact, even if the CLR did support out parameters natively, it still wouldn’t be safe,
because it can be used in an input position within the method itself; after you’ve writ-
ten to the variable, you can read from it as well. It’d be okay if out parameters were
treated as “copy value at return time,” but it essentially aliases the argument and
parameter, which would cause problems if they weren’t exactly the same type. It’s
slightly fiddly to demonstrate, but there’s an example on the book’s website.

 Delegates and interfaces using out parameters are rare, so this may never affect
you anyway, but it’s worth knowing about just in case. 

VARIANCE HAS TO BE EXPLICIT

When I introduced the syntax for expressing variance—applying the in or out modifi-
ers to type parameters—you may have wondered why you needed to bother at all. The
compiler is able to check that whatever variance you try to apply is valid, so why doesn’t
it just apply it automatically?

 It could do that—at least, in many cases—but I’m glad it doesn’t. Normally you can
add methods to an interface and only affect implementations rather than callers. But
if you’ve declared that a type parameter is variant and you then want to add a method
that breaks that variance, all the callers are affected too. I can see this causing a lot of
confusion. Variance requires some thought about what you might want to do in the
future, and forcing developers to explicitly include the modifier encourages them to
plan carefully before committing to variance.

 There’s less of an argument for this explicit nature when it comes to delegates; any
change to the signature that would affect the variance would probably break existing
uses anyway. But there’s a lot to be said for consistency—it would feel odd if you had
to specify the variance in interfaces but not in delegate declarations. 

BEWARE OF BREAKING CHANGES

Whenever new conversions become available, there’s the risk of your current code
breaking. For instance, if you rely on the results of the is or as operators not allowing
for variance, your code will behave differently when running under .NET 4. Likewise,
there are cases where overload resolution will choose a different method due to there
being more applicable options now. This is another reason for variance to be explicitly
specified: it reduces the risk of breaking your code.

 These situations should be quite rare, and the benefit from variance is more signif-
icant than the potential drawbacks. You do have unit tests to catch subtle changes,
right? In all seriousness, the C# team takes code breakage very seriously, but some-
times there’s no way of introducing a new feature without breaking code. 

MULTICAST DELEGATES AND VARIANCE DON’T MIX

Normally, generics make sure that unless you have casts involved, you won’t run into
type-safety issues at execution time. Unfortunately, there’s a nasty situation with variant
delegate types when it comes to combining them together. This is best demonstrated
in code:
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Func<string> stringFunc = () => "";
Func<object> objectFunc = () => new object();
Func<object> combined = objectFunc + stringFunc;

This compiles with no problem because there’s a covariant reference conversion
from an expression of type Func<string> to Func<object>. But the object itself is
still a Func<string>, and the Delegate.Combine method that does the work requires
its arguments to be the same type—otherwise it doesn’t know what type of delegate
it’s meant to create. The preceding code will throw an ArgumentException at execu-
tion time.

 This problem was found relatively late in the .NET 4 release cycle, but Microsoft is
aware of it, and there’s hope that it may be fixed for the majority of cases in a future
release (it wasn’t fixed in .NET 4.5). Until then, there’s a workaround: you can create a
new delegate object of the correct type based on the variant one, and combine that
with another delegate of the same type. For example, you can modify the preceding
code slightly to make it work:

Func<string> stringFunc = () => "";
Func<object> defensiveCopy = new Func<object>(stringFunc);
Func<object> objectFunc = () => new object();
Func<object> combined = objectFunc + defensiveCopy;

Fortunately, this is rarely an issue, in my experience. 

NO CALLER-SPECIFIED OR PARTIAL VARIANCE

This is really a matter of interest and comparison rather than anything else, but it’s
worth noting that C#’s variance is very different from Java’s system. Java’s generic vari-
ance manages to be extremely flexible by approaching it from the other side: instead
of the type itself declaring the variance, code using the type can express the variance it
needs.

WANT TO KNOW MORE? This book isn’t about Java generics, but if this little
teaser has piqued your interest, you may want to check out Angelika Langer’s
“Java Generics FAQs” (http://mng.bz/3qgO). Be warned: it’s a huge and
complex topic!

For example, the List<T> interface in Java is roughly equivalent to IList<T> in C#. It
contains methods to both add items and fetch them, so clearly in C# it’s invariant, but
in Java you can decorate the type at the calling code to explain what variance you
want. The compiler then stops you from using the members that go against that vari-
ance. For example, the following code would be perfectly valid:

List<Shape> shapes1 = new ArrayList<Shape>();
List<? super Square> squares = shapes1;
squares.add(new Square(10, 10, 20, 20));

List<Circle> circles = new ArrayList<Circle>();
circles.add(new Circle(10, 10, 20));
List<? extends Shape> shapes2 = circles;

Declaration using 
contravariance

Declaration using 

Shape shape = shapes2.get(0); covariance

http://mng.bz/3qgO
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For the most part, I prefer generics in C# to Java, and type erasure in particular can be
a pain in many cases. But I find this treatment of variance really interesting. I don’t
expect to see anything similar in future versions of C#, so think carefully about how
you can split your interfaces to allow for flexibility, but without introducing more com-
plexity than is really warranted.

 Just before I close the chapter, there are two almost trivial changes to cover—how
the C# compiler handles lock statements and field-like events. 

13.4 Teeny tiny changes to locking and field-like events
I don’t want to make too much of these changes; chances are they’ll never affect you.
But if you’re ever looking at compiled code and wondering why it looks the way it
does, it’s helpful to know what’s going on.

13.4.1 Robust locking

Let’s consider a simple piece of C# code that uses a lock. The details of what happens
inside the block aren’t important, but I’ve included a single statement just for the sake
of clarity:

lock (listLock)
{

list.Add("item");
}

Prior to C# 4—and including C# 4 if you’re targeting anything earlier than .NET 4—
that would effectively be compiled into this code:

object tmp = listLock;
Monitor.Enter(tmp);
try
{

list.Add("item");
}
finally
{

Monitor.Exit(tmp);
}

This is nearly okay—in particular, it avoids a couple of problems. You want to make
sure that you release the same monitor you acquire, so first you copy the reference
into a temporary local variable B. This also means that the locking expression is only
evaluated once. Next you acquire the lock before the try block. This is so that you don’t
try to release the lock in the finally block if the thread is aborted without success-
fully acquiring it in the first place. That leads to a different problem: now if the thread
is aborted after the lock is acquired but before you enter the try block, you won’t have
released the lock. That could feasibly lead to a deadlock—another thread could be
waiting eternally for this one to release the lock. Though the CLR has historically tried
hard to stop this from happening, it’s not quite impossible.

Copies reference 
for lockingBAcquires lock 

before try

Releases lock 
whatever Add does
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 What you want is some way of atomically acquiring the lock and knowing that it was
acquired. Fortunately that’s exposed in .NET 4 via a new overload to Monitor.Enter,
which the C# 4 compiler uses in this way:

bool acquired = false;
object tmp = listLock;
try
{

Monitor.Enter(tmp, ref acquired);
list.Add("item");

}
finally
{

if (acquired)
{

Monitor.Release(tmp);
}

}

Now the lock will be released if and only if you successfully acquired it in the first
place, consistently. 

 It should be noted that in some cases a deadlock isn’t the worst result; occasionally
it’s more dangerous for an application to continue at all than for it to simply halt.9 But
it’d be ridiculous to rely on the deadlock condition; better to avoid aborting threads if
at all possible. (Aborting the currently executing thread is somewhat better, as you’re
more in control—this is what Response.Redirect does in ASP.NET, for example, but
I’d still generally suggest finding better forms of flow control.)

 There’s one last tweak to cover before we move on to the really big feature of C# 4. 

13.4.2 Changes to field-like events

There are two changes to the way field-like events are implemented in C# 4 that are
worth mentioning briefly. They’re unlikely to affect you, although they’re potentially
breaking changes. 

 Just to recap, field-like events are events that are declared as if they’re fields, with
no explicit add/remove blocks, like this:

public event EventHandler Click;

First, the way that thread safety is achieved has been changed. Before C# 4, field-like
events resulted in code that would lock on either this (for instance events) or the
declaring type (for static events). As of C# 4, the compiler achieves thread-safe, atomic
subscription and unsubscription using Interlocked.CompareExchange<T>. Unlike
the previous change to the lock statement, this applies even when targeting earlier
versions of the .NET Framework.

9 Eric Lippert has an excellent blog post on this topic, entitled “Locks and exceptions do not mix”: http://

Acquires lock inside try block

Conditionally 
releases lock
mng.bz/Qy7p.

http://mng.bz/Qy7p
http://mng.bz/Qy7p
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 Second, the meaning of the event’s name within the declaring class has changed. Pre-
viously, if you subscribed to (or unsubscribed from) the event within the class that
contained the declaration—such as with Click += DefaultClickHandler;—that
would go straight to the backing field, skipping the add/remove implementation
completely. Now it doesn’t; when you’re using += or -=, the name of the event refers
to the event itself, not the backing field. When the name is used for any other purpose
(typically assignment or invocation), it still refers directly to the backing field.

 These are both sensible changes that make everything neater, although you proba-
bly wouldn’t have noticed them in daily use. Chris Burrows goes into the topic in
detail in his blog, if you want to know more (see http://mng.bz/Kyr4). 

13.5 Summary
This has been a bit of a pick-and-mix chapter, with various distinct areas. Having said
that, COM greatly benefits from named arguments and optional parameters, so there’s
some overlap between them.

 I suspect it’ll take a while for C# developers to get the hang of how best to use the
new features for parameters and arguments. Overloading still provides extra portabil-
ity for languages that don’t support optional parameters, and named arguments may
look strange in some situations until you get used to them. The benefits can be signif-
icant, though, as I demonstrated with the example of building instances of immutable
types. You’ll need to take some care when assigning default values to optional parame-
ters, but I hope that you’ll find the suggestion of using null as a “default default
value” to be a useful and flexible one that effectively sidesteps some of the limitations
and pitfalls you might otherwise encounter.

 Working with COM has come a long way in C# 4. I still prefer to use purely managed
solutions where they’re available, but at least the code calling into COM is a lot more
readable now, as well as having a better deployment story. We haven’t looked at all of
the improvements to COM interop yet, as the dynamic typing features we’ll discuss in
the next chapter have an impact on COM too, but even without taking that into
account, we’ve seen a short sample become a lot more pleasant just by applying a few
simple steps.

 The last major topic in this chapter was the generic variance now available for
interfaces and delegates. Sometimes you may end up using variance without even
knowing it, and I think most developers are more likely to use the variance declared
in the framework interfaces and delegates rather than creating their own. I apologize
if it occasionally became tricky, but it’s good to know just what’s out there. If it’s any
consolation to you, former C# team member Eric Lippert has publicly acknowledged
in a blog post (see http://mng.bz/79d8) that higher-order functions make even his
head hurt, so you’re in good company. Eric’s post is one in a long series about vari-
ance (see http://mng.bz/94H3), which is, as much as anything, a dialogue about the

http://mng.bz/Kyr4
http://mng.bz/79d8
http://mng.bz/94H3
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design decisions involved. If you haven’t had enough of variance by now, it’s an excel-
lent read.

 For the sake of completeness, we also took a quick peek at the changes to how the
C# compiler handles locking and field-like events.

 This chapter dealt with relatively small changes to C#. Chapter 14 deals with some-
thing far more fundamental: the ability to use C# in a dynamic manner.



Dynamic binding
in a static language
C# has always been a statically typed language, with no exceptions. There have
been a few areas where the compiler has looked for particular names rather than
interfaces, such as finding appropriate Add methods for collection initializers, but
there’s been nothing truly dynamic in the language beyond normal polymorphism.
That changes with C# 4—at least partially. The simplest way of explaining it is that
there’s a new static type called dynamic, which you can try to do almost anything
with at compile time and let the framework sort it out at execution time. Of course,
there’s more to it than that, but that’s the executive summary.

 Given that C# is still a statically typed language everywhere that you’re not using

This chapter covers
 What it means to be dynamic

 How to use dynamic typing in C# 4

 Examples with COM, Python, and reflection

 How dynamic typing is implemented

 Reacting dynamically
409

dynamic, I don’t expect fans of dynamic programming to suddenly become C#
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advocates. That’s not why the feature was introduced: it’s aimed primarily at interop-
erability. When dynamic languages such as IronRuby and IronPython joined the .NET
ecosystem, it would have been crazy not to be able to call into C# code from IronPy-
thon and vice versa. Likewise, developing against COM APIs used to be awkward in C#,
with an abundance of casts cluttering the code. Dynamic typing addresses all of these
concerns. On the other hand, there are plenty of projects that use dynamic typing
within C# to make data access boundaries simpler.

 One word of warning that I’ll repeat throughout the chapter—it’s worth being
careful with dynamic typing. It’s fun to explore, and it’s been well implemented, but I
still recommend that you think carefully before using it heavily. Just like any other new
feature, weigh the pros and cons rather than rushing into it just because it’s neat
(which it undoubtedly is). The framework does a fine job of optimizing dynamic code,
but it’ll be slower than static code in most cases. More important, you lose a lot of
compile-time safety. Whereas unit testing will help you find a lot of the mistakes that
can crop up when the compiler isn’t able to help you much, I still prefer the immedi-
ate feedback of the compiler telling me if I’m trying to use a method that doesn’t exist
or can’t be called with a given set of arguments.

 On the other hand, there are situations where the level of safety given to you by
the compiler isn’t very strong to start with. For example, there are far more things that
can go wrong with code that uses reflection than just the errors a compiler can spot. If
you’re trying to invoke a method with its name, does that method exist? Is it accessible
to your code? Are you providing appropriate arguments? The compiler can’t help you
with any of that. The equivalent dynamic code still can’t spot those errors at compile
time, but at least the code may be considerably easier to read and understand. It’s all a
matter of using the most appropriate approach for the particular problem you’re
working on.

 Dynamic behavior can be useful in situations where you’re naturally dealing with
dynamic environments or data, but if you’re really looking to write large chunks of
your code dynamically, I suggest you use a language where that’s the normal style
instead of the exception. C# is still a language that was designed for static typing; lan-
guages that have been dynamic from the start often have various features to help you
work more productively with dynamic behavior. Now that you can easily call into such
languages from C#, you can separate the parts of your code that benefit from a largely
dynamic style from those where static typing works better.

 I don’t want to put too much of a damper on things. Where dynamic typing is use-
ful, it can be a lot simpler than the alternatives. In this chapter we’ll look at the basic
rules of dynamic typing in C# 4, and then dive into some examples: using COM dynam-
ically, calling into some IronPython code, and making reflection a lot simpler. You can
do all of this without knowing the details, but once you have the flavor of dynamic typ-
ing, we’ll look at what’s going on under the hood. In particular, we’ll discuss the
Dynamic Language Runtime and what the C# compiler does when it encounters
dynamic code. Finally, you’ll see how you can make your own types respond dynami-

cally to method calls, property accesses, and the like. But first, let’s take a step back.
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14.1 What? When? Why? How?
Before we get to any code showing off this new feature of C# 4, it’s worth getting a bet-
ter handle on why it was introduced in the first place. I don’t know any other lan-
guages that have gone from being purely static to partially dynamic; this is a
significant step in C#’s evolution, whether you use it often or only occasionally.

 We’ll start by taking a fresh look at what dynamic and static mean, considering some
of the major use cases for dynamic typing in C#, and then we’ll delve into how it’s
implemented in C# 4.

14.1.1 What is dynamic typing?

In chapter 2 I explained the characteristics of a type system and described how C# has
previously been a statically typed language. The compiler knows the type of expres-
sions in the code and knows the members available on any type. It applies a fairly com-
plex set of rules to determine which exact member should be used when. This
includes overload resolution; the only choice left until later is to pick the implementa-
tion of virtual methods depending on the execution-time type of the object. The pro-
cess of working out which member to use is called binding, and in a statically typed
language it occurs at compile time.

 In a dynamically typed language, all of this binding occurs at execution time. A
compiler or parser can check that the code is syntactically correct, but it can’t check
that the methods you call and the properties you access are actually present. It’s a bit
like a word processor with no dictionary: it may be able to check your punctuation,
but not your spelling, so if you’re to have any sort of confidence in your code, you
really need a good set of unit tests. Some dynamic languages are always interpreted,
with no compiler involved at all. Others provide both an interpreter and a compiler,
to allow rapid development with a REPL—a read, evaluate, print loop.

REPL AND C# Strictly speaking, REPL isn’t solely associated with dynamic lan-
guages. Some statically typed languages have interpreters that compile on the
fly. Notably, F# comes with a tool called F# Interactive, which does exactly this.
But interpreters are much more common for dynamic languages than static
ones.

C# does have similar tools: the expression evaluator underlying the Watch
and Immediate windows in Visual Studio can be considered a form of REPL,
and Mono has a C# Shell (see www.mono-project.com/CsharpRepl).

It’s worth noting that the new dynamic features of C# 4 don’t include interpreting C#
source code at execution time; there’s no direct equivalent to the JavaScript eval
function, for example. To execute code based on data in strings, you need to use
either the CodeDOM API (and CSharpCodeProvider in particular) or simple reflec-
tion to invoke individual members. The Roslyn project is another option here,
although it’s still in Community Technology Preview as I write this.

www.mono-project.com/CsharpRepl
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 Of course, the same kind of work has to be done at some point in time, no matter
what approach you’re taking. By asking the compiler to do more work before execu-
tion, static systems usually perform better than dynamic ones. Given the downsides
I’ve mentioned so far, you might be wondering why anyone would want to bother with
dynamic typing in the first place. 

14.1.2 When is dynamic typing useful, and why?

Dynamic typing has two important points in its favor. First, if you know the name of a
member you want to call, the arguments you want to call it with, and the object you
want to call it on, that’s all you need. That may sound like all the information you
could have anyway, but the C# compiler would normally want to know more. Crucially,
in order to identify the member exactly (modulo overriding), it’d need to know the
type of the object you’re calling it on and the types of the arguments. Sometimes you
don’t know those types at compile time, even though you do know enough to be sure
that the member will be present and correct when the code runs.

 For example, if you know that the object you’re using has a Length property you
want to use, it doesn’t matter whether it’s a String, a StringBuilder, an Array, a
Stream, or any of the other types with that property. You don’t need that property to
be defined by some common base class or interface, which can be useful if there isn’t
such a type. This is called duck typing, from the notion that “if it walks like a duck and
quacks like a duck, I’d call it a duck.”1 Even when there is a type that offers everything
you need, it can sometimes be irritating to tell the compiler exactly which type you’re
talking about. This is particularly relevant when using Microsoft Office APIs via COM.
Many methods and properties are declared to just return VARIANT, which means that
C# code using these calls is often peppered with casts. Duck typing allows you to omit
all of these casts, as long as you’re confident about what you’re doing.

 The second important feature of dynamic typing is the ability of an object to
respond to a call by analyzing the name and arguments provided to it. It can behave as
if the member had been declared by the type in the normal way, even if the member
names couldn’t possibly be known until execution time. For example, consider the
following call:

books.FindByAuthor("Joshua Bloch")

Normally this would require the FindByAuthor member to be declared by the
designer of the type involved. In a dynamic data layer, there can be a single smart
piece of code to analyze calls like this. It can detect that there’s an Author property in
the associated data (whether that’s from a database, XML document, hardcoded data,
or anything else) and act accordingly. 

1 The Wikipedia article on duck typing has more information about the history of the term: http://en.wikipe-

dia.org/wiki/Duck_typing.

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Duck_typing
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 In this case, it would decide that you want to perform a query using the specified
argument as the author. In some ways, that’s just a more complex way of writing some-
thing like this:

books.Find("Author", "Joshua Bloch")

But the first snippet feels more appropriate; the calling code knows the Author part
statically, even if the receiving code doesn’t. This approach can be used to mimic
domain-specific languages (DSLs) in some situations. It can also be used to create a
natural API for exploring data structures such as XML trees.

 Another feature of programming with dynamic languages tends to be an experi-
mental style of programming using an appropriate interpreter, as I mentioned earlier.
This isn’t directly relevant to C# 4, but the fact that C# 4 can interoperate richly with
dynamic languages running on the Dynamic Language Runtime (DLR) means that if
you’re dealing with a problem that would benefit from this style, you’ll be able to use
the results directly from C# instead of having to port them to C# afterward.

 We’ll look at these scenarios in more depth, and at some concrete examples, when
we’ve discussed the basics of C# 4’s dynamic abilities. It’s worth briefly pointing out
that if these benefits don’t apply to you, dynamic typing is more likely to be a hin-
drance than a help. Many developers won’t need to use dynamic typing much in their
day-to-day coding, and even when it is required, it may only be for a small part of the
code. Just like any feature, it can be overused. In my view, it’s usually worth thinking
carefully about whether any alternative designs would allow static typing to solve the
same problem elegantly. But I’m biased due to having a background in statically typed
languages—it’s worth reading books on dynamically typed languages such as Python
and Ruby to see a wider variety of benefits than the ones I present in this chapter.

 You’re probably getting anxious to see some real code by now, so we’ll just get a
brief overview of what’s going on, and then dive into some examples. 

14.1.3 How does C# 4 provide dynamic typing?

C# 4 introduces a new type called dynamic. The compiler treats this type differently
than any normal CLR type.2 Any expression that uses a dynamic value causes the com-
piler to change its behavior radically. Instead of trying to work out exactly what the
code means, binding each member access appropriately, performing overload resolu-
tion, and so on, the compiler just parses the source code to work out what kind of
operation you’re trying to perform, its name, what arguments are involved, and any
other relevant information. Instead of emitting IL to execute the code directly, the
compiler generates code that calls into the DLR with all the required information. The
rest of the work is performed at execution time.

2 In fact, dynamic doesn’t represent a specific CLR type. It’s really just System.Object in conjunction with
System.Dynamic.DynamicAttribute. We’ll look at this in more detail in section 14.4, but for the moment

you can pretend it’s a real type.
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 In many ways, this is similar to the different kinds of code generated by lambda
expression conversions. These can either result in code to perform the required
actions (when converting to a delegate type) or result in code that builds a description
of the required actions (when converting to an expression tree). You’ll see later that
expression trees are extremely important in the DLR, and often the C# compiler will
use expression trees to describe the code. (In the simplest cases, where there’s noth-
ing but a member invocation, there’s no need for an expression tree.)

 When the DLR comes to bind the relevant call at execution time, it goes through a
complicated process to determine what should happen. This not only has to take into
account the normal C# rules for method overloads and so on, but also the possibility
that the object itself will want to be part of the decision, as you saw in the FindBy-
Author example earlier.

 Most of this happens under the hood—the source code you write to use dynamic
typing can be really simple. 

14.2 The five-minute guide to dynamic
Do you remember how many new bits of syntax were involved when you learned about
LINQ? Well, dynamic typing is just the opposite: there’s a single contextual keyword,
dynamic, which you can use in most places where you’d use a type name. That’s all the
new syntax that’s required, and the main rules about dynamic are easily expressed, if
you don’t mind a bit of hand-waving to start with:

 An implicit conversion exists from almost any CLR type to dynamic.
 An implicit conversion exists from any expression of type dynamic to almost any

CLR type.
 Expressions that use a value of type dynamic are usually evaluated dynamically.
 The static type of a dynamically evaluated expression is usually deemed to be

dynamic.

The detailed rules are more complicated, as you’ll see in section 14.4, but for the
moment let’s stick with the simplified version. 

 The following listing provides a complete example demonstrating each point. 

dynamic items = new List<string> { "First", "Second", "Third" };
dynamic valueToAdd = "!";
foreach (dynamic item in items)
{

string result = item + valueToAdd;
Console.WriteLine(result);

}

The result of listing 14.1 shouldn’t come as much of a surprise: it prints First!,
Second!, and Third!. You could easily have specified the types of the items and

Listing 14.1 Using dynamic to iterate through a list, concatenating strings
valueToAdd variables explicitly in this case, and it would all have worked in the normal
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way, but imagine that the variables are getting their values from other data sources
instead of having them hardcoded. What would happen if you wanted to add an inte-
ger instead of a string? 

 The next listing is just a slight variation. The declaration of valueToAdd hasn’t been
changed; just the assignment expression.

dynamic items = new List<string> { "First", "Second", "Third" };
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{

string result = item + valueToAdd;
Console.WriteLine(result);

}

This time the first result is First2, which is hopefully what you’d expect. Using static
typing, you’d have to explicitly change the declaration of valueToAdd from string to
int. The addition operator is still building a string, though. 

 What if you changed the items to be integers as well? Let’s try that one simple
change, as shown in the following listing.

dynamic items = new List<int> { 1, 2, 3 };
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{

string result = item + valueToAdd;
Console.WriteLine(result);

}

Disaster! You’re still trying to convert the result of the addition to a string. The only
conversions that are allowed are the same ones that are present in C# normally, so
there’s no conversion from int to string. The result is an exception (at execution
time, of course):

Unhandled Exception:
Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:

Cannot implicitly convert type 'int' to 'string'
at CallSite.Target(Closure , CallSite , Object )
at System.Dynamic.UpdateDelegates.UpdateAndExecute1[T0,TRet]

(CallSite site, T0 arg0)
...

Unless you’re perfect, you’re likely to encounter RuntimeBinderException a lot when
you start using dynamic typing. It’s the new NullReferenceException in some ways;
you’re bound to come across it, but with any luck it’ll be in the context of unit tests
rather than customer bug reports. Anyway, you can fix it by changing the type of
result to dynamic, so that the conversion isn’t required. 

Listing 14.2 Adding integers to strings dynamically

Listing 14.3 Adding integers to integers

string + int 
concatenation

int + int addition
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 Come to think of it, why bother with the result variable in the first place? You could
just call Console.WriteLine immediately. The following listing shows the changes.

dynamic items = new List<int> { 1, 2, 3 };
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{

Console.WriteLine(item + valueToAdd); 
}

This prints 3, 4, and 5, as you’d expect. Changing the input data would now not only
change the operator that was chosen at execution time—it would also change which
overload of Console.WriteLine was called. With the original data, it would call
Console.WriteLine(string); with the updated variables, it would call Console
.WriteLine(int). The data could even contain a mixture of values, making the exact
call change on every iteration!

 You can also use dynamic as the declared type for fields, parameters, and return
types. This is in stark contrast to the use of var, which is restricted to local variables.

DIFFERENCES BETWEEN VAR AND DYNAMIC In many of the examples so far,
when you’ve really known the types at compile time, you could’ve used var to
declare the variables. At first glance, the two features look very similar. In
both cases, it looks like you’re declaring a variable without specifying its type,
but by using dynamic you’re explicitly setting the type to be dynamic. You can
only use var when the compiler is able to infer the type you mean statically,
and the type system really does remain entirely static. Of course, if you use
var for a variable that’s initialized with an expression of type dynamic, the
variable ends up being (statically) typed to be dynamic too. Given the confu-
sion this could cause, I strongly caution against it. 

The compiler is smart about the information it records, and the code that then uses
that information at execution time is clever too: it’s a mini C# compiler in its own
right. It uses whatever static type information was known at compile time to make the
code behave as intuitively as possible. 

 Other than a few details of what you can’t do with dynamic typing, that’s all you
really need to know in order to start using it in your own code. Later on we’ll come
back to those restrictions, as well as details of what the compiler is actually doing, but
first let’s see dynamic typing doing something genuinely useful. 

14.3 Examples of dynamic typing
Dynamic typing is a bit like unsafe code, or interoperability with native code using
P/Invoke. Many developers will have no need for it, or will use it once in a blue
moon. For other developers—particularly those dealing with Microsoft Office—it’ll
give a huge productivity boost, either by making their existing code simpler or by

Listing 14.4 Adding integers to integer—but without the exception

Calls overload 
with int argument
allowing radically different approaches to their problems.
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 This section isn’t meant to be exhaustive by any means. Since the second edition of
this book was published, several open source projects have used dynamic typing to
great effect, including Massive (https://github.com/robconery/massive), Dapper
(http://code.google.com/p/dapper-dot-net/), and Json.NET (http://json.code-
plex.com). These examples are all at data boundaries—whether that’s when talking to
a database, or serializing and deserializing JSON. That’s not to say that dynamic typing
is only useful at data boundaries, of course, and I’m loathe to predict what novel uses
the community may come up with in the future.

 We’ll look at three examples here: working with Excel, calling into Python, and
using normal managed .NET types in a more flexible way.

14.3.1 COM in general, and Microsoft Office in particular

You’ve already seen most of the new features C# 4 brings to COM interop, but there
was one that we couldn’t cover in chapter 13 because you hadn’t seen dynamic typing
yet. If you choose to embed the interop types you’re using into the assembly (by using
the /l compiler switch, or setting the Embed Interop Types property to true), then
anything in the API that would otherwise be declared as object is changed to
dynamic. This makes it much easier to work with somewhat weakly typed APIs such as
those exposed by Office. (Although the object model in Office is reasonably strong in
itself, many properties are exposed as variants because they can deal with numbers,
strings, dates, and so on.)

 Again, I’ll just show you a short example here—one that does even less than the
Word example in chapter 13. The dynamic aspect is easy to understand from this one
scenario. We’ll set the first 20 cells of the top row of a new Excel worksheet to the
numbers 1 to 20. The following listing shows an initial, statically typed piece of code to
achieve this.

var app = new Application { Visible = true };
app.Workbooks.Add();
Worksheet worksheet = (Worksheet) app.ActiveSheet;
Range start = (Range) worksheet.Cells[1, 1];
Range end = (Range) worksheet.Cells[1, 20];
worksheet.Range[start, end].Value = Enumerable.Range(1, 20)

.ToArray();

This code relies on a using directive for the Microsoft.Office.Interop.Excel
namespace (not shown here), so this time the Application type refers to Excel, not
Word. You’re still using the new features of C# 4 by not specifying an argument for the
optional parameter in the Workbooks.Add() call while you’re setting things up B and
also by using a named indexer C. 

 When Excel is up and running, you work out the start and end cells of the overall
range. In this case they’re both on the same row, but you could’ve created a rectangu-

Listing 14.5 Setting a range of values with static typing

Open Excel with an 
active worksheetB

Determine start and end cellsC

Fill the range 
with [1, 20]D
lar range instead by selecting two opposite corners. You could have created the range

https://github.com/robconery/massive
http://code.google.com/p/dapper-dot-net/
http://json.codeplex.com
http://json.codeplex.com
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in a single call to Range["A1:T1"], but I personally find it easier to work with just
numbers. Cell names like B3 are great for humans, but harder to use in a program.

 Once you have the range, you set all the values in it by setting the Value property
with an array of integers D. You can use a one-dimensional array, as you’re only set-
ting a single row; to set a range spanning multiple rows you’d need to use a rectangu-
lar array. 

 This all works, but you’ve had to use three casts in six lines of code. The indexer
you call via Cells and the ActiveSheet property are both declared to return object
normally. (Various parameters are also declared as type object, but that doesn’t mat-
ter as much because there’s an implicit conversion from any nonpointer type to
object—only coming the other way requires the cast.) This code doesn’t close Excel
at the end of the listing, just so you can see the open worksheet at the end.

 With the primary interop assembly set to embed the required types into your own
binary, all of these examples become dynamic. With the implicit conversion from
dynamic to other types, you can remove all the casts, as shown in the following listing.

var app = new Application { Visible = true };
app.Workbooks.Add();
Worksheet worksheet = app.ActiveSheet;
Range start = worksheet.Cells[1, 1];
Range end = worksheet.Cells[1, 20];
worksheet.Range[start, end].Value = Enumerable.Range(1, 20)

.ToArray();

This is exactly the same code as listing 14.5, but without the casts. 
 It’s worth noting that the conversions are still checked at execution time. If you

changed the declaration of start to be Worksheet, the conversion would fail and an
exception would be thrown. Of course, you don’t have to perform the conversion. You
could just leave everything as dynamic, as shown in the following listing.

var app = new Application { Visible = true };
app.Workbooks.Add();
dynamic worksheet = app.ActiveSheet;
dynamic start = worksheet.Cells[1, 1];
dynamic end = worksheet.Cells[1, 20];
worksheet.Range[start, end].Value = Enumerable.Range(1, 20)

.ToArray();

Which is clearer? I’m an old-fashioned static typing fan, so I prefer the version in list-
ing 14.6. It states the types I expect on each line, so if there are any problems, I get to
find out immediately rather than waiting until I try to use a value in a way that may not
be supported. 

 In terms of productivity when initially developing, there are pros and cons to both

Listing 14.6 Using implicit conversions from dynamic in Excel

Listing 14.7 Using dynamic everywhere
approaches. Using dynamic, you don’t need to work out which particular type you
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expect; you can just use the value, and as long as all the necessary operations are sup-
ported, you’re okay. On the other hand, by using static typing, you can see what’s avail-
able at every stage via IntelliSense. You’re still using dynamic typing to provide the
implicit conversion to Worksheet and Range—you’re just using it for one step at a
time rather than wholesale. The change from static typing to dynamic may not look
like much to start with, because the example is relatively simple, but as the complexity
of the code increases, so does the readability benefit of removing all those casts.

 In some ways this has all been a blast from the past—COM is a relatively old technol-
ogy. Now we’ll jump to interoperating with something much more recent: IronPython. 

14.3.2 Dynamic languages such as IronPython

In this section I’ll only use IronPython as an example, but that’s certainly not the only
dynamic language available for the DLR. It’s arguably the most mature, but there are
already alternatives such as IronRuby and IronScheme. One of the stated aims of the
DLR is to make it easier for budding language designers to create a working language
that has access to the huge .NET Framework libraries as well as good interoperability
with other DLR languages and the traditional .NET languages such as C#.

WHY WOULD I WANT TO USE IRONPYTHON FROM C#?
There are many reasons you might want to interoperate with a dynamic language, just
as it’s been beneficial to interoperate with other managed languages from .NET’s
infancy. It’s clearly useful for a VB developer to be able to use a class library written in
C# and vice versa, so why would the same not be true of dynamic languages? I asked
Michael Foord, one of the authors of Iron Python in Action (Manning, 2009), to come
up with a few ideas for using IronPython within a C# application. Here’s his list:

 User scripting
 Writing a layer of your application in IronPython
 Using Python as a configuration language
 Using Python as a rules engine with rules stored as text (even in a database)
 Using a library that’s available in Python, but has no .NET equivalent
 Putting a live interpreter into your application for debugging

If you’re still skeptical, you might want to consider that embedding a scripting lan-
guage in a mainstream application is far from uncommon—Sid Meier’s Civilization IV
computer game3 is scriptable with Python. This isn’t just an afterthought for modifica-
tions, either—a lot of the core gameplay is written in Python. Once they’d built the
engine, the developers found it to be a more powerful development environment
than they’d originally imagined.

 For this chapter I’ll work with the single example of using Python as a configura-
tion language. Just as with the COM example, I’ll keep it simple, but hopefully it’ll pro-
vide enough of a starting point for you to experiment more with it if you’re interested. 
3 Or way of life, depending on how you view the world and your level of addiction to playing the game.
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GETTING STARTED: EMBEDDING “HELLO, WORLD”
There are various types available if you want to host or embed another language within a
C# application, depending on the level of flexibility and control you want to achieve.
We’ll only use ScriptEngine and ScriptScope here, because our requirements are
primitive. In this example, you know you’re always going to use Python, so you can ask
the IronPython framework to create a ScriptEngine directly; in more general situa-
tions, you can use a ScriptRuntime to pick language implementations dynamically by
name. More demanding scenarios may require you to work with ScriptHost and
ScriptSource, as well as use more of the features of the other types, too.

 Not content with merely printing hello, world once, this initial example will do
so twice, first by using text passed directly into the engine as a string, and then by load-
ing a file called HelloWorld.py. The following listing shows everything you need.

ScriptEngine engine = Python.CreateEngine();
engine.Execute("print 'hello, world'");
engine.ExecuteFile("HelloWorld.py");

You may find this listing either quite dull or very exciting, both for the same reason.
It’s simple to understand, requiring little explanation. It does little, in terms of actual
output…and yet the fact that it is so easy to embed Python code into C# is a cause for
celebration. True, the level of interaction is somewhat minimal so far, but it really
couldn’t be much easier than this.

PYTHON’S MANY STRING LITERAL FORMS The Python file contains a single line:
print "hello, world". Note the double quotes in the file, compared with
the single quotes in the string literal that were passed into engine.Execute().
Either would’ve been fine in either source. Python has various string literal
representations, including triple single quotes or triple double quotes for
multiline literals. I only mention this because it’s useful not to have to escape
double quotes any time you want to put Python code into a C# string literal.

The next type we’ll look at is ScriptScope, which will be crucial to the configuration
script. 

STORING AND RETRIEVING INFORMATION FROM A SCRIPTSCOPE

The execution methods we’ve used both have overloads with a second parameter—a
scope. In its simplest terms, this can be regarded as a dictionary of names and values.
Scripting languages often allow variables to be assigned without any explicit declara-
tion, and when this is done in the top level of a program (instead of in a function or
class), this usually affects a global scope.

 When a ScriptScope instance is passed into an execution method, that’s used as
the global scope for the script you’ve asked the engine to execute. The script can
retrieve existing values from the scope and create new values, as shown in the follow-

Listing 14.8 Printing hello, world twice using Python embedded in C#
ing listing.
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string python = @"
text = 'hello'
output = input + 1
";
ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
scope.SetVariable("input", 10);
engine.Execute(python, scope);
Console.WriteLine(scope.GetVariable("text"));
Console.WriteLine(scope.GetVariable("input"));
Console.WriteLine(scope.GetVariable("output"));

In this code the Python source code is embedded into the C# code as a verbatim
string literal B rather than putting it in a file, so that it’s easier to see all the code in
one place. I don’t recommend that you do this in production code, partly because
Python is sensitive to whitespace—reformatting the code in a seemingly harmless way
can make it fail completely at execution time.

 The SetVariable and GetVariable methods simply put values into the scope C
and fetch them out again D in the obvious way. They’re declared in terms of object
rather than dynamic, as you might’ve expected. But GetVariable also allows you to
specify a type argument, which acts as a conversion request. 

 This isn’t quite the same as casting the result of the nongeneric method, as the lat-
ter just unboxes the value, which means you need to cast it to exactly the right type.
For example, you can put an integer into the scope, but retrieve it as a double:

scope.SetVariable("num", 20)
double x = scope.GetVariable<double>("num")
double y = (double) scope.GetVariable("num");

The first call succeeds: you’re explicitly telling GetVariable what type you want B, so
it knows to coerce the value appropriately. The second call C will throw an Invalid-
CastException, just as it would in any other situation where you try to unbox a value
using the wrong type.

 The scope can also hold functions, which you can retrieve and then call dynami-
cally, passing arguments and returning values. The easiest way of doing this is to use
the dynamic type, as shown in the following listing.

string python = @"
def sayHello(user):

print 'Hello %(name)s' % {'name' : user}
";
ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
engine.Execute(python, scope);
dynamic function = scope.GetVariable("sayHello");
function("Jon");

Listing 14.9 Passing information between a host and a script using ScriptScope

Listing 14.10 Calling a function declared in a ScriptScope

Python code embedded 
as a C# string literalB

Sets variable for 
Python code to use

C

Fetches variables 
back from scopeD

Converts successfully to doubleB

Unboxing throws exceptionC
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Configuration files might not often need this ability, but it can be useful in other situ-
ations. For example, you could easily use Python to script a graph-drawing program by
providing a function to be called on each input point. A simple example of this can be
found on the book’s website at http://mng.bz/6yGi. 

 There are a number of situations in which it’s useful to have some sort of expres-
sion evaluator running user code entered at execution time, such as evaluating busi-
ness rules for discounts, shipping costs, and so on. It can also be useful to be able to
change these rules in text form without having to recompile or redeploy binaries. List-
ing 14.10 is quite tame—another example in the downloadable source code weaves in
and out of the two languages rather more tortuously, showing that the calls can go
both ways: from C# to IronPython, as you’ve seen, and from IronPython to C#. 

PUTTING IT ALL TOGETHER

Now that you can get values into your scope, you’re essentially done. You could poten-
tially wrap the scope in another object, providing access via an indexer, or even access
the values dynamically using the techniques shown in section 14.5. The application
code might look something like this:

static Configuration LoadConfiguration()
{

ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
engine.ExecuteFile("configuration.py", scope);
return Configuration.FromScriptScope(scope);

}

The exact form of the Configuration type will depend on your application, but it’s
unlikely to be terribly exciting code. I’ve provided a sample dynamic implementation
in the full source that allows you to retrieve values as properties and call functions
directly too. Of course, you’re not limited to using primitive types in your configura-
tion: the Python code could be arbitrarily complex, building collections, wiring up
components and services, and so forth. It could perform a lot of the roles of a normal
dependency injection or inversion of control container.

 The important thing is that you now have a configuration file that’s active instead
of the traditional passive XML and .ini files. Of course, you could’ve embedded your
own programming language into previous configuration files, but the result would
probably have been less powerful and would’ve taken a lot more effort to implement.
As an example of where this could be useful in a simpler situation than full depen-
dency injection, you might want to configure the number of threads to use for some
background processing component in your application. You might normally use as
many threads as you have processors in the system, but occasionally reduce it in order
to help another application run smoothly on the same system. The configuration file
would simply change from something like this

agentThreads = System.Environment.ProcessorCount
agentThreadName = 'Processing agent'

http://mng.bz/6yGi
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to this

agentThreads = 1
agentThreadName = 'Processing agent (single thread only)'

This change wouldn’t require the application to be rebuilt or redeployed—you’d just
need to edit the file and restart the application. Particularly smart applications could
even choose to reconfigure themselves on the fly. (I’ve found that usually this ability is
more painful to implement than the extra value it brings, but in certain places it can
make a big difference. The ability to change logging levels either for a particular bit of
code or even just a specific user who’s having difficulties can make debugging much
easier.)

 Other than executing functions, we haven’t really looked at using Python in a par-
ticularly dynamic way. The full power of Python is available, and by using the dynamic
type in your C# code, you can take advantage of metaprogramming and all the other
dynamic features. The C# compiler is responsible for representing your code in an
appropriate fashion, and the script engine is responsible for taking that code and
working out what it means for Python. Just don’t feel you have to be doing anything
particularly clever for it to be worth embedding the script engine in your application.
It’s a simple step toward a more powerful application.

HOW MUCH POWER DO YOU WANT TO GIVE TO YOUR SCRIPT AUTHORS? If you’re
executing arbitrary code, particularly code entered by external users of the
system, you should think seriously about security, and possibly run the script
in some sort of sandboxed environment. Discussion of this topic is outside the
scope of this book, but it needs to be considered carefully.

So far our examples have been interoperating with other systems. Dynamic typing can
make sense even within a purely managed system, though. Let’s visit a few examples. 

14.3.3 Dynamic typing in purely managed code

You’ve almost certainly used something like dynamic typing in the past, even if it
wasn’t your own code that had to do the work. Data binding is the simplest example of
this—any time you specify something like ListControl.DisplayMember, you’re asking
the framework to find a property at execution time based on its name. If you’ve ever
used reflection directly in your own code, you’re again using information that’s only
available at execution time.

 In my experience, reflection is error-prone, and even when it works, you may need
to put in extra effort to optimize it. In some cases, dynamic typing can completely
replace that reflection-based code; it may be faster too, depending on exactly what
you’re doing.

 It’s particularly tricky to use generic types and methods from reflection. For
instance, if you have an object that you know implements IList<T> for some type
argument T, it can be difficult to work out exactly what T is. If the only reason for dis-

covering T is to then call another generic method, you really want to just ask the
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compiler to call whatever it would have called if you knew the actual type. Of course,
that’s exactly what dynamic typing does. I’ll use this scenario as our first example.

EXECUTION-TIME TYPE INFERENCE

If you want to do more than just call a single method, it’s often best to wrap all the
additional work in a generic method. You can then call the generic method dynami-
cally, but write all the rest of the code using static typing. Listing 14.11 shows a simple
example of this.

 Pretend you’ve been given a list of some type and a new element by some other
part of the system. You’ve been promised that they’re compatible, but you don’t know
their types statically. There are various reasons this could happen—this could be the
result of deserialization elsewhere, for example. Anyway, your code is meant to add
the new element to the end of the list, but only if there are fewer than 10 elements in
the list at the moment. The method returns whether or not the element was actually
added. Obviously, in real life the business logic would be more complicated, but the
point is that you’d really like to be able to use the strong types for these operations.
The following listing shows the statically typed method and the dynamic call into it.

private static bool AddConditionallyImpl<T>(IList<T> list, T item)
{

if (list.Count < 10)
{

list.Add(item);
return true;

}
return false;

}

public static bool AddConditionally(dynamic list, dynamic item)
{

return AddConditionallyImpl(list, item);
}
...
object list = new List<string> { "x", "y" };
object item = "z";
AddConditionally(list, item);

The public method has dynamic parameters; in previous versions of C# it would per-
haps have taken IEnumerable and Object, relying on complicated checks with reflec-
tion to work out the type of the list and then invoke the generic method with
reflection. With dynamic typing, you can just call a strongly typed implementation B
using the dynamic arguments C, isolating the dynamic access to the single call in the
wrapper method. Of course, the call could still fail, but you’ve been saved the effort of
trying to determine the appropriate type argument.

 You could also expose the strongly typed method publicly to avoid the dynamic
typing for callers who knew their list types statically. It’d be worth keeping the names

Listing 14.11 Using dynamic type inference

Normal statically 
typed codeB

Calls helper method 
dynamicallyC

Eventually calls 
AddConditionallyImpl<string>
different in that case, to avoid accidentally calling the dynamic version due to a slight
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mistake with the static types of the arguments. (It’s also a lot easier to make the right
call within the dynamic version when the names are different!)

 As another example of dynamic typing in purely managed code, I’ve already
bemoaned the lack of generic operator support in C#. There’s no concept of specify-
ing a constraint saying “T must have an operator that allows me to add two values of
type T together.” You saw this in our initial demonstration of dynamic typing (see list-
ing 14.4), so mentioning it here should come as no surprise. Let’s take the Sum query
operator from LINQ and make it dynamic. 

COMPENSATING FOR THE LACK OF GENERIC OPERATORS

Have you ever looked at the list of overloads for Enumerable.Sum? It’s pretty long.
Admittedly, half of the overloads are due to a projection, but even so there are 10
overloads, each of which just takes a sequence of elements and adds them together,
and that doesn’t even cover summing unsigned values, or bytes, or shorts. Why not use
dynamic typing to try to do it all in one method?

 Even though we’ll use dynamic typing internally, the method shown in listing 14.12
is statically typed. You could declare it as a nongeneric method summing an
IEnumerable <dynamic>, but that wouldn’t work well due to the limitations of covari-
ance. I named the method DynamicSum rather than Sum to avoid clashing with the
methods in Enumerable. The compiler will pick a nongeneric overload over a generic
one where both signatures have the same parameter types, and it’s simpler to avoid the
collision in the first place.

public static T DynamicSum<T>(this IEnumerable<T> source)
{

dynamic total = default(T);
foreach (T element in source)
{

total = (T) (total + element);
}
return total;

}
...
byte[] bytes = new byte[] { 1, 2, 3 };
Console.WriteLine(bytes.DynamicSum());

The code is mostly straightforward; it looks almost exactly the same as any of the
implementations of the normal Sum overloads would. It omits checking whether
source is null just for brevity, but most of the rest is simple enough. There are a cou-
ple of interesting points.

 First, you use default(T) to initialize total, which is declared as dynamic so that
you get the desired dynamic behavior B. You have to start off with an initial value
somehow; you could try to use the first value in the sequence, but then you’d be stuck
if the sequence were empty. For non-nullable value types, default(T) is almost always

Listing 14.12 Summing an arbitrary sequence of elements dynamically

Dynamically typed 
for later use

B

Chooses addition 
operator dynamically

Prints 6
an appropriate value anyway: it’s a natural zero. For reference types, you’ll end up
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adding the first element of the sequence to null, which may or may not be appropri-
ate. For nullable value types, you’ll end up trying to add the first element to the null
value for that type, which certainly won’t be appropriate.

 Second, you cast the result of the addition back to T, even though it’s then assigned
to a dynamic variable. This may seem odd, but you need to think about the results of
summing two bytes together. The C# compiler would normally promote each operand
to int before performing the addition. Without the cast, the total variable would
end up storing an int value, which would then cause an exception when the return
statement attempted to convert it back to byte.

 Both of these points lead to deeper questions, but that’s not the point of this sec-
tion. I’ve written up a more detailed investigation of dynamic summation on the
book’s website (see http://mng.bz/0N37). 

 Just to prove that our code is capable of more than arithmetic on normal numbers,
listing 14.13 shows an example of summing TimeSpan values.

var times = new List<TimeSpan>
{

2.Hours(), 25.Minutes(), 30.Seconds(),
45.Seconds(), 40.Minutes()

};
Console.WriteLine(times.DynamicSum());

The TimeSpan values are created using extension methods for convenience, but the
summation is entirely dynamic, resulting in a total span of 3 hours, 6 minutes, and 15
seconds. 

DUCK TYPING

Sometimes you know that a member with a particular name will be available at execu-
tion time, but you can’t tell the compiler exactly which member you’re talking about
because it’ll depend on the type. In some ways this is a more general example of the
same problem that we’ve just solved, except using normal methods and properties
instead of operators.

 There is a difference: usually you’d try to capture the commonality in an interface
or abstract base class. You can’t do this with operators, but it’s the normal approach
for methods and properties. Unfortunately it doesn’t always work—particularly if mul-
tiple libraries are involved. The .NET Framework is mostly consistent here, but you’ve
already seen one example where it doesn’t quite work. In chapter 12 we looked at the
optimizations available for counting a sequence and saw that both ICollection and
ICollection<T> have a Count property—but they have no common ancestor inter-
face with that property, so you have to handle them separately.

 Duck typing lets you just access Count without performing the type checking your-
self, as shown in the following listing.

Listing 14.13 Summing a list of TimeSpan elements dynamically

http://mng.bz/0N37
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static void PrintCount(IEnumerable collection)
{

dynamic d = collection;
int count = d.Count;
Console.WriteLine(count);

}
...
PrintCount(new BitArray(10));
PrintCount(new HashSet<int> { 3, 5 });
PrintCount(new List<int> { 1, 2, 3 });

The PrintCount method is restricted to implementations of IEnumerable for the
same reason that collection initializers are: it’s a pretty good indication that the Count
property you end up using is an appropriate one. The test collections are a BitArray
(which only implements ICollection), a HashSet<int> (which only implements
ICollection<int>), and a List<int> (which implements both). In all cases, the cor-
rect property is found at execution time.

We’ll stick with the example of retrieving the count of items, but this time we’ll look at
how execution-time overload resolution can offer an alternative to explicit type testing. 

MULTIPLE DISPATCH

With static typing, C# uses single dispatch: at execution, the exact method called only
depends on the actual type of the target of the method call, through overriding. Over-
loading is decided at compile time. Occasionally multiple dispatch is useful to find the
most specialized implementation of a method based on the execution-time types of
the arguments—again, this is what dynamic typing provides. 

 The following listing demonstrates how multiple dispatch would allow for a more
varied and robust implementation of optimized counting.

Listing 14.14 Accessing a Count property with duck typing

Explicit interface implementation and dynamic don’t mix well
When I first tried to test this code, I used an int[], which is implicitly convertible to
both of the interfaces involved. I was therefore surprised when the PrintCount
method failed at execution time…until I thought about it more closely. The execution-
time binding is performed using the actual type of the object, which in this case is an
int[]. Array types don’t publicly expose a Count property—they use explicit interface
implementation for that. You can only use Count when you view an array object in a
particular way.

This is just one example where dynamic typing can behave in a way that’s logical but
can be unexpected unless you’re careful. I’m collecting an ongoing list of such oddi-
ties on the book’s website (see http://mng.bz/5y7M); please let me know if you find
any new ones.

http://mng.bz/5y7M
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private static int CountImpl<T>(ICollection<T> collection)
{

return collection.Count;
}

private static int CountImpl(ICollection collection)
{

return collection.Count;
}

private static int CountImpl(string text)
{

return text.Length;
}

private static int CountImpl(IEnumerable collection)
{

int count = 0;
foreach (object item in collection)
{

count++;
}
return count;

}

public static void PrintCount(IEnumerable collection)
{

dynamic d = collection;
int count = CountImpl(d);
Console.WriteLine(count);

}
...
PrintCount(new BitArray(5));
PrintCount(new HashSet<int> { 1, 2 });
PrintCount("ABC");
PrintCount("ABCDEF".Where(c => c > 'B'));

You know that at least one overload of CountImpl will be appropriate at execution time
because the parameter for PrintCount is of type IEnumerable. You rely on dynamic
typing to perform the same job as the explicit “if it’s an ICollection<T>, use this
implementation; if it’s an ICollection, use this implementation” steps we used when
picking a random element in listing 12.17. As an example of how this is more than just
using the Count property if it’s available, listing 14.15 includes an optimization for
strings, where you can use the Length property to obtain the right result quickly.

 Even using multiple dispatch here, you could still run into problems at execu-
tion time: what if the actual type implemented both ICollection<string> and
ICollection<int> via explicit interface implementation? There would be two possi-
ble results depending on which Count implementation was picked. In this case the
binding would be ambiguous, leading to an exception. Fortunately such pathologi-
cal cases are likely to be rare.

Listing 14.15 Counting different types efficiently using multiple dispatch



429Looking behind the scenes

 These are just a few examples of areas where you might want to use dynamic typing
even if you’re not trying to interoperate with anything else. Next, we’ll delve into how
all these effects are achieved, before we finish off the chapter by implementing our
own dynamic behavior.

 I should warn you that things are about to get tricky. In fact, it’s all extremely ele-
gant, but it’s complicated because programming languages provide a rich set of oper-
ations, and representing all the necessary information about those operations as data
and then acting on it appropriately are complex jobs. The good news is that you
don’t need to understand it all intimately. As ever, you’ll get more out of dynamic typ-
ing the more familiar you are with the machinery behind it, but even if you just use
the techniques you’ve seen so far, there may be situations where it makes you a lot
more productive. 

14.4 Looking behind the scenes
Despite the warning of the previous paragraph, I won’t go into huge amounts of detail
about the inner workings of dynamic typing. That would be a lot of ground to cover,
with reference to both the framework and language changes. It’s not often that I shy
away from the nitty-gritty of specifications, but in this case I truly believe there’s not
much to be gained from learning it all. I’ll cover the most important (and interesting)
points, and I can thoroughly recommend Sam Ng’s blog (http://blogs.msdn.com/b/
samng/), the C# language specification, and the DLR project page (http://mng.bz/
0M6A) for more information if you need to dig into a particular scenario.

 My eventual goal is to help you understand what the C# compiler is doing and the
code it emits to achieve dynamic binding at execution time. Unfortunately, none of
the generated code will make any sense until you see the mechanism that underpins it
all—the DLR. You might like to think of a statically typed program as a conventional
stage play with a fixed script, and a dynamically typed program as more like an impro-
visation show. The DLR takes the place of the actors’ brains frantically coming up with
something to say in response to audience suggestions. Let’s meet our quick-thinking
star performer.

14.4.1 Introducing the Dynamic Language Runtime

I’ve been bandying the acronym DLR around for a while now, occasionally expanding
it to Dynamic Language Runtime, but never explaining what it is. This has been delib-
erate: I’ve been trying to get across the nature of dynamic typing and how it affects
developers, rather than the details of the implementation. But that excuse was never
going to last until the end of the chapter, so here we are. In its barest terms, the
Dynamic Language Runtime is a library that all dynamic languages and the C# com-
piler use to execute code dynamically.

 Amazingly enough, it really is just a library. Despite its name, it isn’t at the same
level as the CLR (Common Language Runtime)—it doesn’t deal in JIT compilation,
native API marshaling, garbage collection, and so forth. But it builds on a lot of the

http://blogs.msdn.com/b/samng/
http://blogs.msdn.com/b/samng/
http://mng.bz/0M6A
http://mng.bz/0M6A
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work in .NET 2.0 and 3.5, particularly the DynamicMethod and Expression types. The
expression tree API has been expanded in .NET 4 to allow the DLR to express more
concepts, too. Figure 14.1 shows how it all fits together.

 In addition to the DLR, figure 14.1 shows another library that may be new to you.
One of the assemblies in the binders part of the diagram is Microsoft.CSharp. It con-
tains a number of types that are referenced by the C# compiler when you use dynamic
in your code. Confusingly, this doesn’t include the existing Microsoft.CSharp
.Compiler and Microsoft.CSharp.CodeDomProvider. (They’re not even in the same
assembly as each other!) You’ll see exactly what the new types are used for in section
14.4.2, where we’ll decompile some code written using dynamic.

 One other important aspect differentiates the DLR from the rest of the .NET
Framework: it’s provided as open source. The complete code lives in a CodePlex proj-
ect (http://dlr.codeplex.com), so you can download it and see the inner workings.
One of the benefits of this approach is that the DLR hasn’t had to be reimplemented
for Mono (http://mono-project.com): the same code runs on both .NET and its cross-
platform cousin.

 Although the DLR doesn’t handle native code directly, you can think of it as doing
a job similar to the CLR in one sense: just as the CLR converts IL (Intermediate Lan-
guage) into native code, the DLR converts code represented using binders, call sites,
meta-objects, and various other concepts into expression trees that can then be com-
piled down into IL and eventually native code by the CLR. Figure 14.2 shows a simpli-

Python apps Ruby apps

IronPython IronRuby

Dynamic 
Language 
Runtime 
(DLR)

Binders 
(e.g. C#, VB,
Microsoft.CSharp)

Other .NET libraries  
(WCF, WPF, 
ASP.NET, etc.)

System libraries 
(mscorlib, System, System.Core, etc.)

Common Language Runtime 
(JIT, GC, etc.)

.NET 4.0

C# apps VB apps

Figure 14.1 How the components of .NET 4 fit together, allowing static and dynamic 
languages to execute on the same underlying platform
fied view of the lifecycle of a single evaluation of a dynamic expression.

http://dlr.codeplex.com
http://mono-project.com
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As you can see, one of the important aspects of the DLR is a multilevel cache. This is
crucial for performance reasons, but to understand that and the other concepts I’ve
already mentioned, we’ll need to dive one layer deeper. 

14.4.2 DLR core concepts

We can summarize the purpose of the DLR in very general terms as taking a high-level
representation of code and executing that code, based on various pieces of informa-
tion that may only be known at execution time. In this section I’ll introduce a lot of
terminology to describe how the DLR works, but it’s all contributing to that common
aim.

CALL SITES

The first concept we need is a call site. This is sort of the atom of the DLR—the smallest
piece of code that can be considered as a single executable unit. One expression may
contain a lot of call sites, but the behavior is built up in the natural way, evaluating one
call site at a time. 

 For the rest of the discussion, we’ll only consider a single call site. It’ll be useful to
have a small example of a call site to refer to, so here’s a simple one, where d is a vari-
able of type dynamic:

Code.cs

C# compiler

DLR + dynamic objects + C# binders

JIT (of IL in cache)

Call site
We have native code — 
we can run it! 
(At last...)

Caches 
(IL + native code 

+ rules)

Binder

Caches 
(Rules)

Next time... if the cache is hit, just execute the native code.

(Create once and reuse these objects)

Call site
Objects with cache 
of behaviorCaches 

(IL + rules)

Binder

Caches 
(Rules)

C(CrC ea e once andd reutate o

Call site

e thhesh e objbje tcts))

Binding IL

Code.cs

... ... 
d.Foo(); 
...

Source code

Figure 14.2 Lifecycle of a 
dynamic expression
d.Foo(10);



432 CHAPTER 14 Dynamic binding in a static language

The call site is represented in code as a System.Runtime.CompilerServices.Call-
Site<T>. You’ll see a full example of how call sites are created and used in the next sec-
tion, when we look at what the C# compiler does at compile time, but here’s an example
of the code that might be called to create the site for the previous snippet:

CallSite<Action<CallSite, object, int>>.Create(Binder.InvokeMember(
CSharpBinderFlags.ResultDiscarded, "Foo", null, typeof(Test),
new CSharpArgumentInfo[] {
CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None, null),
CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.Constant |

CSharpArgumentInfoFlags.UseCompileTimeType,
null) }));

Now that we have a call site, can we execute the code? Not quite. 

RECEIVERS AND BINDERS

As well as a call site, we need something to decide what it means and how to execute it.
In the DLR, two entities can decide this: the receiver of a call and the binder. The
receiver of a call is simply the object that a member is called on. In our sample call
site, the receiver is the object that d refers to at execution time. The binder will
depend on the calling language and is part of the call site—in this case, you can see
that the C# compiler emits code to create a binder using Binder.InvokeMember. The
Binder class, in this case, is Microsoft.CSharp.RuntimeBinder.Binder, so it really is
C#-specific. The C# binder is also COM-aware and will perform appropriate COM bind-
ing if the receiver is an IDispatch object.

 The DLR always gives precedence to the receiver: if it’s a dynamic object that knows
how to handle the call, then it’ll use whatever execution path the object provides. An
object can advertise itself as being dynamic by implementing the new IDynamicMeta-
ObjectProvider interface. The name is a mouthful, but it only contains a single mem-
ber: GetMetaObject. You’ll need to be an expression-tree ninja and know the DLR
quite well to implement GetMetaObject correctly. But in the right hands, this can be a
powerful tool, giving you lower-level interaction with the DLR and its execution cache.
If you need to implement dynamic behavior in a high-performance fashion, it’s worth
the investment to learn the details. 

 There are two public implementations of IDynamicMetaObjectProvider included
in the framework to make it easy to implement dynamic behavior in situations where
performance isn’t quite as critical. We’ll look at all of this in more detail in section
14.5, but for now you just need to be aware of the interface itself, and that it repre-
sents the ability of an object to react dynamically.

 If the receiver isn’t dynamic, the binder gets to decide how the code should be exe-
cuted. In C# code, it would apply C#-specific rules to the code and work out what to
do. If you were creating your own dynamic language, you could implement your own
binder to decide how it should behave in general (when the object doesn’t override
the behavior). That lies well beyond the scope of this book, but it’s an interesting
topic in and of itself; one of the aims of the DLR is to make it easier to implement your

own languages. 
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RULES AND CACHES

The decision about how to execute a call is represented as a rule. Fundamentally, this
consists of two elements of logic: the circumstances under which the call site should
behave this way, and the behavior itself. 

 The first part is really for optimization. Suppose you have a call site that represents
addition of two dynamic values, and the first time it’s evaluated, both values are of
type byte. The binder has gone to a fair amount of effort to work out that this means
both operands should be promoted to int, and the result should be the sum of those
integers. It can reuse that operation any time the operands turn out to both be byte.
Checking a set of previous results for validity can save a lot of time. The rule I’ve used
as an example (the operand types must be exactly the same as the ones I’ve just seen)
is a common one, but the DLR supports other rules too.

 The second part of a rule is the code to use when the rule matches, and it’s repre-
sented as an expression tree. It could have been stored as a compiled delegate to call,
but keeping the expression tree representation means the cache can optimize heavily.
There are three levels of cache in the DLR: L0, L1, and L2. The caches store informa-
tion in different ways, and with a different scope. Each call site has its own L0 and L1
caches, but an L2 cache may be shared between several similar call sites, as shown in
figure 14.3.

 The set of call sites that share an L2 cache is determined by their binders—each
binder has an L2 cache associated with it. The compiler (or whatever is creating the
call sites) decides how many binders it wants to use. It can only use a binder for multi-
ple call sites that represent very similar code, where, if the context is the same at exe-
cution time, the call sites should execute in the same way. In fact, the C# compiler
doesn’t use this facility—it creates a new binder for every call site,4 so there’s not
much difference between the L1 and L2 caches for C# developers. Genuinely dynamic
languages, such as IronRuby and IronPython, make more use of it, though. 

 The caches themselves are executable, which takes a while to understand. The C#
compiler generates code to simply execute the call site’s L0 cache (which is a delegate
accessed through the Target property). That’s it! The L0 cache has a single rule,

4 A lot of information is specific to a particular call site, as the binding rules will be different depending on

Call site

L0 cache: 
delegate 

L1 cache: 
rules (few)

Binder

L2 cache: 
rules (many)

Call siteCall site

Call sites with the same semantics

...
Figure 14.3 Relationships between 
dynamic caches and call sites
things like which class it’s being called from.
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which it checks when it’s called. If the rule matches, it executes the associated behav-
ior. If the rule doesn’t match (or if this is the first call, so it doesn’t have even one
rule), it calls into the L1 cache, which in turn calls into the L2 cache. If the L2 cache
can’t find any matching rules, it asks the receiver or the binder to resolve the call. The
results are then put into the cache for next time. 

 In the case of our earlier snippet, the execution part would look something like
this:

callSite.Target(callSite, d, 10);

The L1 and L2 caches look through their rules in a fairly standard way—each has a col-
lection of rules, and each rule is asked whether or not it matches. The L0 cache is
somewhat different. The two parts of its behavior (checking its rule and delegating to
the L1 cache) are combined into a single method that is then JIT compiled. Updating
the L0 cache consists of rebuilding the method from the new rule.

 The result of all of this is that typical call sites that see similar context repeatedly
are very fast; the dispatch mechanism is about as lean as you could make it if you
hand-coded the tests yourself. Of course, this has to be weighed against the cost of all
the dynamic code generation involved, but the multilevel cache is complicated pre-
cisely because it tries to achieve a balance across various scenarios.

 Now that you know a bit about the machinery in the DLR, you’ll be able to under-
stand what the C# compiler does to set it all in motion. 

14.4.3 How the C# compiler handles dynamic

The main jobs of the C# compiler when it comes to dynamic code are to work out when
dynamic behavior is required, and to capture all the necessary context so that the
binder and receiver have enough information to resolve the call at execution time.

IF IT USES DYNAMIC, IT’S DYNAMIC!
One situation is obviously dynamic: when the target of a member call is dynamic. The
compiler has no way of knowing how that’ll be resolved. It may be a truly dynamic
object that’ll perform the resolution itself, or it may end up with the C# binder resolv-
ing it with reflection later. Either way, there’s no opportunity for the call to be resolved
statically.

 But when the dynamic value is being used as an argument for the call, there are
some situations where you might expect the call to be resolved statically—particularly
if there’s a suitable overload that has a parameter type of dynamic. The rule is that if
any part of a call is dynamic, the call becomes dynamic and will resolve the overload
with the execution-time type of the dynamic value. The following listing demonstrates
this using a method with two overloads, and invoking it in a number of different ways.



435Looking behind the scenes

static void Execute(string x)
{

Console.WriteLine("String overload");
}

static void Execute(dynamic x)
{

Console.WriteLine("Dynamic overload");
}
...
dynamic text = "text";
Execute(text);
dynamic number = 10;
Execute(number);

Both calls to Execute are bound dynamically. At execution time, they’re resolved
using the types of the actual values, namely, string and int. The parameter of type
dynamic is treated as if it were declared with type object everywhere except within the
method itself—if you look at the compiled code, you’ll see it is a parameter of type
object, just with an extra attribute applied. This also means you can’t have two meth-
ods whose signatures differ just by dynamic/object parameter types.

 That’s an example of resolving method calls, but there are plenty of other expres-
sions to consider. Sometimes the situation isn’t quite as straightforward as I’ve led you
to believe… 

IT’S DYNAMIC…EXCEPT WHEN IT ISN’T
When I introduced dynamic in 14.2 I had to be careful not to generalize too far,
because there are exceptions to almost every rule. Although you should know about
these, you don’t need to worry about them—they’re unlikely to cause you any prob-
lems. 

 Let’s get them out of the way quickly.

Conversions between CLR types and dynamic
The conversions between CLR types and dynamic are restricted in the same way that
you can’t convert from every CLR type to object; the exceptions are types such as
pointers and System.TypedReference. Given that dynamic is just object at the CLR
level, it’s not surprising that these types are excluded.

 You may have also noticed that I wrote about a conversion “from an expression of
type dynamic” to a CLR type, not a conversion from the dynamic type itself. This sub-
tlety helps during type inference and other situations that need to consider implicit
conversions between types; in general, life gets unpleasant when there are two types
with implicit conversions both ways. It basically limits the situations in which the con-
version is considered. For example, consider this implicitly typed array:

dynamic d = 0;
string x = "text";

Listing 14.16 Experimenting with method overloading and dynamic values

Prints "String overload"

Prints "Dynamic overload"
var array = new[] { d, x };
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What should the inferred type of array be? If there were an implicit conversion from
dynamic to string, then it could be either string[] or dynamic[], so you’d end up
with ambiguity and a compile-time error. But as the conversion only exists from a
dynamic expression, the compiler sees a conversion from string to dynamic but not the
other way, and array is of type dynamic[]. It’s probably best not to worry about this
subtlety unless you’re trying to work through a particular scenario with the specifica-
tion beside you. 

Expressions using dynamic aren’t always evaluated dynamically
There are some cases where the CLR is quite capable of evaluating an expression using
the normal static execution paths, even if one of the subexpressions is dynamic. For
example, consider the as operator:

dynamic d = GetValueDynamically();
string x = d as string;

There’s nothing that can happen dynamically here—either the value of d is a refer-
ence to a string or it isn’t. User-defined conversions aren’t applied when the as opera-
tor is used, so the C# compiler can use exactly the same IL that it would if the variable
were of type object. 

Dynamically evaluated expressions aren’t always of type dynamic
In some cases, the compiler doesn’t know exactly how it’s going to evaluate an expres-
sion, but it knows the exact type of the result (assuming an exception isn’t thrown). For
example, consider making a constructor call using a dynamic value as an argument:

dynamic d = GetValueDynamically();
SomeType x = new SomeType(d);

The constructor call itself has to be evaluated dynamically. There may be several over-
loads to be resolved at execution time, but the result is always going to be a SomeType
reference. The assignment to x can therefore happen without a dynamic conversion.

 There are a few other cases like this; using a dynamic array index into a statically
typed array can only result in a value of the array element type, for example. But you
shouldn’t assume it’ll always happen where you might expect it to. You could have sev-
eral overloads of a method, all of which have the same static return type, but the type
of that method invocation expression will still be dynamic.

 That’s enough about when dynamic evaluation doesn’t happen, or doesn’t result in
a dynamic value—let’s get back to the situations where it does and see what the C#
compiler does to make it all work. 

CREATING CALL SITES AND BINDERS

You don’t need to know the exact details of what the compiler does with dynamic
expressions in order to use them, but it can be instructive to see what the compiled
code looks like. In particular, if you need to decompile your code for any other rea-
son, you won’t be surprised by what the dynamic parts look like. My tool of choice for
this kind of work is Reflector (see http://mng.bz/pMXJ), but you could use ildasm if

you wanted to read the IL directly.

http://mng.bz/pMXJ
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 We’re only going to look at a single example—I’m sure I could fill a whole chap-
ter by looking at implementation details, but the idea is only to give you the gist of
what the compiler is up to. If you find this example interesting, you may want to
experiment more on your own. Just remember that the exact details are implementa-
tion-specific; they may change in future compiler versions, so long as the behavior is
equivalent. 

 Here’s the sample snippet, which exists in a Main method in the normal manner
for Snippy:

string text = "text to cut";
dynamic startIndex = 2;
string substring = text.Substring(startIndex);

Pretty simple, right? But it actually contains two dynamic operations—one to call
Substring, and one (implicit) to dynamically convert the result (which is just
dynamic at compile time) to a string. Listing 14.17 shows the decompiled code for
the Snippet class.5 I’ve omitted the class declaration itself and the implicit parameter-
less constructor to save space, and I’ve reformatted the code with less whitespace for
the same reason.

[CompilerGenerated]
private static class <Main>o__SiteContainer0 {

public static CallSite<Func<CallSite, object, string>> <>p__Site1;
public static CallSite<Func<CallSite, string, object, object>>

<>p__Site2;
}

private static void Main() {
string text = "text to cut";
object startIndex = 2;
if (<Main>o__SiteContainer0.<>p__Site1 == null) {

<Main>o__SiteContainer0.<>p__Site1 =
CallSite<Func<CallSite, object, string>>.Create(

new CSharpConvertBinder(typeof(string),
CSharpConversionKind.ImplicitConversion, false));

}
if (<Main>o__SiteContainer0.<>p__Site2 == null) {

<Main>o__SiteContainer0.<>p__Site2 =
CallSite<Func<CallSite, string, object, object>>.Create(

new CSharpInvokeMemberBinder(CSharpCallFlags.None,
"Substring", typeof(Snippet), null,
new CSharpArgumentInfo[] {

new CSharpArgumentInfo(
CSharpArgumentInfoFlags.UseCompileTimeType, null),

new CSharpArgumentInfo(
CSharpArgumentInfoFlags.None, null) }));

}
string substring =

Listing 14.17 The results of compiling dynamic code

Call-sites storageB

Creates 
conversion call site

C

Creates 
substring call site

D

Preserves 
text type

E

Invocation of 
both calls

F

5 Just as a reminder, Snippet is the class generated by Snippy automatically.
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<Main>o__SiteContainer0.<>p__Site1.Target.Invoke(
<Main>o__SiteContainer0.<>p__Site1,
<Main>o__SiteContainer0.<>p__Site2.Target.Invoke(

<Main>o__SiteContainer0.<>p__Site2, text, startIndex));
}

I don’t know about you, but I’m glad that I never have to write or encounter code like
that, other than for the purpose of learning about what’s going on. There’s nothing
new about that, though—the generated code for iterator blocks, expression trees, and
anonymous functions can be pretty gruesome too.

 A nested static class is used to store all the call sites B for the method, as they only
need to be created once. (If they were created each time, the cache would be useless!)
It’s possible that the call sites could be created more than once due to multithreading,
but if that happens it’s just slightly inefficient, and it means the lazy creation is
achieved with no locking at all. It doesn’t really matter if one call site instance is
replaced with another. Each method using dynamic binding has a separate site con-
tainer; this has to be the case for generic methods, as the call site needs to vary based
on the type arguments. Another compiler implementation could choose to use one
site container for all the nongeneric methods, one for all generic methods with a sin-
gle type parameter, and so on.

 After the call sites are created (C and D), they’re invoked. The Substring call is
invoked first (read the code from the innermost part of the statement outward) and
then the conversion is invoked on the result F. At this point, you have a statically
typed value again, so you can assign it to the substring variable.

 I’d like to highlight one more aspect of the code: the way that some static type
information is preserved in the call site. The type information itself is present in the
delegate signature used for the type argument of the call site (Func<CallSite,
string, object, object>), and a flag in the corresponding CSharpArgumentInfo
indicates that this type information should be used in the binder E. (Even though
this is the target of the method, it’s represented as an argument; instance methods are
treated as static methods with an implicit first parameter of this.) This is a crucial
part of making the binder behave as if it were just recompiling your code at execution
time. Let’s look at why this is so important. 

14.4.4 The C# compiler gets even smarter

C# 4 lets you straddle the static/dynamic boundary not only by having some of your
code bound statically and some bound dynamically, but also by combining the two
ideas within a single binding. It remembers everything it needs to know within the call
site, and then cleverly merges this information with the types of the dynamic values at
execution time.

PRESERVING COMPILER BEHAVIOR AT EXECUTION TIME

The ideal model for working out how the binder should behave is to imagine that

instead of having a dynamic value in your source code, you have a value of exactly the
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right type: the type of the actual value at execution time.6 This only applies to dynamic
values within the expression; any types that are known at compile time are still used
for lookups, such as member resolution. I’ll give two examples of where this makes a
difference. 

 The following listing shows a simple overloaded method in a single type.

static void Execute(dynamic x, string y)
{

Console.WriteLine("dynamic, string");
}

static void Execute(dynamic x, object y)
{

Console.WriteLine("dynamic, object");
}
...
object text = "text";
dynamic d = 10;
Execute(d, text);

The important variable here is text. Its compile-time type is object, but at execution time
its value is a string reference. The call to Execute is dynamic because you’re using the
dynamic variable d as one of the arguments, but the overload resolution uses the static
type of text, so the result is dynamic, object. If the text variable had been declared
as dynamic as well, it would’ve used the other overload.

 The next listing is similar, but this time it’s the receiver of the call that matters.

class Base
{

public void Execute(object x)
{

Console.WriteLine("object");
}

}

class Derived : Base
{

public void Execute(string x)
{

Console.WriteLine("string");
}

}
...
Base receiver = new Derived();
dynamic d = "text";
receiver.Execute(d);

6 It’s slightly more complicated than that—what if the actual type is internal to another assembly? You wouldn’t
want that to be used as the type argument of a generic method via type inference, for example. The binder

Listing 14.18 Dynamic overload resolution within a single type

Listing 14.19 Dynamic overload resolution within a class hierarchy

Prints 
"dynamic, object"

Prints "object"
has the notion of a “best accessible type” based on the calling context and the actual type.
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In listing 14.19 the type of receiver is Derived at execution time, so you might’ve
expected the overload introduced in Derived to be called. But the compile-time type
of receiver is Base, so the binder restricts the set of methods it considers to just the
ones that would have been available if you’d been binding the method statically. 

 Despite all of these decisions that have to be taken later, some compile-time checks
are available, even for code that’ll be fully bound at execution time. 

COMPILE-TIME ERRORS FOR DYNAMIC CODE

As I said near the start of this chapter, one of the disadvantages of dynamic typing is
that some errors that would normally be detected by the compiler are delayed until
execution time, at which point an exception is thrown. There are many situations
where the compiler has to just hope you know what you’re doing, but where it can
help you, it will. 

 The simplest example of this is when you try to call a method with a statically typed
receiver (or a static method) and none of the overloads can possibly be valid, whatever
type the dynamic value has at execution time. The following listing shows three exam-
ples of invalid calls, two of which are caught by the compiler.

string text = "cut me up";
dynamic guid = Guid.NewGuid();
text.Substring(guid);
text.Substring("x", guid);
text.Substring(guid, guid, guid);

Here you have three calls to string.Substring. The compiler knows the exact set of
possible overloads, because it knows the type of text statically. It doesn’t complain at
the first call, because it can’t tell what type guid will be—if it turns out to be an inte-
ger, all will be well. But the final two lines throw up errors—there are no overloads
that take a string as the first argument, and there are no overloads with three parame-
ters. The compiler can guarantee that these would fail at execution time, so it’s reason-
able for it to fail at compile time instead.

 A slightly trickier example is with type inference. If a dynamic value is used to infer
a type argument in a call to a generic method, the actual type argument won’t be
known until execution time and no validation can occur beforehand. But any type
argument that would be inferred without using any dynamic values can cause type
inference to fail at compile time. The following listing shows an example of this.

void Execute<T>(T first, T second, string other) where T : struct
{
}
...
dynamic guid = Guid.NewGuid();

Listing 14.20 Catching errors in dynamic calls at compile time

Listing 14.21 Generic type inference with mixed static and dynamic values
Execute(10, 0, guid);
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Execute(10, false, guid);
Execute("hello", "hello", guid);

Again, the first call compiles but would fail at execution time. The second call won’t
compile because T can’t be both int and bool, and there are no conversions between
the two of them. The third call won’t compile because T is inferred to be string,
which violates the constraint that it must be a value type.

 The compiler is conservative: it’ll only fail with an error if it can tell that some code
can’t possibly succeed, and it only performs relatively simple tests on this front. There
are some situations where it may be obvious (and provable) to a human that the code
won’t work, but where the compiler allows the code through. Of course, if a particular
line of code will never work, then a single unit test that executes it will fail, so the sim-
plistic nature of the compiler’s checking doesn’t matter if you have good code cover-
age. Think of it as a bonus in the cases where it does spot a problem.

 That covers the most important points in terms of what the compiler can do for
you. But you can’t use dynamic absolutely everywhere. There are limitations, some of
which are painful, but most of which are quite obscure. 

14.4.5 Restrictions on dynamic code

You can mostly use dynamic wherever you’d normally use a type name, and then write
normal C#. But there are a few exceptions. This isn’t an exhaustive list, but it covers
the cases you’re most likely to run into.

EXTENSION METHODS AREN’T RESOLVED DYNAMICALLY

The compiler emits some of the context of the call into the call site, as you’ve already
seen. In particular, the site knows the static types that the compiler was aware of. But
in current versions of C#, it doesn’t know which using directives occurred in the source
file containing the call. That means it doesn’t know which extension methods are
available at execution time.

 Not only does that mean that you can’t call extension methods on dynamic val-
ues—it means you can’t pass them in to extension methods as arguments either.
There are two workarounds, both of which are helpfully suggested by the compiler. If
you know which overload you want, you can cast the dynamic value to the right type
within the method call. Otherwise, assuming you know which static class contains the
extension method, you can call it as a normal static method. The following listing
shows an example of a failing call and both workarounds. 

dynamic size = 5;
var numbers = Enumerable.Range(10, 10);
var error = numbers.Take(size);
var workaround1 = numbers.Take((int) size);
var workaround2 = Enumerable.Take(numbers, size);

Listing 14.22 Calling extension methods with dynamic arguments

Compile-time error
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Both approaches will work if you want to call the extension method with the dynamic
value as the implicit this value, too, although the cast becomes pretty ugly in that case. 

DELEGATE CONVERSION RESTRICTIONS WITH DYNAMIC

The compiler has to know the exact delegate (or expression) type involved when con-
verting a lambda expression, an anonymous method, or a method group. You can’t
assign any of these to a plain Delegate or object variable without casting, and the
same is true for dynamic. But a cast is enough to keep the compiler happy. This could
be useful in some situations if you want to execute the delegate dynamically later. You
can also use a delegate with a dynamic type as one of its parameters, if that’s useful.

 Listing 14.23 shows some examples that’ll compile, and some that won’t.

dynamic badMethodGroup = Console.WriteLine;
dynamic goodMethodGroup = (Action<string>) Console.WriteLine;

dynamic badLambda = y => y + 1;
dynamic goodLambda = (Func<int, int>) (y => y + 1);

dynamic veryDynamic = (Func<dynamic, dynamic>) (d => d.SomeMethod());

Note that because of the way overload resolution works, this means you can’t use
lambda expressions in dynamically bound calls at all without casting—even if the only
method that could possibly be invoked has a known delegate type at compile time. For
example, this code won’t compile:

void Method(Action<string> action, string value)
{

action(value);
}
...
dynamic text = "error";
Method(x => Console.WriteLine(x), text);

It’s worth pointing out that all is not lost in terms of LINQ and dynamic interacting.
You can have a strongly typed collection with an element type of dynamic, at which
point you can still use extension methods, lambda expressions, and even query
expressions. The collection can contain objects of different types, and they’ll behave
appropriately at execution time, as shown in the following listing.

var list = new List<dynamic> { 50, 5m, 5d };
var query = from number in list

where number > 4
select (number / 20) * 10;

foreach (var item in query)
{

Console.WriteLine(item);

Listing 14.23 Dynamic types and lambda expressions

Listing 14.24 Querying a collection of dynamic elements

Compile-time error
}
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This prints 20, 2.50, and 2.5. I deliberately divided by 20 and then multiplied by 10 to
show the difference between decimal and double: the decimal type keeps track of
precision without normalizing, which is why 2.50 is displayed instead of 2.5. The first
value is an integer, so integer division is used; hence the value of 20 instead of 25. 

CONSTRUCTORS AND STATIC METHODS

You can call constructors and static methods dynamically in the sense that you can
specify dynamic arguments, but you can’t resolve a constructor or static method
against a dynamic type. There’s just no way of specifying which type you mean.

 If you run into a situation where you want to be able to do this dynamically in some
way, try to think of ways to use instance methods instead, such as by creating a factory
type. You may find that you can get the dynamic behavior you want using simple poly-
morphism or interfaces, but within static typing. 

TYPE DECLARATIONS AND GENERIC TYPE PARAMETERS

You can’t declare that a type has a base class of dynamic. You also can’t use dynamic in
a type parameter constraint, or as part of the set of interfaces that your type imple-
ments. You can use it as a type argument for a base class, or when you’re specifying an
interface for a variable declaration. For example, these declarations are invalid:

 class BaseTypeOfDynamic : dynamic 
 class DynamicTypeConstraint<T> where T : dynamic 
 class DynamicTypeConstraint<T> where T : List<dynamic> 
 class DynamicInterface : IEnumerable<dynamic> 

But these are valid:

 class GenericDynamicBaseClass : List<dynamic> 
 IEnumerable<dynamic> variable; 

Most of these restrictions around generics are the result of the dynamic type not really
existing as a .NET type. The CLR doesn’t know about it—any uses in your code are
translated into objects with the DynamicAttribute applied appropriately. (For types
such as List<dynamic> or Dictionary<string, dynamic>, the attribute indicates
exactly which parts of the type are dynamic.) DynamicAttribute is only applied when
the dynamic nature needs to be represented in metadata; local variables don’t require
the attribute, as nothing needs to inspect them after compilation to spot their
dynamic nature.

 All the dynamic behavior is achieved through compiler cleverness in deciding how
the source code should be translated, and library cleverness at execution time. This
equivalence between dynamic and object is evident in various places, but it’s perhaps
most obvious if you look at typeof(dynamic) and typeof(object), which return the
same reference. In general, if you find you can’t do what you want with the dynamic
type, remember what it looks like to the CLR and see if that explains the problem. It
may not suggest a solution, but at least you’ll get better at predicting what’ll work

ahead of time.
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 That’s all the detail I’ll give about how C# 4 treats dynamic, but there’s another
aspect of the dynamic typing picture that we really need to look at to get a well-
rounded view of the topic: reacting dynamically. It’s one thing to be able to call code
dynamically, but it’s another to be able to respond dynamically to those calls.

 Of course, if you’re just calling into third-party code dynamically—or even using
techniques such as multiple dispatch, shown earlier—you don’t need to worry about
this. I understand if you feel you’ve already had your fill of dynamic typing, at least for
the moment; we’ve already covered an awful lot of ground. You can safely skip the
next section and come back to it another time—nothing in the rest of the book relies
on it. On the other hand, it’s kind of fun. 

14.5 Implementing dynamic behavior
The C# language doesn’t offer any specific help in implementing dynamic behavior,
but the framework does. A type has to implement IDynamicMetaObjectProvider in
order to react dynamically, but there are two built-in implementations that can take a
lot of the work away in many cases. We’ll look at both of these, as well as a very simple
implementation of IDynamicMetaObjectProvider, just to show you what’s involved.
These three approaches are really different, and we’ll start with the simplest of them:
ExpandoObject.

14.5.1 Using ExpandoObject

System.Dynamic.ExpandoObject looks like a funny beast at first glance. Its single pub-
lic constructor has no parameters. It has no public methods, unless you count the
explicit implementation of various interfaces—crucially, IDynamicMetaObject-

Provider and IDictionary<string, object>. (The other interfaces it implements
are all due to IDictionary<,> extending other interfaces.) Oh, and it’s sealed, so it’s
not a matter of deriving from it to implement useful behavior. No, ExpandoObject is
only useful if you refer to it via dynamic or one of the interfaces it implements. 

SETTING AND RETRIEVING INDIVIDUAL PROPERTIES

The dictionary interface gives a hint as to its purpose—it’s basically a way of storing
objects via names. But those names can also be used as properties via dynamic typing.
The following listing shows this working both ways.

dynamic expando = new ExpandoObject();
IDictionary<string, object> dictionary = expando;
expando.First = "value set dynamically";
Console.WriteLine(dictionary["First"]);

dictionary["Second"] = "value set with dictionary";
Console.WriteLine(expando.Second);

Listing 14.25 Storing and retrieving values with ExpandoObject
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Listing 14.25 just uses strings as the values for convenience—you can use any object, as
you’d expect with an IDictionary<string, object>. If you specify a delegate as the
value, you can then call the delegate as if it were a method on the expando, as follows.

dynamic expando = new ExpandoObject();
expando.AddOne = (Func<int, int>) (x => x + 1);
Console.Write(expando.AddOne(10));

Although this looks like a method access, you can also think of it as a property access
that returns a delegate, and then an invocation of the delegate. If you created a stati-
cally typed class with an AddOne property of type Func<int, int>, you could use
exactly the same syntax. The C# generated to call AddOne does in fact use an “invoke
member” operation rather than trying to access it as a property and then invoke it, but
ExpandoObject knows what to do. You can also access the property to retrieve the del-
egate if you want to.

 Let’s move on to a slightly larger example, although we’re still not going to do any-
thing particularly tricky. 

CREATING A DOM TREE

We’ll create a tree of expandos that mirrors an XML DOM tree. This is a pretty crude
implementation, designed for simplicity of demonstration rather than real-world use.
In particular, it assumes we don’t have any XML namespaces to worry about. 

 Each node in the tree has two name/value pairs that’ll always be present:
XElement, which stores the original LINQ to XML element used to create the node,
and ToXml, which stores a delegate that just returns the node as an XML string. You
could just call node.XElement.ToString(), but this way gives another example of how
delegates work with ExpandoObject. One point to mention is that we’ll use ToXml
instead of ToString, because setting the ToString property on an expando doesn’t
override the normal ToString method. This could lead to confusing bugs, so we’ll use
the different name instead.

 The interesting part isn’t the fixed names; it’s the ones that depend on the real
XML. We’ll ignore attributes completely, but any elements in the original XML that are
children of the original element are accessible via properties of the same name. For
instance, consider the following XML:

<root>
<branch>

<leaf />
</branch>

</root>

Assuming a dynamic variable called root representing the root element, you could
access the leaf node with two simple property accesses, which can occur in a single
statement:

Listing 14.26 Faking methods on an ExpandoObject with delegates
dynamic leaf = root.branch.leaf;
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If an element occurs more than once within a parent, the property refers to the first
element with that name. To make the other elements accessible, each element will
also be exposed via a property using the element name with a suffix of List, which
returns a List<dynamic> containing each of the elements with that name in docu-
ment order. In other words, the access could also be represented as root

.branchList[0].leaf, or perhaps root.branchList[0].leafList[0]. Note that the
indexer here is being applied to the list—you can’t define your own indexer behavior
for expandos.

 The implementation of all of this is remarkably simple, with a single recursive
method doing all the work, as shown in the following listing.

public static dynamic CreateDynamicXml(XElement element)
{

dynamic expando = new ExpandoObject();
expando.XElement = element;
expando.ToXml = (Func<string>)element.ToString;

IDictionary<string, object> dictionary = expando;
foreach (XElement subElement in element.Elements())
{

dynamic subNode = CreateDynamicXml(subElement);
string name = subElement.Name.LocalName;
string listName = name + "List";
if (dictionary.ContainsKey(name))
{

((List<dynamic>) dictionary[listName]).Add(subNode);
}
else
{

dictionary[name] = subNode;
dictionary[listName] = new List<dynamic> { subNode };

}
}
return expando;

}

Without the list handling, listing 14.27 would’ve been even simpler. You set the
XElement and ToXml properties dynamically (B and C), but you can’t do that for the
elements or their lists, because you don’t know the names at compile time.7 You use
the dictionary representation instead (E and F), which also allows you to check for
repeated elements easily. You can’t tell whether an expando contains a value for a par-
ticular key just by accessing it as a property; any attempt to access a property that
hasn’t already been defined results in an exception. The recursive handling of subele-
ments is as straightforward in dynamic code as it’d be in statically typed code; you just

Listing 14.27 Implementing a simplistic XML DOM conversion with ExpandoObject

7 There’s a certain irony here—the names you know statically can be set dynamically, but the names you know
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call the method recursively D with each subelement, using its result to populate the
appropriate properties.

 You’ll need some XML to use as an example, but it’s helpful to picture it graphi-
cally as well as in its raw format. We’ll use a simple structure representing books. Each
book has a single name represented as an attribute, and may have multiple authors,
each with their own element. Figure 14.4 shows the whole file as a tree; the following
text is the raw XML:

<books>
<book name="Mortal Engines">

<author name="Philip Reeve" />
</book>
<book name="The Talisman">

<author name="Stephen King" />
<author name="Peter Straub" />

</book>
<book name="Rose">

<author name="Holly Webb" />
<excerpt>

Rose was remembering the illustrations from
Morally Instructive Tales for the Nursery.

</excerpt>
</book>

</books>

books

author
name="..."

(Text node)

book 
name="..."

book 
name="..."

book 
name="..."

author
name="..."

author
name="..."

author
name="..."

excerpt
Figure 14.4 Tree 
structure of sample 
XML file
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The following listing shows a brief example of how the expando code can be used with
this XML document, including the ToXml and XElement properties. The books.xml file
contains the XML document shown in the figure.

XDocument doc = XDocument.Load("books.xml");
dynamic root = CreateDynamicXml(doc.Root);
Console.WriteLine(root.book.author.ToXml());
Console.WriteLine(root.bookList[2].excerpt.XElement.Value);

Listing 14.28 should hold no surprises, unless you’re unfamiliar with the XElement
.Value property, which simply returns the text within an element. The output of the
listing is as you’d expect:

<author name="Philip Reeve" />
Rose was remembering the illustrations from
Morally Instructive Tales for the Nursery.

This is all good, but there are a few issues with the DOM we’ve used:

 It doesn’t handle attributes at all.
 Two properties are required for each element name, due to the need to repre-

sent lists.
 It’d be nice to override ToString() instead of adding an extra property.
 The result is mutable—there’s nothing to stop code from adding its own prop-

erties afterward.
 Although the expando is mutable, it won’t reflect any changes to the underly-

ing XElement (which is also mutable).
 There are many opportunities for naming clashes, such as a node containing

elements Foo and FooList, or elements called XElement or ToXml.
 The entire tree is populated up front, which is a lot of work if you only need a

few nodes.

Fixing these issues requires more control than just being able to set properties. Enter
DynamicObject. 

14.5.2 Using DynamicObject

DynamicObject is a more powerful way of interacting with the DLR than using
ExpandoObject, but it’s a lot simpler than implementing IDynamicMetaObject-
Provider. Although it’s not actually an abstract class, you really need to derive from it
to do anything useful—and the only constructor is protected, so it might as well be
abstract for all practical purposes. 

 There are four kinds of methods that you might want to override:

 TryXXX() invocation methods, representing dynamic calls to the object
 GetDynamicMemberNames(), which can return a list of the available members

Listing 14.28 Using a dynamic DOM created from expandos
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 The normal Equals(), GetHashCode(), and ToString() methods, which can be
overridden as usual

 GetMetaObject(), which returns the meta-object used by the DLR

We’ll look at all but the last of these to improve the XML DOM representation, and
we’ll discuss meta-objects in the next section when we implement IDynamicMeta-
ObjectProvider from scratch. In addition, it can be useful to create new members in
a derived type, even if callers are likely to use instances as dynamic values. Before we
take any of these steps, we’ll need a class to hold all these members.

GETTING STARTED

As we’re deriving from DynamicObject instead of just calling methods on it, we need
to start with a class declaration. The following listing shows the basic skeleton that
we’ll flesh out.

public class DynamicXElement : DynamicObject
{

private readonly XElement element;

private DynamicXElement(XElement element)
{

this.element = element;
}

public static dynamic CreateInstance(XElement element)
{

return new DynamicXElement(element);
}

}

The DynamicXElement class just wraps an XElement B. This will be all the state you
have, which is a significant design decision in itself. In the ExpandoObject earlier, you
recursed into its structure and populated a whole mirrored tree. You really had to do
that, because you couldn’t intercept property accesses with custom code later on. Obvi-
ously this is more expensive than the DynamicXElement approach, where you’ll only
ever wrap the elements of the tree when you actually have to. Additionally, it means
that any changes to the XElement after you’ve created the expando are effectively lost;
if you add more subelements, for example, they won’t appear as properties because
they weren’t present when you took the snapshot. The lightweight wrapping approach
is always “live”—any changes you make in the tree will be visible through the wrapper.

 The disadvantage of this is that you no longer provide the same idea of identity that
you had before. With the expando, the expression root.book.author would evaluate
to the same reference if you used it twice. Using DynamicXElement, each time the
expression is evaluated it’ll create new instances to wrap the subelements. You could
implement some sort of smart caching to get around this, but it could end up getting
very complicated, very quickly.

Listing 14.29 Skeleton of DynamicXElement

XElement that this 
instance wraps

B

Private constructor 
preventing direct 
instantiationC

Public method 
to create 
instancesD
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 In listing 14.29 the constructor of DynamicXElement is private C, and there’s a
public static method to create instances D. The method has a return type of dynamic,
because that’s how you expect developers to use the class. A slight alternative would’ve
been to create a separate public static class with an extension method to XElement,
and to keep DynamicXElement itself internal. The class itself is an implementation
detail; there’s not much point in using it unless you’re working dynamically.

 With this skeleton in place, you can start adding features. We’ll start with really sim-
ple stuff: adding methods and indexers as if this were a normal class. 

DYNAMICOBJECT SUPPORT FOR SIMPLE MEMBERS

When we discussed expandos, there were two members we always added: the ToXml
method and the XElement property. This time you don’t need a new method to convert
the object to a string representation; you can override the normal ToString() method.
You can also provide the XElement property as if you were writing any other class. 

 One of the nice things about DynamicObject is that when some behavior doesn’t
need to be truly dynamic, you don’t have to implement it dynamically. Before the asso-
ciated meta-object uses any of the TryXXX methods, it checks whether the member
already exists as a straightforward CLR member. If it does, that member will be called.
This makes life significantly simpler.

 We’ll have two indexers in DynamicXElement as well, to provide access to attributes
and replace the element lists. The following listing shows the new code to be added to
the class.

public override string ToString()
{

return element.ToString();
}

public XElement XElement
{

get { return element; }
}

public XAttribute this[XName name]
{

get { return element.Attribute(name); }
}

public dynamic this[int index]
{

get
{

XElement parent = element.Parent;
if (parent == null)
{

if (index != 0)
{

throw new ArgumentOutOfRangeException();

Listing 14.30 Adding nondynamic members to DynamicXElement

Overrides ToString() 
as normalB

Returns 
wrapped 
elementC

Indexer 
retrieving 
an attributeD

Indexer 
retrieving a 
sibling elementE

Is this a root element?F
}
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return this;
}
XElement sibling = parent.Elements(element.Name)

.ElementAt(index);
return element == sibling ? this

: new DynamicXElement(sibling);
}

}

There’s a fair amount of code in listing 14.30, but most of it is straightforward. You
override ToString()B by proxying the call to the XElement, and if you wanted to
implement value equality, you could do something similar for Equals() and GetHash-
Code(). The property returning the underlying element C and the indexer for attri-
butes D are also simple, although it’s worth noting that you only need to use an XName
for the parameter to the attribute indexer; if you provide a string at execution time,
DynamicObject will take care of calling the implicit conversion to XName for you.

 The trickiest part of the code is understanding what the indexer with the int
parameter E is meant to be doing. It’s probably easiest to explain this in terms of
expected usage. The idea is to avoid having the extra list property by making an ele-
ment act as both a single element and a list of child elements of the same name. Fig-
ure 14.5 shows the previous sample XML with a few expressions to reach different
nodes within it.

Find 
appropriate 
sibling

G

books

author
name="..."

author
name="..."

(Text node)

root.book[2].excerpt.XElement.Value

root.book[1].author[1]

root.book.author["name"]

root.book[2]

book 
name="..."

book 
name="..."

book 
name="..."

author
name="..."

ro

author
name="..."

excerpt
Figure 14.5 Selecting data using DynamicXElement
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Once you understand what the indexer is meant to do, the implementation is fairly
simple, complicated only by the possibility that you could already be at the top of the
tree F. Otherwise you just have to ask the element for all its siblings, and then pick
the one you’ve been asked for G.

 So far we haven’t looked at anything dynamic except in terms of the return type of
CreateInstance()—none of these examples will work because you haven’t written
the code to fetch subelements. Let’s fix that now. 

OVERRIDING TRYXXX METHODS

In DynamicObject you respond to calls dynamically by overriding one of the TryXXX
methods. There are 12 of them, representing different types of operations, as shown
in table 14.1. 

Each of these methods has a Boolean return type to indicate whether the binding was
successful. Each takes an appropriate binder as the first parameter, and if the opera-
tion logically has arguments (for instance, the arguments to a method, or the indexes
for an indexer), these are represented as an object[]. Finally, if the operation might
have a return value (which includes everything except the set and delete operations),
there’s an out parameter of type object to capture that value. 

 The exact type of the binder depends on the operation; there’s a different binder
type for each of the operations. For example, the full signature of TryInvokeMember is

public virtual bool TryInvokeMember(InvokeMemberBinder binder,

Table 14.1 Virtual TryXXX methods in DynamicObject

Name Type of call represented (where x is the dynamic object)

TryBinaryOperation Binary operation, such as x + y

TryConvert Conversions, such as (Target) x

TryCreateInstance Object creation expressions; no equivalent in C#

TryDeleteIndex Indexer removal operation; no equivalent in C#

TryDeleteMember Property removal operation; no equivalent in C#

TryGetIndex Indexer getter, such as x[10]

TryGetMember Property getter, such as x.Property

TryInvoke Direct invocation treating x like a delegate, such as x(10)

TryInvokeMember Invocation of a member, such as x.Method()

TrySetIndex Indexer setter, such as x[10] = 20

TrySetMember Property setter, such as x.Property = 10

TryUnaryOperation Unary operation, such as !x or -x
object[] args, out object result)
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You only need to override the methods representing operations you support dynami-
cally. In this case, you have dynamic read-only properties (for the elements) so you
need to override TryGetMember(), as shown in the following listing. 

public override bool TryGetMember(GetMemberBinder binder,
out object result)

{
XElement subElement = element.Element(binder.Name);
if (subElement != null)
{

result = new DynamicXElement(subElement);
return true;

}
return base.TryGetMember(binder, out result);

}

The implementation in listing 14.31 is simple. The binder contains the name of the
requested property, so you look for the appropriate subelement in the tree B. If there
is one, you create a new DynamicXElement with it, assign that to the output parameter
result, and return true to indicate that the call was bound successfully C. If there
was no subelement with the right name, you just call the base implementation of Try-
GetMember()D. The base implementation of each of the TryXXX methods just returns
false and sets the output parameter to null, if there is one. You could easily have
done this explicitly, but you’d have had two separate statements: one to set the output
parameter and one to return false. If you prefer the slightly longer code, there’s no
reason not to write it—the base implementations are just slightly convenient in terms
of doing everything required to indicate that the binding failed.

 I’ve sidestepped one bit of complexity: the binder has another property (Ignore-
Case) that indicates whether the property should be bound in a case-insensitive way.
For example, Visual Basic is case-insensitive, so its binder implementation would
return true for this property, whereas C#’s would return false. In this situation, it’s
slightly awkward. Not only would it be more work for TryGetMember to find the ele-
ment in a case-insensitive manner (“more work” is always unpleasant, but it’s not a
good reason not to implement it), but there’s the more philosophical problem of
what happens when you then use the indexer (by number) to select siblings. Should
the object remember whether it’s case-sensitive, and select siblings in the same way
later on? You could easily get into situations where the behavior is both hard to pre-
dict and hard to explain in documentation. This sort of impedance mismatch is likely
to happen in other similar situations too. If you aim for perfection, you’re likely to tie
yourself up in knots. Instead, find a pragmatic solution that you’re confident you can
implement and maintain, and then document the restrictions.

 With all this in place, you can test DynamicXElement, as shown in the following
listing.

Listing 14.31 Implementing a dynamic property with TryGetMember()

Find first matching 
subelementB

If found,
ld a new
dynamic
element C
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D
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XDocument doc = XDocument.Load("books.xml");
dynamic root = DynamicXElement.CreateInstance(doc.Root);
Console.WriteLine(root.book[2]["name"]);
Console.WriteLine(root.book[1].author[1]);
Console.WriteLine(root.book);

You could add more complexity to the class, of course. You could add a Parent prop-
erty to go back up the tree, or you might want to change the code to use methods to
access subelements and make property access represent attributes. The principle
would be exactly the same: where you know the name in advance, implement it as a
normal class member. If you need it to be dynamic, override the appropriate
DynamicObject method.

 There’s one more piece of polish to apply to DynamicXElement before we leave it.
It’s time to advertise what you’ve got to offer. 

OVERRIDING GETDYNAMICMEMBERNAMES

Some languages, such as Python, allow you to ask an object what names it knows
about. For example, you can use the dir function in Python to output a list. This
information is useful in a REPL environment, and it can also be handy when you’re
debugging in an IDE. The DLR makes this information available through the Get-
DynamicMemberNames() method of both DynamicObject and DynamicMetaObject
(you’ll meet the latter in a minute). All you have to do is override this method to pro-
vide a sequence of the dynamic member names, and your object’s properties are more
discoverable. The following listing shows the implementation for DynamicXElement.

public override IEnumerable<string> GetDynamicMemberNames()
{

return element.Elements()
.Select(x => x.Name.LocalName)
.Distinct()
.OrderBy(x => x);

}

As you can see, all you need is a simple LINQ query. That won’t always be the case, but
I suspect many dynamic implementations will be able to use LINQ in this way. 

 You need to make sure that you don’t return the same value more than once if
there’s more than one element with any particular name, and the results are sorted for
consistency. In the Visual Studio 2010 debugger, you can expand the Dynamic View of
a dynamic object and see the property names and values, as shown in figure 14.6.

 You can drill down through the dynamic object, showing the Dynamic View at each
level. For figure 14.6 I’ve drilled down from the document, to the first book, to the
author. The Dynamic View of the author shows that there’s no further information in
the hierarchy.

Listing 14.32 Testing DynamicXElement

Listing 14.33 Implementing GetDynamicMemberNames in DynamicXElement
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We’ve now finished the DynamicXElement class, at least as far as we’re going to take it
in this book. I believe that DynamicObject hits a sweet spot between control and sim-
plicity: it’s fairly easy to get it right, and it has far fewer restrictions than Expando-
Object. But if you really need total control over binding, you’ll need to implement
IDynamicMetaObjectProvider directly. 

14.5.3 Implementing IDynamicMetaObjectProvider

I won’t go into a lot of detail here, but I really want to show at least one example of
low-level dynamic behavior. The tough bit of implementing IDynamicMetaObject-
Provider isn’t the interface itself—it’s creating the DynamicMetaObject to return
from the interface’s sole method. DynamicMetaObject is a bit like DynamicObject in
that it contains a lot of methods, and you override individual ones to affect the behav-
ior; where you’ve previously overridden DynamicObject.TryGetMember, you’d over-
ride DynamicMetaObject.BindGetMember. But within the overridden methods, instead
of taking the required action directly, the idea is to build up an expression tree describ-
ing the required action and the circumstances in which that action should be taken.
That extra level of indirection is why it’s a meta-object.

 I’ll leap straight into an example, and then leap out with only a brief explanation.
I really want to get across the difference in level of interaction here—it’s a bit like tin-
kering with the guts of the JIT compiler. Most C# developers won’t need to know the
details, and if you do need to do this, it probably means you’re trying to write a library
that responds dynamically but has to perform well too. Alternatively, it may mean that
you’re trying to build your own dynamic language. If that’s the case, then good luck—
and please find a more comprehensive resource than this meager example.

 The example isn’t meant to be clever; it’s a Rumpelstiltskin type. We’ll create an
instance of Rumpelstiltskin with a given name (stored in a perfectly ordinary string
variable) and call methods on the object until we call a method with the right name.

Figure 14.6 Visual Studio 2010 displaying dynamic properties of a DynamicXElement
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The object will write out appropriate responses based on our guesses.8 Just to make
this concrete, the following listing shows the code you’ll eventually run.

dynamic x = new Rumpelstiltskin("Hermione");
x.Harry();
x.Ron();
x.Hermione();

The object won’t be called Rumpelstiltskin—that would be too obvious. Instead, you’ll
use some other magicians, even though none of them is particularly famous for
alchemy. The aim is for the first two method calls to result in denials, and the third to
admit defeat. You’ll also make your method calls return a Boolean value to indicate
whether the guess was successful, but for brevity we won’t use the result here.

 Let’s look at the Rumpelstiltskin type first. Don’t forget that this isn’t the meta-
object—that’ll come later. The next listing shows the complete code.

public sealed class Rumpelstiltskin : IDynamicMetaObjectProvider
{

private readonly string name;
public Rumpelstiltskin(string name)
{

this.name = name;
}

public DynamicMetaObject GetMetaObject(Expression expression)
{

return new MetaRumpelstiltskin(expression, this);
}

private object RespondToWrongGuess(string guess)
{

Console.WriteLine("No, I'm not {0}! (I'm {1}.)",
guess, name);

return false;
}

private object RespondToRightGuess()
{

Console.WriteLine("Curses! Foiled again!");
return true;

}
}

There are three aspects to this class. There’s construction B, which is perfectly ordi-
nary. There’s the implementation of IDynamicMetaObjectProvider’s sole method C,
and then there are two methods you’ll use to perform the real work D. 

8 If you’re not familiar with the fairy tale of Rumpelstiltskin, look at its Wikipedia article (http://en.wikipe-

Listing 14.34 The final aim: calling methods dynamically until you hit the right name

Listing 14.35 The Rumpelstiltskin type, without its meta-object code

Constructs a new instanceB

Exposes 
dynamic 
behaviorC

Responds 
to guessesD
dia.org/wiki/Rumpelstiltskin). The example will make more sense afterward!

http://en.wikipedia.org/wiki/Rumpelstiltskin
http://en.wikipedia.org/wiki/Rumpelstiltskin
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 The meta-object constructed at C needs to know which instance it’s responding to
and which expression tree refers to the instance within the calling code. You’re given
the expression tree as a parameter, and you know your own instance via the this ref-
erence, so you just pass those on in the constructor.

WHY DO THE METHODS RETURN OBJECT? You may be wondering why the meth-
ods are declared to return object rather than bool. My original implementa-
tion actually had void methods, but unfortunately dynamic method
invocations are expected to return something, and the binder always expects
object, in my experience. (There’s a ReturnType property you can check.)
That makes a call to a void method throw an exception at execution time,
and the same is true for a bool method; you need to perform the boxing your-
self to make the types match up properly. You could build the boxing into the
expression tree, but that’s more painful than changing the return type of the
method. These are the kinds of subtleties you’ll need to deal with if you ever
implement IDynamicMetaObjectProvider in real life.

Strictly speaking, you don’t need the two response methods. When you build up the
behavior to react to the incoming method calls, you could express that logic directly in
an expression tree. But it’d be relatively painful to do so, compared with just return-
ing an expression tree that calls the right method. More to the point, though, it
wouldn’t be too hard in this case; in other situations it could be much worse. You’ll
effectively create a bridge between the static and dynamic worlds, responding to
dynamic method calls by redirecting them to static ones with appropriate arguments.
This leads to simpler code in the meta-object. 

 Speaking of which, let’s finally look at the code for MetaRumpelstiltskin—it’s in
the following listing, and it’s a private nested class inside Rumpelstiltskin.

private class MetaRumpelstiltskin : DynamicMetaObject
{

private static readonly MethodInfo RightGuessMethod =
typeof(Rumpelstiltskin).GetMethod("RespondToRightGuess",
BindingFlags.Instance | BindingFlags.NonPublic);

private static readonly MethodInfo WrongGuessMethod =
typeof(Rumpelstiltskin).GetMethod("RespondToWrongGuess",
BindingFlags.Instance | BindingFlags.NonPublic);

internal MetaRumpelstiltskin
(Expression expression, Rumpelstiltskin creator)
: base(expression, BindingRestrictions.Empty, creator)

{}

public override DynamicMetaObject BindInvokeMember
(InvokeMemberBinder binder, DynamicMetaObject[] args)

{
Rumpelstiltskin targetObject = (Rumpelstiltskin)base.Value;

Listing 14.36 The real dynamic guts of Rumpelstiltskin—its meta-object
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typeof(Rumpelstiltskin));

Expression targetBehavior;
if (binder.Name == targetObject.name)
{

targetBehavior = Expression.Call(self, RightGuessMethod);
}
else
{

targetBehavior = Expression.Call(self, WrongGuessMethod,
Expression.Constant(binder.Name));

}

var restrictions = BindingRestrictions.GetInstanceRestriction
(self, targetObject);

return new DynamicMetaObject(targetBehavior, restrictions);
}

}

As I type this, I can almost see your eyes glazing over. Listing 14.36 is dense code, and
it looks like an awful lot of work to get a simple job done. Just remember: you’re
unlikely to ever need to do this, so just relax and let the general flavor of the code sink
in while the details wash over you.

 The first half of the code is genuinely easy. You stash the MethodInfo for the two
response methods in static variables B (they don’t change for different instances)
and declare a constructor that does nothing but pass its parameters up to the base
class C. All of the real work is done in BindInvokeMember D, which has to work out
two things—how the object should react to the method call, and the circumstances in
which that decision is valid.

 You want to react by calling either RespondToRightGuess or RespondToWrongGuess
based on whether the name of the method call is the same as the name of the object.
The meta-object knows what the real instance is, because you passed it in to the con-
structor. You access it again using the Value property and remember it using the
targetObject variable E. You also need the expression tree that was originally used
to create the meta-object, so that you can bind the appropriate method call entirely
within expression trees. The Expression.Convert method is the expression-tree
equivalent of the cast in the previous line.

 Once you know the real object, you can check its name against the method call
that you’re binding, which is available via the InvokeMemberBinder.Name property.
You build a call to the appropriate method using Expression.Call, passing in the
name of the method as an argument if the guess was wrong F. Again, I’d like to stress
that at this point you’re not actually calling the method—you’re describing the
method call.

 The restrictions in this case are simple: this call will always be bound in the same
way if it’s calling the same argument, but it’d be bound differently if it were called on
a different object, because it could have a different name. GetInstanceRestriction

Determines 
appropriate behavior

F

esponds with
behavior and

restrictions

G

returns an appropriate restriction; if you wanted to always behave the same way
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regardless of which instance the method was called on, you might use GetType-
Restriction instead, to indicate that the call would be handled the same way for any
instance of Rumpelstiltskin. The full source code includes an alternative implemen-
tation that does exactly this, by always passing in the actual method name, putting the
condition testing inside the normal method.

 Finally, you create a new DynamicMetaObject representing the results of the bind-
ing G. It’s fairly confusing for the result to be of the same type as the object that’s
working out the binding, but that’s how the DLR works.

 At this point, you’re done—cross your fingers, run the code, and see if it works…
Then debug it a few times to work out exactly what’s wrong, if you’re anything like
me. As I’ve said, this isn’t something that most developers will need to take on—it’s a
bit like LINQ, in that far more people will use LINQ than implement their own
IQueryable-based LINQ provider. It’s useful to get a peek at how it all works instead
of treating it as magic, but most of the time you can just sit back and enjoy the hard
work of the DLR team. 

14.6 Summary
It feels like we’ve come a long way from mainstream, statically typed C#. We’ve looked
at some situations where dynamic typing can be useful, at how C# 4 makes it possible
(both in terms of the code you write and how it works under the surface), and at how
to respond dynamically to calls. Along the way, you’ve seen a bit of COM, a bit of
Python, some reflection, and you’ve learned a little about the Dynamic Language
Runtime.

 This has not been a complete guide to how the DLR works, or even how C# oper-
ates with it. The truth is, this is a deep topic with many dark corners. Many of the
problems are obscure enough that you won’t bump into them—and most developers
won’t even use the simple scenarios often. I’m sure whole books will be written about
the DLR, but I hope I’ve given enough detail here to let 99 percent of C# developers
get on with their jobs without needing any more information. If you want to know
more, the documentation on the DLR website is a good starting point (see http://
mng.bz/0M6A).

 If you never use the dynamic type, you can pretty much ignore dynamic typing
entirely. I recommend that you do exactly that for the majority of your code—in par-
ticular, I wouldn’t use it as a crutch to avoid creating appropriate interfaces, base
classes, and so on. Where you do need dynamic typing, I’d use it as sparingly as possi-
ble. Don’t take the attitude, “I’m using dynamic in this method, so I might as well
make everything dynamic.”

 I don’t want to sound too negative. If you find yourself in a situation where
dynamic typing is helpful, I’m sure you’ll be thankful that it’s present in C# 4. Even if
you never need it for production code, I’d encourage you to give it a try for the fun of
it—I’ve found it fascinating to delve into. You may also find the DLR useful without

really using dynamic typing; most of this chapter’s Python example didn’t use any

http://mng.bz/0M6A
http://mng.bz/0M6A


features of dynamic typing, but it used the DLR to execute the Python script contain-
ing the configuration data.

 Between this chapter and the previous one, that covers all the new features in C# 4.
Next up, C# 5, which has an even narrower focus than C# 4 did with dynamic typing.
It’s really all about asynchrony…



Part 5

C# 5: Asynchrony
made simple

It’s simple to describe C# 5: it has exactly one big feature (asynchronous
functions) and two tiny ones.

 Chapter 15  is all about asynchrony. The aim of the asynchronous functions
feature (often just called async/await for short) is to make asynchronous pro-
gramming easy…or at least easier than it was before. It doesn’t try to remove the
inherent complexity of asynchrony; you still need to consider the consequences of
operations completing in an unexpected order, or the user pressing another
button before the first operation has completed, but it removes a lot of the inci-
dental complexity. This allows you to see the wood for the trees, and build
robust, readable solutions to those inherent complexities.

 In the past, asynchronous code has often turned into spaghetti, with the logi-
cal execution path jumping from method to method as one asynchronous call
completes and starts another one. With asynchronous functions, you can write
code that looks synchronous, with familiar control structures such as loops and
try/catch/finally blocks, but with an asynchronous execution flow triggered
by a new contextual keyword (await). The difference in readability is simply
staggering, in my experience. We’ll go into a lot of depth on this topic, not just
in terms of how the language behaves, but how it’s implemented by the Micro-
soft C# compiler.

 That just leaves the two features covered in chapter 16: a slight change to the
irritating foreach behavior you saw in chapter 5, and some new attributes that

work with the optional parameters feature from C# 4 to allow the line number,



member name, and source file of a piece of code to be automatically provided by the
compiler. I’ll then wrap up this edition of the book in my customary way with a few
closing thoughts.

 You may be forgiven for thinking that this doesn’t sound like a lot, particularly as
I’ve been deliberately dismissive of the features covered in chapter 16. Don’t be
fooled; asynchronous functions are a really big deal, particularly if you’re writing any
Windows Store applications using WinRT. The API exposed by WinRT is built around
asynchrony, in order to combat unresponsive user interfaces. Without asynchronous
functions, it would be a huge pain to use. With the features of C# 5, you still need to
think, but the code can be as clear as I can imagine asynchronous code ever becom-
ing. So, rather than more description of how wonderful it is, let’s get on and meet the
feature…



Asynchrony with
async/await
Asynchrony has been a thorn in the side of developers for years. It’s been known to
be useful as a way of avoiding tying up a thread while waiting for some arbitrary task
to complete, but it’s also been a pain in the neck to implement correctly.

 Even within the .NET Framework (which is still relatively young in the grand
scheme of things), we’ve had three different models to try to make things simpler:

 The BeginFoo / EndFoo approach from .NET 1.x, using IAsyncResult and
AsyncCallback to propagate results 

 The event-based asynchronous pattern from .NET 2.0, as implemented by
BackgroundWorker and WebClient

 The Task Parallel Library (TPL) introduced in .NET 4 and expanded in .NET 4.5 

This chapter covers
 The fundamental aims of asynchrony 

 Writing async methods and delegates 

 Compiler transformations for async 

 The task-based asynchronous pattern 

 Asynchrony in WinRT 
463
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Despite its generally excellent design, writing robust and readable asynchronous code
with the TPL was hard. Although the support for parallelism was great, there are some
aspects of general asynchrony that are much better fixed in a language instead of
purely in libraries.

ASYNC/AWAIT WILL ROCK YOUR WORLD The introductory list of topics may
make this chapter sound rather dull. It’s an accurate list, but it fails to convey
the excitement I feel about this feature. I’ve been playing with async/await
for about two years now, and it still makes me feel like a giddy schoolboy. I
firmly believe it will do for asynchrony what LINQ did for data handling when
C# 3 came out—except that dealing with asynchrony was a far harder prob-
lem. To achieve the proper effect, please read this chapter in an overexcited
mental voice. Hopefully I’ll infect you with my enthusiasm for the feature
along the way.

The main feature of C# 5 builds on the TPL so that you can write synchronous-looking
code that uses asynchrony where appropriate. Gone is the spaghetti of callbacks, event
subscriptions, and fragmented error handling; instead, asynchronous code expresses
its intentions clearly, and in a form that builds on the structures developers are already
familiar with. A new language construct allows you to “await” an asynchronous opera-
tion. This “awaiting” looks very much like a normal blocking call, in that the rest of
your code won’t continue until the operation has completed, but it manages to do this
without blocking the currently executing thread. Don’t worry if that statement sounds
completely contradictory—all will become clear over the course of the chapter.

 The .NET Framework has embraced asynchrony wholeheartedly in version 4.5,
exposing asynchronous versions of a great many operations, following a newly docu-
mented task-based asynchronous pattern to give a consistent experience across multiple
APIs. Additionally, the new Windows Runtime platform1 used to create Windows Store
applications in Windows 8 enforces asynchrony for all long-running (or potentially
long-running) operations. In short, the future is asynchronous, and you’d be foolish
not to take advantage of the new language features when trying to manage the addi-
tional complexity. Even if you’re not using .NET 4.5, Microsoft has created a NuGet
package (Microsoft.Bcl.Async) that allows you to use the new features when target-
ing .NET 4, Silverlight 4 or 5, or Windows Phone 7.5 or 8. 

 Just to be clear, C# hasn’t become omniscient, guessing where you might want to
perform operations concurrently or asynchronously. The compiler is smart, but it
doesn’t attempt to remove the inherent complexity of asynchronous execution. You still
need to think carefully, but the beauty of C# 5 is that all the tedious and confusing
boilerplate code that used to be required has gone. Without the distraction of all the
fluff required to make your code asynchronous to start with, you can concentrate on
the hard bits.

1 This is commonly known as WinRT; it’s not to be confused with Windows RT, which is the version of

Windows 8 that runs on ARM processors.



465Introducing asynchronous functions

 A word of warning: this topic is reasonably advanced. It has the unfortunate prop-
erties of being incredibly important (realistically, even entry-level developers will need
to have a passing understanding of it in a few years) but also quite tricky to get your
head around to start with. Just as in the rest of this book, I won’t shy away from the
complexity—we’ll look at what’s going on in a fair amount of detail.

 It’s just possible that I may break your brain a little, hopefully putting it back
together again later on. If it all starts sounding a little crazy, don’t worry—it’s not just
you; bafflement is an entirely natural reaction. The good news is that when you’re
using C# 5, it all makes sense on the surface. It’s only when you try to think of exactly
what’s going on behind the scenes that things get tough. Of course, we’ll do exactly
that later on—as well as look at how to use the feature effectively. 

 Let’s make a start.

15.1 Introducing asynchronous functions 
So far I’ve claimed that C# 5 makes async easier, but I’ve only given a tiny description
of the features involved. Let’s fix that, and then look at an example.

 C# 5 introduces the concept of an asynchronous function. This is always either a
method or an anonymous function2 that’s declared with the async modifier, and it
can include await expressions. These await expressions are the points where things
get interesting from a language perspective: if the value that the expression is awaiting
isn’t available yet, the asynchronous function will return immediately, and it will then
continue where it left off (in an appropriate thread) when the value becomes avail-
able. The natural flow of “don’t execute the next statement until this one has com-
pleted” is still maintained, but without blocking.

 I’ll break that woolly description down into more concrete terms and behavior later
on, but you really need to see an example of it before it’s likely to make any sense. 

15.1.1 First encounters of the asynchronous kind

Let’s start with something very simple, but that demonstrates asynchrony in a practical
way. We often curse network latency for causing delays in our real applications, but
latency does make it easy to show why asynchrony is so important. Take a look at the
following listing.

class AsyncForm : Form
{

Label label;
Button button;

public AsyncForm()
{

label = new Label { Location = new Point(10, 20),
Text = "Length" };

Listing 15.1 Displaying a page length asynchronously
2 Just as a reminder, an anonymous function is either a lambda expression or an anonymous method.
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button = new Button { Location = new Point(10, 50),
Text = "Click" };

button.Click += DisplayWebSiteLength;
AutoSize = true;
Controls.Add(label);
Controls.Add(button);

}

async void DisplayWebSiteLength(object sender, EventArgs e)
{

label.Text = "Fetching...";
using (HttpClient client = new HttpClient())
{
 string text =
  await client.GetStringAsync("http://csharpindepth.com");
  label.Text = text.Length.ToString();
}

}
}
...
Application.Run(new AsyncForm());

The first part of listing 15.1 simply creates the UI and hooks up an event handler for
the button in a straightforward way B. It’s the DisplayWebSiteLength method that’s
of interest here. When you click on the button, the text of the book’s home page is
fetched C, and the label is updated to display the HTML length in characters D. The
HttpClient is also disposed appropriately, whether the operation succeeds or fails—
something that would be all too easy to forget if you were writing similar asynchronous
code in C# 4.

DISPOSING OF TASKS I’m careful to dispose of the HttpClient when I’m fin-
ished using it, but I’m not disposing of the task returned by GetStringAsync,
even though Task implements IDisposable. Fortunately, you really don’t
need to dispose of tasks in general. The background of this is somewhat com-
plicated, but Stephen Toub explains it in a blog post dedicated to the topic:
http://mng.bz/E6L3.

I could have written a smaller example program as a console app, but hopefully list-
ing 15.1 makes a more convincing demo. In particular, if you remove the async and
await contextual keywords, change HttpClient to WebClient, and change GetStrin-
gAsync to DownloadString, the code will still compile and work…but the UI will
freeze while it fetches the contents of the page.3 If you run the async version (ideally
over a slow network connection), you’ll see that the UI is responsive—you can still
move the window around while the web page is fetching.

3 HttpClient is in some senses the “new and improved” WebClient—it’s the preferred HTTP API for
.NET 4.5 onwards, and it only contains asynchronous operations. If you’re writing a Windows Store app, you

Wires up 
event handlerB

Starts
fetching

the page

C

Updates the UID
don’t even have the option of using WebClient.

http://mng.bz/E6L3
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 Most developers are familiar with the two golden rules of threading in Windows
Forms development:

 Don’t perform any time-consuming action on the UI thread.
 Don’t access any UI controls other than on the UI thread.

These are easier to state than to obey. As an exercise, you might want to try a few dif-
ferent ways of creating code similar to listing 15.1without using the new features of
C# 5. For this extremely simple example, it’s not actually too bad to use the event-
based WebClient.DownloadStringAsync method, but as soon as more complex flow
control (error handling, waiting for multiple pages to complete, and so on) comes
into the equation, the “legacy” code quickly becomes hard to maintain, whereas the
C# 5 code can be modified in a natural way.

 At this point, the DisplayWebSiteLength method feels somewhat magical: you
know it does what you need it to, but you have no idea how. Let’s take it apart just a lit-
tle bit, saving the really gory details for later.

15.1.2 Breaking down the first example

We’ll start by expanding the method very slightly—splitting the call to Http-
Client.GetStringAsync from the await expression to highlight the types involved:

async void DisplayWebSiteLength(object sender, EventArgs e)
{

label.Text = "Fetching...";
using (HttpClient client = new HttpClient())
{

Task<string> task =
client.GetStringAsync("http://csharpindepth.com");

string text = await task;
label.Text = text.Length.ToString();

}
}

Notice how the type of task is Task<string>, but the type of the await task expres-
sion is just string. In this sense, an await expression performs an “unwrapping” oper-
ation—at least when the value being awaited is a Task<TResult>. (You can await other
types too, as you’ll see, but Task<TResult> is a good starting point.) That’s one aspect
of await that doesn’t seem directly related to asynchrony but makes life easier.

 The main purpose of await is to avoid blocking while you wait for time-consuming
operations to complete. You may be wondering how this all works in the concrete
terms of threading. You’re setting label.Text at both the start and end of the
method, so it’s reasonable to assume that both of those statements are executed on
the UI thread…and yet you’re clearly not blocking the UI thread while you wait for the
web page to download.

 The trick is that the method actually returns as soon as you hit the await expres-
sion. Up until that point, it executes synchronously on the UI thread, just as any

other event handler would. If you put a breakpoint on the first line and hit it in the
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debugger, you’ll see that the stack trace shows that the button is busy raising its Click
event, including the Button.OnClick method. When you reach the await, the code
checks whether the result is already available, and if it’s not (which will almost cer-
tainly be the case) it schedules a continuation to be executed when the web operation
has completed. In this example, the continuation executes the rest of the method,
effectively jumping to the end of the await expression, back in the UI thread, just as
you want in order to manipulate the UI.

CONTINUATIONS A continuation is effectively a callback to be executed when
an asynchronous operation (or indeed any Task) has completed. In an async
method, the continuation maintains the control state of the method; just as a
closure maintains its environment in terms of variables, a continuation
remembers where it had got to, so it can continue from there when it’s exe-
cuted. The Task class has a method specifically for attaching continuations:
Task.ContinueWith.

If you then put a breakpoint in the code after the await expression, you’ll see that the
stack trace no longer has the Button.OnClick method in it (assuming that the await
expression needed to schedule the continuation). That method finished executing
long ago. The call stack will now effectively be the bare Windows Forms event loop,
with a few layers of async infrastructure on top. The call stack will be very similar to
what you’d see if you called Control.Invoke from a background thread in order to
update the UI appropriately, but it’s all been done for you. At first it can be unnerving
to notice the call stack change dramatically under your feet, but it’s absolutely neces-
sary for asynchrony to be effective.

 In case you’re wondering, all of this is handled by the compiler creating a compli-
cated state machine. That’s an implementation detail, and it’s instructive to examine
it to get a better grasp of what’s going on, but first we need a more concrete descrip-
tion of what we’re trying to achieve and what the language actually specifies. 

15.2 Thinking about asynchrony
If you ask a developer to describe asynchronous execution, chances are they’ll start
talking about multithreading. Although that’s an important part of typical uses of asyn-
chrony, it’s not really required for asynchronous execution. To fully appreciate how
the async feature of C# 5 works, it’s best to strip away any thoughts of threading and go
back to basics.

15.2.1 Fundamentals of asynchronous execution

Asynchrony strikes at the very heart of the execution model that C# developers are
familiar with. Consider simple code like this:

Console.WriteLine("First");
Console.WriteLine("Second");
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You expect the first call to complete, and then the second call to start. Execution flows
from one statement to the next, in order. But an asynchronous execution model
doesn’t work that way. Instead, it’s all about continuations. When you start doing some-
thing, you tell that operation what you want to happen when that operation has com-
pleted. You may have heard (or used) the term callback for the same idea, but that has
a broader meaning than the one we’re after here. In the context of asynchrony, I’m
using the term to refer to callbacks that preserve the control state of the program—
not arbitrary callbacks for other purposes, such as GUI event handlers.

 Continuations are naturally represented as delegates in .NET, and they’re typically
actions that receive the results of the asynchronous operation. That’s why, to use the
asynchronous methods in WebClient prior to C# 5, you would wire up various events
to say what code should be executed in the case of success, failure, and so on. The
trouble is, creating all those delegates for a complicated sequence of steps ends up
being very complicated, even with the benefit of lambda expressions. It’s even worse
when you try to make sure that your error handling is correct. (On a good day, I can
be reasonably confident that the success paths of handwritten asynchronous code are
correct. I’m typically less certain that it reacts the right way on failure.)

 Essentially, all that await in C# does is ask the compiler to build a continuation for
you. For an idea that can be expressed so simply, however, the consequences for read-
ability and developer sanity are remarkable. 

 My earlier description of asynchrony was an idealized one. The reality in the task-
based asynchronous pattern is slightly different. Instead of the continuation being
passed to the asynchronous operation, the asynchronous operation starts and returns
a token you can use to provide the continuation later. It represents the ongoing oper-
ation, which may have completed before it’s returned to the calling code, or may still
be in progress. That token is then used whenever you want to express this idea: “I
can’t proceed any further until this operation has completed.” Typically the token is
in the form of a Task or Task<TResult>, but it doesn’t have to be.

 The execution flow in an asynchronous method in C# 5 typically follows these
lines:

1  Do some work. 
2  Start an asynchronous operation, and remember the token it returns. 
3  Possibly do some more work. (Often you can’t make any further progress until

the asynchronous operation has completed, in which case this step is empty.) 
4  Wait for the asynchronous operation to complete (via the token). 
5  Do some more work. 
6  Finish. 

If you didn’t care about exactly what the “wait” part meant, you could do all of this in
C# 4. If you’re happy to block until the asynchronous operation completes, the token
will normally provide you some way of doing so. For a Task, you could just call Wait().

At that point though, you’re taking up a valuable resource (a thread) and not doing
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any useful work. It’s a little like phoning for a delivery pizza, and then standing at the
front door until it arrives. What you really want to do is get on with something else,
ignoring the pizza until it arrives. That’s where await comes in.

 When you “wait” for an asynchronous operation, you’re really saying, “I’ve gone as
far as I can go for now. Keep going when the operation has completed.” But if you’re
not going to block the thread, what can you do? Very simply, you can return right then
and there. You’ll continue asynchronously yourself. And if you want your caller to
know when your asynchronous method has completed, you’ll pass a token back to
them, which they can block on if they want, or (more likely) use with another continu-
ation. Often you’ll end up with a whole stack of asynchronous methods calling each
other—it’s almost as if you go into an “async mode” for a section of code. There’s
nothing in the language that states that it has to be done that way, but the fact that the
same code that consumes asynchronous operations also behaves as an asynchronous
operation certainly encourages it.

With the theory out of the way, let’s take a closer look at the concrete details of asyn-
chronous methods. Asynchronous anonymous functions fit into the same mental
model, but it’s much easier to talk about asynchronous methods. 

Synchronization contexts
Earlier I mentioned that one of the golden rules of UI code is that you mustn’t update
the user interface unless you’re on the right thread. In the “check the web page
length” example (listing 15.1) you need to ensure that the code after the await
expression executes on the UI thread. Asynchronous functions get back to the right
thread using SynchronizationContext—a class that’s existed since .NET 2.0 and
is used by other components such as BackgroundWorker. A Synchronization-
Context generalizes the idea of executing a delegate “on an appropriate thread”; its
Post (asynchronous) and Send (synchronous) messages are similar to Control
.BeginInvoke and Control.Invoke in Windows Forms.

Different execution environments use different contexts; for example, one context
may let any thread from the thread pool execute the action it’s given. There’s more
contextual information around than just the synchronization context, but if you start
wondering how asynchronous methods manage to execute exactly where you want
them to, bear this sidebar in mind.

For more information on SynchronizationContext, read Stephen Cleary’s MSDN
magazine article on the topic (http://mng.bz/5cDw). In particular, pay careful atten-
tion if you’re an ASP.NET developer: the ASP.NET context can easily trap unwary
developers into creating deadlocks within code that looks fine.

http://mng.bz/5cDw
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15.2.2 Modeling asynchronous methods

I find it very useful to think about asynchronous methods as shown in figure 15.1.
 Here you have three blocks of code (the methods) and two boundaries (the

method return types). As a very simple example, you might have code like this:

static async Task<int> GetPageLengthAsync(string url)
{

using (HttpClient client = new HttpClient())
{

Task<string> fetchTextTask = client.GetStringAsync(url);
int length = (await fetchTextTask).Length;
return length;

}
}

static void PrintPageLength()
{

Task<int> lengthTask =
     GetPageLengthAsync("http://csharpindepth.com");

Console.WriteLine(lengthTask.Result);
}

The five parts of figure 15.1 correspond to the preceding code like this:

 The calling method is PrintPageLength. 
 The async method is GetPageLengthAsync. 
 The asynchronous operation is HttpClient.GetStringAsync. 
 The boundary between the calling method and the async method is Task<int>. 
 The boundary between the async method and the asynchronous operation is

Task<string>. 

We’re mainly interested in the async method itself, but I’ve included the other meth-
ods so you can see how they all interact. In particular, you definitely need to know
about the valid types at the method boundaries.

 I’ll refer to these blocks and boundaries repeatedly in the rest of this chapter, so
keep figure 15.1 in mind as you read on. 

Async methodCalling method
Asynchronous

operation

Task, Task<T>
or void

Any "awaitable pattern"
implementation Figure 15.1 Async model
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15.3 Syntax and semantics 
We’re finally ready to look at how to write async methods and how they’ll behave.
There’s a lot to cover here, as “what you can do” and “what happens when you do it”
blend together to a large extent. 

 There are only two new pieces of syntax: async is a modifier used when declaring an
asynchronous method, and await expressions consume asynchronous operations. But
following how information is transferred between different parts of your program gets
complicated really quickly, especially when you have to consider what happens when
things go wrong. I’ve tried to separate out the different aspects, but your code will be
dealing with everything at once. If you find yourself asking, “But what about…?” while
reading this section, keep reading—chances are your question will be dealt with soon.

 Let’s start with the method declaration itself—that’s the easiest bit…

15.3.1 Declaring an async method

The syntax for an async method declaration is exactly the same as for any other
method, except it has to include the async contextual keyword. This can appear any-
where before the return type. All of these are valid:

public static async Task<int> FooAsync() { ... }
public async static Task<int> FooAsync() { ... }
async public Task<int> FooAsync() { ... }
public async virtual Task<int> FooAsync() { ... }

My personal preference is to keep the async modifier just before the return type, but
there’s no reason you shouldn’t come up with your own convention. As ever, discuss it
with your team and try to be consistent within one code base.

 Now, the async contextual keyword has a dirty secret: the language designers didn’t
really need to include it at all. Just as the compiler goes into a sort of “iterator block
mode” when you try to use yield return or yield break in a method with a suitable
return type, the compiler could have just spotted the use of await inside a method and
used that to go into “async mode.” But I’m personally pleased that async is required,
as it makes it much easier to read code written using asynchronous methods. It sets
your expectations immediately, so you’re actively looking for await expressions—and
you can actively look for any blocking calls that should be turned into an async call and
an await expression.

 The fact that the async modifier has no representation4 in the generated code is
important, though. As far as the calling method is concerned, it’s just a normal
method, possibly returning a task. You can change an existing method (with an appro-
priate signature) to use async, or you could go in the other direction—it’s a compati-
ble change in terms of both source and binary. 

4 Well, sort of. In practice there is an attribute applied, as you’ll see later, but it’s not part of the signature of
the method, and it can be ignored as far as humans are concerned. It’s really used to help tools identify where

the “real” code has gone.
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15.3.2 Return types from async methods

Communication between the caller and the async method is effectively in terms of the
value returned. Asynchronous functions are limited to the following return types:

 void 
 Task 
 Task<TResult> (for some type TResult, which could itself be a type parameter) 

The .NET 4 Task and Task<TResult> types both represent an operation that may not
have completed yet; Task<TResult> derives from Task. The difference between the
two is essentially that Task<TResult> represents an operation that returns a value of
type T, whereas Task need not produce a result at all. It’s still useful to return a Task,
though, as it allows the caller to attach their own continuations to the returned task,
detect when the task has failed or completed, and so on. In some senses, you can think
of Task as being like a Task<void> type, if such a thing were valid. 

 The ability to return void from an async method is designed for compatibility with
event handlers. For example, you might have a UI button click handler like this:

private async void LoadStockPrice(object sender, EventArgs e)
{

string ticker = tickerInput.Text;
decimal price = await stockPriceService.FetchPriceAsync(ticker);
priceDisplay.Text = price.ToString("c");

}

This is an asynchronous method, but the calling code (the button OnClick method or
whatever piece of framework code is raising the event) doesn’t really care. It doesn’t
need to know when you’ve really finished handling the event—when you’ve loaded the
stock price and updated the UI. It just calls the event handler it’s been given. The fact
that the code generated by the compiler will end up with a state machine attaching a
continuation to whatever is returned by FetchPriceAsync is effectively an implemen-
tation detail.

 You can subscribe to an event with the preceding method as if it were any other
event handler:

loadStockPriceButton.Click += LoadStockPrice;

After all (and yes, I’m laboring this deliberately), it’s just a normal method as far as call-
ing code is concerned. It has a void return type and parameters of type object and
EventArgs, which makes it suitable as the action for an EventHandler delegate
instance.

 Event subscription is pretty much the only time I’d recommend returning void
from an asynchronous method. Any other time you don’t need to return a specific
value, it’s best to declare the method to return Task. That way, the caller is able to
await the operation completing, detect failures, and so on.

 One additional restriction around the signature of an async method: none of the

parameters can use the out or ref modifiers. This makes sense as those modifiers are
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for communicating information back to the calling code; because some of the async
method may not have run by the time control returns to the caller, the value of the by-
reference parameter might not have been set. Indeed, it could get stranger than that:
imagine passing a local variable as an argument for a ref parameter—the async
method could end up trying to set that variable after the calling method had already
completed. It doesn’t make a lot of sense to try to do this, so the compiler prohibits it.

 Once you’ve declared the method, you can start writing the body and awaiting
other asynchronous operations. 

15.3.3 The awaitable pattern

An async method can basically contain almost anything a regular C# method can con-
tain, plus await expressions. You can use all kinds of control flow—loops, exceptions,
using statements, anything. The code will behave just as normal. The only interesting
bits are what await expressions do and how return values are propagated. 5

An await expression is very simple—it’s just await before another expression. But
there are limits on what you can await, of course. Just as a reminder, we’re talking
about the second boundary from figure 15.1—how the async method interacts with
another asynchronous operation. Informally, you can only await something that
describes an asynchronous operation. In other words, something that provides you
with the means of

 Telling whether or not it’s already finished 
 Attaching a continuation if it hasn’t finished 
 Getting the result, which may be a return value but at least is an indication of

success or failure 

5 Lambda expressions and anonymous methods that aren’t declared with async—so any anonymous function

Restrictions on await
Just like yield return, there are restrictions around where you can use await
expressions. You can’t use them in catch or finally blocks, non-async anonymous
functions,5 the body of a lock statement, or unsafe code. 

These restrictions are for your safety—particularly the restriction around locks. If you
ever find yourself wanting to hold a lock while an asynchronous operation completes,
you should redesign your code. Don’t work around the compiler restriction by calling
Monitor.TryEnter and Monitor.Exit manually with a try/finally block—
change your code so you don’t need the lock during the operation. If this is really,
really awkward in your situation, consider using SemaphoreSlim instead, with its
WaitAsync method.
declaration that would have been valid C# 4. You’ll see async anonymous functions in section 15.4.
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You might expect this to be expressed via interfaces, but it’s (mostly) not. There’s only
one interface involved, and it just covers the “attaching a continuation” part. Even
that is very simple—and you’ll almost never need to deal with it directly. It’s in the
System.Runtime.CompilerServices namespace and looks like this:

// Real interface in System.Runtime.CompilerServices
public interface INotifyCompletion
{

void OnCompleted(Action continuation);
}

The bulk of the work is expressed via patterns, a bit like foreach and LINQ queries. To
make the shape of the pattern clearer, I’ll briefly present it as if there were interfaces
involved, but there really aren’t. I’ll cover reality in a moment. Let’s have a look at the
imaginary interfaces:

// Warning: these don't really exist
// Imaginary interfaces for asynchronous operations returning values
public interface IAwaitable<T>
{

IAwaiter<T> GetAwaiter();
}

public interface IAwaiter<T> : INotifyCompletion
{

bool IsCompleted { get; }
T GetResult();

// Inherited from INotifyCompletion
// void OnCompleted(Action continuation);

}

// Imaginary interfaces for "void" asynchronous operations
public interface IAwaitable
{

IAwaiter GetAwaiter();
}

public interface IAwaiter : INotifyCompletion
{

bool IsCompleted { get; }
void GetResult();

// Inherited from INotifyCompletion
// void OnCompleted(Action continuation);

}

These probably remind you of IEnumerable<T> and IEnumerator<T>. In order to iter-
ate over a collection in a foreach loop, the compiler generates code that calls Get-
Enumerator() first, and then uses MoveNext() and Current. Likewise, in async
methods, whenever you write an await expression, the compiler will generate code
that first calls GetAwaiter(), and then uses the members of the awaiter to await the
result appropriately.
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 The C# compiler does require the awaiter to implement INotifyCompletion. This
is primarily for efficiency reasons; some prerelease versions of the compiler didn’t
have the interface at all.

 All the other members are checked by the compiler just by signature. Importantly,
the GetAwaiter() method itself doesn’t have to be a normal instance method. It can
be an extension method on whatever you want to use an await expression with. The
IsCompleted and GetResult members have to be real members of whatever type is
returned from GetAwaiter(), but they don’t have to be public—they just need to be
accessible to the code containing the await expression.

 The preceding text describes what’s required for an expression to be used as the
target of the await keyword, but the whole expression itself also has an interesting
type: if the GetResult() returns void, then the overall type of the await expression is
nothing—the await expression has to be a standalone statement. Otherwise, the over-
all type is the same as the return type of GetResult().

 For example, Task<TResult>.GetAwaiter() returns a TaskAwaiter<TResult>,
which has a GetResult() method returning TResult. (No surprise there, hopefully.)
The rule about the type of the await expression is what allows us to write this:

using (var client = new HttpClient())
{

Task<string> task = client.GetStringAsync(...);
string result = await task;

}

Compare that with the static Task.Yield() method, which returns a YieldAwaitable.
That, in turn, has a GetAwaiter() method returning a YieldAwaitable.Yield-
Awaiter, which has a GetResult method returning void. That means you can only use
it like this:

await Task.Yield();

Or if you really wanted to split things up—odd though it would be:

YieldAwaitable yielder = Task.Yield();
await yielder;

The await expression here doesn’t return a value of any kind, so you can’t assign it to
a variable, or pass it as a method argument, or do anything else you might with expres-
sions classified as values.

 One important point to note is that because both Task and Task<TResult> imple-
ment the awaitable pattern, you can call one async method from another, and so on:

public async Task<int> FooAsync()
{

string bar = await BarAsync();
// Obviously this would usually be more complicated...
return bar.Length;

}
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public async Task<string> BarAsync()
{

// Some async code that could call more async methods...
}

This ability to compose asynchronous operations is one of the aspects of the async fea-
ture that really makes it shine. Once you’re in an async mode, it’s very easy to stay
there, writing code that flows very naturally. 

 But I’m getting ahead of myself. I’ve described what the compiler needs in order
for you to await something, but not what it actually does. 

15.3.4 The flow of await expressions

One of the most curious aspects of the async feature in C# 5 is how await can be
simultaneously intuitive and extremely confusing. If you don’t think too hard about it,
it’s really simple. If you just accept that it will do what you want, without really defining
exactly what you want to start with, you’ll probably be fine…at least until something
goes wrong.

 Once you start trying to work out exactly what must be going on to achieve the
desired effect, things become a bit trickier. Given that you’re reading a book with “In
Depth” in the title, I’ll assume you want to know about these details. In the long run, I
promise it will allow you to use await with more confidence, and use it more effectively.

 Even so, I urge you to try to develop the ability to read asynchronous code on two
different levels, depending on your context: when you don’t need to think about the
individual steps listed here, let them breeze past you. Read the code almost as if it
were synchronous, just taking note of where the code waits asynchronously for some
operation or other to complete. Then, when you get stuck on some thorny problem
where the code isn’t behaving as you expect it to, you can switch into the more foren-
sic mode, working out which threads will be involved where, and what the call stack
will be at any point in time. (I’m not saying this will be simple, but understanding the
machinery will at least make it more feasible.)

EXPANDING COMPLEX EXPRESSIONS

Let’s start by simplifying things a bit. Sometimes await is used with the result of a
method call or occasionally a property, like this:6

string pageText = await new HttpClient().GetStringAsync(url);

This makes it look as if await can modify the meaning of the whole expression. The
truth is that await just operates on a single value. The preceding line is equivalent to
this:

Task<string> task = new HttpClient().GetStringAsync(url);
string pageText = await task;

6 This example is slightly contrived, as you would normally use a using statement for the HttpClient, but I

hope you’ll forgive me for not disposing resources just this once.
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Similarly, the result of an await expression can be used as a method argument or
within some other expression. Again, it helps if you can separate out the await-
specific part from everything else. 

 Imagine you have two methods, GetHourlyRateAsync() and GetHoursWorked-
Async(), returning a Task<decimal> and a Task<int>, respectively. You might have
this complicated statement:

AddPayment(await employee.GetHourlyRateAsync() *
await timeSheet.GetHoursWorkedAsync(employee.Id));

The normal rules of C# expression evaluation apply, and the left operand of the *
operator has to be completely evaluated before the right operand is evaluated, so the
preceding statement can be expanded as follows:

Task<decimal> hourlyRateTask = employee.GetHourlyRateAsync();
decimal hourlyRate = await hourlyRateTask;
Task<int> hoursWorkedTask = timeSheet.GetHoursWorkedAsync(employee.Id);
int hoursWorked = await hoursWorkedTask;
AddPayment(hourlyRate * hoursWorked);

This expansion reveals a potential inefficiency in the original statement—you could
introduce parallelism into this code by starting both tasks (calling both Get...Async
methods) before awaiting either of them. 

 For the moment, the more useful result is that you only need to examine the behav-
ior of await in the context of a value. Even if that value originally came from a method
call, you can ignore that method call for the purpose of talking about asynchrony. 

VISIBLE BEHAVIOR

When execution reaches the await expression, there are two possibilities—either the
asynchronous operation you’re awaiting has already completed, or it hasn’t.

 If the operation has already completed, the execution flow is really simple—it
keeps going. If the operation failed and it’s captured an exception to represent that
failure, the exception is thrown. Otherwise, any result from the operation is
obtained—for example, extracting the string from a Task<string>—and you move
on to the next part of the program. All of this is done without any thread context
switching or attaching continuations to anything.

 You might be wondering why an operation that completes immediately would be
represented with asynchrony in the first place. It’s a little bit like calling the Count()
method on a sequence in LINQ: in the general case you may need to iterate over every
item in the sequence, but in some situations (such as when the sequence turns out to
be a List<T>) there’s an easy optimization available. It’s useful to have a single
abstraction that covers both scenarios, but without paying an execution-time price. As
a real-world example in the asynchronous API case, consider reading asynchronously
from a stream associated with a file on disk. All the data you want to read may already
have been fetched from disk into memory, perhaps as part of previous ReadAsync call
request, so it makes sense to use it immediately, without going through all the other

async machinery.
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 The more interesting scenario is
where the asynchronous operation is still
ongoing. In this case, the method waits
asynchronously for the operation to
complete, and then continues in an
appropriate context. This “asynchro-
nous waiting” really means the method
isn’t executing at all. A continuation is
attached to the asynchronous operation,
and the method returns. It’s up to the
asynchronous operation to make sure
that the method resumes on the right
thread—typically either a thread-pool
thread (where it doesn’t matter which
thread is used) or the UI thread where
that makes sense.

 From the developer’s point of view,
this feels like the method is just paused
while the asynchronous operation com-
pletes. The compiler makes sure that all
the local variables used within the
method have the same values as they did before the continuation—just as it does with
iterator blocks.

 I’ve attempted to capture this flow in figure 15.2, although classic flowcharts
weren’t really designed with asynchronous behavior in mind.

 You could think of the dotted line as being another line coming into the top of the
flowchart as an alternative. Note that I’m assuming the target of the await expression
has a result. If you’re just awaiting a plain Task or something similar, “fetch result”
really means “check the operation completed successfully.”

 It’s worth stopping to think briefly about what it means to “return” from an asyn-
chronous method. Again, there are two possibilities:

 This is the first await expression you’ve actually had to wait for, so you still have
the original caller somewhere in your stack. (Remember that until you really
need to wait, the method executes synchronously.)

 You’ve already awaited something else, so you’re in a continuation that has
been called by something. Your call stack will almost certainly have changed very
significantly from the one you’d have seen when you first entered the method.

In the first case, you’ll usually end up returning a Task or Task<T> to the caller. Obvi-
ously you don’t have the actual result of the method yet—even if there’s no value to
return as such, you don’t know whether the method will complete without exceptions.
Because of this, the task you’ll be returning has to be an uncompleted one.

Operation
completed
already?

Fetch result

Execution continues...

Attach continuation

Return

No

Yes

Resume via
continuation

(On encountering an await expression)

Evaluate expression

Figure 15.2 User-visible model of await handling
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 In the latter case, the “something” calling you back depends on your context. For
example, in a Windows Forms UI, if you started your async method on the UI thread
and didn’t deliberately switch away from it, the whole method would execute on the
UI thread. For the first part of the method, you’ll be in some event handler or
other—whatever kicked off the async method. Later on, however, you’d be called
back by the message pump pretty directly, as if you were using Control.Begin-
Invoke(continuation). Here, the calling code—whether it’s the Windows Forms
message pump, part of the thread pool machinery, or something else—doesn’t care
about your task.

 Note that until you hit the first truly asynchronous await expression, the method
executes entirely synchronously. Calling an asynchronous method is not like firing up a
new task in a separate thread, and it’s up to you to make sure that you always write
async methods so they return quickly. Admittedly, it depends on the context in which
you’re writing code, but you should
generally avoid performing long-
running work in an async method.
Separate it out into another method
that you can create a Task for.

THE USE OF AWAITABLE PATTERN MEMBERS

Now that you understand what you
need to achieve, it’s reasonably easy
to see how the members of the await-
able pattern are used. Figure 15.3 is
really just the same as figure 15.2,
but fleshed out to include the calls
to the pattern.

 When it’s written like this, you
might be wondering what all the
fuss is about—why is it worth having
language support at all? Attaching a
continuation is more complex than
you might imagine, though. In very
simple cases, when the control flow
is entirely linear (do some work,
await something, do some more
work, await something else), it’s
pretty easy to imagine what the
continuation might look like as a
lambda expression, even if it
wouldn’t be very pleasant. As soon
as the code contains loops or condi-

(On encountering an await expression)

Execution continues...

Remember awaiter
(we’ll need it later)

Return

False

True

Resume via
continuation

Fetch awaiter
awaitable.GetAwaiter()

Evaluate expression
(awaitable)

Attach continuation
awaiter.OnCompleted(...)

Rem
(we

F

True

Return value of
awaiter.IsCompleted

Fetch result
awaiter.GetResult()
tions, however, and you want to Figure 15.3 Await handling via the awaitable pattern
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keep the code within one method, life becomes very much more complicated. It’s
here that the benefits of C# 5 really kick in. Although you could argue that the com-
piler is just applying syntactic sugar, there’s an enormous difference in readability
between manually creating the continuations and getting the compiler to do so for
you.

 Unlike simple transformations, such as automatically implemented properties, the
code generated by the compiler is quite different from what you’d probably write by
hand, even when the async method itself is almost trivial. We’ll look at a little bit of
this transformation in a later section, but you can already see some of the “man
behind the curtain”—hopefully async methods are feeling a little less mysterious now.

 I’ve already described the limitations on async method return types, and you’ve
seen how an await expression unwraps asynchronous operation results via the Get-
Result() method, but I haven’t talked about the link between the two, or how you
can return values from async methods. 

15.3.5 Returning from an async method

You’ve already seen an example that returned data, but let’s look at it again, this time
focusing on the return aspect alone:

static async Task<int> GetPageLengthAsync(string url)
{

using (HttpClient client = new HttpClient())
{

Task<string> fetchTextTask = client.GetStringAsync(url);
int length = (await fetchTextTask).Length;
return length;

}
}

You can see that the type of length is int, but the return type of the method is
Task<int>. The generated code takes care of the wrapping for you, so that the caller
gets a Task<int>, which will eventually have the value returned from the method
when it completes. A method returning just Task is like a normal void method—it
doesn’t need a return statement at all, and any return statements it does have must be
simply return; rather than trying to specify a value. In either case, the task will also
propagate any exception thrown within the async method.

 Hopefully by now you should have a good intuition about why this wrapping is nec-
essary: you’re almost certainly returning to the caller before you hit the return state-
ment, and you’ve got to propagate the information to that caller somehow. A Task<T>
(often known as a future in computer science) is the promise of a value—or an excep-
tion—at a later time.

 Just as with normal execution flow, if the return statement occurs within the scope
of a try block that has an associated finally block (including when all of this hap-
pens due to a using statement), the expression used to compute the return value is
evaluated immediately, but it doesn’t become the result of the task until everything has
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been cleaned up. This means that if the finally block throws an exception, you don’t
get a task that both succeeds and fails—the whole thing will fail.

 To reiterate a point I made earlier, it’s the combination of automatic wrapping and
unwrapping that makes the async feature work so well with composition. You can
think of this as being a bit like LINQ: you write operations on each element of a
sequence in LINQ, and the wrapping and unwrapping means you can apply those
operations to sequences and get sequences back. In an async world, you rarely need to
explicitly handle a task—instead you await the task to consume it, and produce a
result task automatically as part of the mechanism of the async method. 

15.3.6 Exceptions

Of course, things don’t always work smoothly, and the idiomatic way of representing
failures in .NET is via exceptions. Like returning a value to the caller, exception han-
dling requires extra support from the language. When you want to throw an excep-
tion, the original caller of the async method may not be on the stack; and when you
await an asynchronous operation that’s failed, it may well not have executed on the
same thread, so you need a way of marshaling the failure across. If you think of failure
as just another kind of result, it makes sense that exceptions and return values are
handled similarly. 

 In this section we’ll look at how exceptions cross over both of the boundaries in
figure 15.1. Let’s start with the boundary between the async method and the asynchro-
nous operation it’s awaiting.

UNWRAPPING EXCEPTIONS WHEN AWAITING

Just as the GetResult() method of an awaiter is meant to fetch the return value if
there is one, it’s also responsible for propagating any exceptions from the asynchro-
nous operation back to the method. This isn’t quite as simple as it sounds, because in
an asynchronous world a single Task can represent multiple operations, leading to
multiple failures. Although other awaitable pattern implementations are available, it’s
worth considering Task specifically, as it’s the type you’re likely to be awaiting for the
vast majority of the time.

Task indicates exceptions in a number of ways:

 The Status of a task becomes Faulted when the asynchronous operation has
failed (and IsFaulted returns true). 

 The Exception property returns an AggregateException containing all the
(potentially multiple) exceptions that caused the task to fail, or null if the task
isn’t faulted. 

 The Wait() method will throw an AggregateException if the task ends up in a
faulted state. 

 The Result property of Task<T> (which also waits for completion) will likewise
throw an AggregateException. 
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Additionally, tasks support the idea of cancellation, via CancellationTokenSource
and CancellationToken. If a task is canceled, the Wait() method and Result proper-
ties will throw an AggregateException containing an OperationCanceledException
(in practice, a TaskCanceledException, which derives from OperationCanceled-
Exception), but the status becomes Canceled instead of Faulted.

 When you await a task, if it’s either faulted or canceled, an exception will be
thrown—but not the AggregateException. Instead, for convenience (in most cases),
the first exception within the AggregateException is thrown. In most cases, this is
really what you want. It’s in the spirit of the async feature to allow you to write asyn-
chronous code that looks very much like the synchronous code you’d otherwise write.
For example, consider something like this:

async Task<string> FetchFirstSuccessfulAsync(IEnumerable<string> urls)
{

// TODO: Validate that we've actually got some URLs...
foreach (string url in urls)
{

try
{

using (var client = new HttpClient())
{

return await client.GetStringAsync(url);
}

 }
 catch (WebException exception)
 {

// TODO: Logging, update statistics etc.
 }

}
throw new WebException("No URLs succeeded");

}

For the moment, ignore the fact that you’re losing all the original exceptions, and
that you’re fetching all the pages sequentially. The point I’m trying to make is that
catching WebException is what you’d expect here—you’re trying an asynchronous
operation with an HttpClient, and if something fails it’ll throw a WebException. You
want to catch and handle that…right? That certainly feels like what you’d want to do—
but, of course, GetStringAsync() can’t throw a WebException for an error such as the
server timing out because the method only starts the operation. All it can do is return
a task that is faulted containing a WebException. If you simply called Wait() on the
task, an AggregateException would be thrown, containing the WebException within
it. The task awaiter’s GetResult method just throws the WebException instead, and it’s
caught in the preceding code.

 Of course, this can lose information. If there are multiple exceptions in a faulted
task, GetResult can only throw one of them, and it arbitrarily uses the first. You might
want to rewrite the preceding code so that on failure, the caller can catch an
AggregateException and examine all the causes of the failure. Importantly, some
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framework methods such as Task.WhenAll() do exactly this—WhenAll() is a method
that will asynchronously wait for multiple tasks (specified in the method call) to com-
plete. If any of them fails, the result is a failure that will contain the exceptions from
all the faulted tasks. But if you just await the task returned by WhenAll(), you’ll only
see the first exception.

 Fortunately, it doesn’t take very much work to fix this. You can use your knowledge
of the awaitable pattern and write an extension method on Task<T> to create a special
awaitable that will throw the original AggregateException from a task. The full code is
a little unwieldy for the printed page, but the gist of it is shown in the following listing.

public static AggregatedExceptionAwaitable WithAggregatedExceptions(
this Task task)

{
return new AggregatedExceptionAwaitable(task);

}

// In AggregatedExceptionAwaitable
public AggregatedExceptionAwaiter GetAwaiter()
{

return new AggregatedExceptionAwaiter(task);
}

// In AggregatedExceptionAwaiter
public bool IsCompleted
{

get { return task.GetAwaiter().IsCompleted; }
}
public void OnCompleted(Action continuation)
{

task.GetAwaiter().OnCompleted(continuation);
}
public void GetResult()
{

task.Wait();
}

You’d probably want a similar approach for Task<T>, using return task.Result; in
GetResult() instead of calling Wait(). The important point is that you delegate to
the task’s normal awaiter for the bits you don’t want to handle yourself B, but side-
step the usual behavior of GetResult(), which is where the exception unwrapping
takes place. By the time GetResult is called, you know that the task is in a terminal
state, so the Wait() call C will complete immediately—this doesn’t violate the asyn-
chrony you’re trying to achieve.

 To use the code, you just need to call the extension method and await the result, as
shown next.

Listing 15.2 Rewrapping multiple exceptions from task failures

Delegates to 
task awaiterB

Throws AggregateException 
directly on failure

C
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private async static Task CatchMultipleExceptions()
{

Task task1 = Task.Run(() => { throw new Exception("Message 1");
});
Task task2 = Task.Run(() => { throw new Exception("Message 2");
});
try
{

await Task.WhenAll(task1, task2).WithAggregatedExceptions();
}
catch (AggregateException e)
{

Console.WriteLine("Caught {0} exceptions: {1}",
e.InnerExceptions.Count,
string.Join(", ",

e.InnerExceptions.Select(x => x.Message)));
}

}

WithAggregatedExceptions() returns your custom awaitable; GetAwaiter() from
that, in turn, supplies the custom awaiter, which supports the operations the C# com-
piler requires to await the result. Note that you could have coalesced the awaitable
and the awaiter—there’s nothing to say they have to be different types—but it feels a
little cleaner to separate them.

 Here’s the output of listing 15.3:

Caught 2 exceptions: Message 1, Message 2

It’s relatively rare that you’ll want to do this—sufficiently rare that Microsoft didn’t
include any support for it in the framework—but it’s worth knowing about this option.

 That’s all you need to know about exception handling for the second boundary, at
least for now. But what about the first boundary, between the async method and the
caller?

WRAPPING EXCEPTIONS WHEN THROWING

You may well be able to predict what’s coming here: async methods never throw excep-
tions directly when called. Instead, for async methods returning Task or Task<T>, any
exceptions thrown within the method (including those propagated up from other
operations, whether synchronous or asynchronous) are simply transferred to the task,
as you’ve already seen.  If the caller waits on the task directly, they’ll get an
AggregateException containing the exception, but if the caller uses await instead,
the exception will be unwrapped from the task. Async methods that return void will
report the exception to the original SynchronizationContext—how that handles it is
up to the context.7

Listing 15.3 Catching multiple exceptions as AggregateException
7 We’ll discuss contexts in more detail in section 15.6.4.
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 Unless you really care about the wrapping and unwrapping for a particular con-
text, you can just catch the exception the nested async method has thrown. The fol-
lowing listing demonstrates how familiar this feels:

static async Task MainAsync()
{

Task<string> task = ReadFileAsync("garbage file");
try
{

string text = await task;
Console.WriteLine("File contents: {0}", text);

}
catch (IOException e)
{

Console.WriteLine("Caught IOException: {0}", e.Message);
}

}

static async Task<string> ReadFileAsync(string filename)
{

using (var reader = File.OpenText(filename))
{

return await reader.ReadToEndAsync();
}

}

Here you’ll get an IOException in the File.OpenText call E (unless you create a file
called “garbage file”), but you’d see the same execution path if the task returned by
ReadToEndAsync failed. Within MainAsync, the call to ReadFileAsync B happens
before you enter the try block, but it’s only when you await the task C that the excep-
tion is seen by the caller and caught by the catch block D, just like with the Web-
Exception example earlier. Again, it behaves in a very familiar way—except perhaps
for the timing of the exception.

 Just like iterator blocks, this is a bit of a pain in terms of argument validation. Sup-
pose you want to do some work in an async method after validating that the parame-
ters don’t have null values. If you validate the parameters as you would in a normal
synchronous code, the caller won’t have any indication of the problem until the task is
awaited. The following listing gives an example of this.

static async Task MainAsync()
{
   Task<int> task = ComputeLengthAsync(null);

Console.WriteLine("Fetched the task");
int length = await task;
Console.WriteLine("Length: {0}", length);

}

Listing 15.4  Handling asynchronous exceptions in a familiar style

Listing 15.5 Broken argument validation in an async method

Starts the 
async readB

Waits for 
the contentsC

Handles IO failuresD

Opens the file 
synchronouslyE

Deliberately passes 
bad argument

Awaits the resultB
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static async Task<int> ComputeLengthAsync(string text)
{

if (text == null)
{

throw new ArgumentNullException("text");
}
await Task.Delay(500);
return text.Length;

}

Listing 15.5 outputs Fetched the task before it fails. The exception has actually been
thrown synchronously before that output is written, as there are no await expressions
before the validation C, but the calling code won’t see it until it awaits the returned
task B. Generally, for argument validation that can sensibly be done up front without
taking a long time (or incurring other asynchronous operations), it would be better if
the failure were reported immediately, before the system can get itself into further
trouble. As an example of this, HttpClient.GetStringAsync will throw an exception
immediately if you pass it a null reference. 

 There are two approaches to forcing the exception to be thrown “eagerly” in C# 5.
The first is to split the argument validation from the implementation, in the same way
you did for iterator blocks in listing 6.9. The following listing shows a fixed version of
ComputeLengthAsync.

static Task<int> ComputeLengthAsync(string text)
{

if (text == null)
{

throw new ArgumentNullException("text");
}
return ComputeLengthAsyncImpl(text);

}

static async Task<int> ComputeLengthAsyncImpl(string text)
{

await Task.Delay(500); // Simulate real asynchronous work
return text.Length;

}

In listing 15.6, ComputeLengthAsync itself isn’t an asynchronous method as far as the
language is concerned—it doesn’t have the async modifier. It executes using the nor-
mal execution flow, so if the argument validation at the start of the method throws an
exception, it really throws an exception. If that passes, however, the task returned is
the one created by the ComputeLengthAsyncImpl method, which is where the real
work occurs. In a more real-world scenario, ComputeLengthAsync would probably be a
public or internal method, and ComputeLengthAsyncImpl should be private, because
it assumes that the argument validation has already been performed.

 The other approach to eager validation is to use asynchronous anonymous functions—

Listing 15.6 Splitting argument validation from async implementation

Throws exception 
immediately

C

Simulates real 
asynchronous work
we’ll revisit this example when we look at those in section 15.4.
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 There’s one other kind of exception that’s handled differently within asynchro-
nous methods: cancellation. 

HANDLING CANCELLATION

The Task Parallel Library (TPL) introduced a uniform cancellation model into .NET 4
using two types: CancellationTokenSource and CancellationToken. The idea is that
you can create a CancellationTokenSource, and then ask it for a CancellationToken,
which is passed to an asynchronous operation. You can only perform the cancellation
on the source, but that is reflected to the token. (This means you can pass out the same
token to multiple operations and not worry about them interfering with each other.)
There are various ways of using the cancellation token, but the most idiomatic
approach is to call ThrowIfCancellationRequested, which will throw Operation-
CanceledException if the token has been canceled and do nothing otherwise. The
same exception is thrown by synchronous calls (such as Task.Wait) if they’re canceled.

 How this interacts with asynchronous methods is undocumented in the C# 5 speci-
fication. According to the specification, if an asynchronous method body throws any
exception, the task returned by the method will be in a faulted state. The exact mean-
ing of “faulted” is implementation-specific, but in reality if an asynchronous method
throws an OperationCanceledException (or a derived exception type, such as Task-
CanceledException), the returned task will end up with a status of Canceled. The fol-
lowing listing proves that it really is an exception that causes the task to be canceled.

static async Task ThrowCancellationException()
{

throw new OperationCanceledException();
}
...
Task task = ThrowCancellationException();
Console.WriteLine(task.Status);

This outputs Canceled rather than the Faulted you might expect from the specifica-
tion. If you Wait() on the task, or ask for its result (in the case of a Task<T>), the
exception is still thrown within an AggregateException, so it’s not like you need to
explicitly start checking for cancellation on every task you use.

OFF TO THE RACES? You might be wondering if there’s a race condition in list-
ing 15.7. After all, you’re calling an asynchronous method and then immedi-
ately expecting the status to be fixed. If you were actually starting a new
thread, that would be dangerous…but you’re not. Remember that before the
first await expression, an asynchronous method runs synchronously—it still
performs result and exception wrapping, but the fact that it’s in an asynchro-
nous method does not necessarily mean there are any more threads involved.
The ThrowCancellationException method doesn’t contain any await
expressions, so the whole method (all one line of it) runs synchronously; you

Listing 15.7 Creating a canceled task by throwing OperationCanceledException
know that you’ll have a result by the time it returns. Visual Studio actually
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warns you about an asynchronous method without any await expressions in
it, but in this case it’s exactly what you want.

Importantly, if you await an operation that’s canceled, the original Operation-
CanceledException is thrown. This means that unless you take any direct action, the
task returned from the asynchronous method will also be canceled—cancellation is
propagated in a natural fashion. 

 The following listing gives a slightly more realistic example of task cancellation.

static async Task DelayFor30Seconds(CancellationToken token)
{

Console.WriteLine("Waiting for 30 seconds...");
await Task.Delay(TimeSpan.FromSeconds(30), token);

}
...
var source = new CancellationTokenSource();
var task = DelayFor30Seconds(source.Token);
source.CancelAfter(TimeSpan.FromSeconds(1));
Console.WriteLine("Initial status: {0}", task.Status);
try
{

task.Wait();
}
catch (AggregateException e)
{

Console.WriteLine("Caught {0}", e.InnerExceptions[0]);
}
Console.WriteLine("Final status: {0}", task.Status);

Here you start an asynchronous operation C that simply calls into Task.Delay to sim-
ulate real work B, but provides a cancellation token. This time, you really do have
multiple threads involved: when it hits the await expression, control returns to the
calling method, at which point you ask the cancellation token to be canceled in 1 sec-
ond D. You then wait (synchronously) for the task to finish E, fully expecting it to
end with an exception. Finally, you show the status of the task F. 

 The output of 15.8 looks like this:

Waiting for 30 seconds...
Initial status: WaitingForActivation
Caught System.Threading.Tasks.TaskCanceledException: A task was canceled.
Final status: Canceled

You can think of this in terms of cancellation being transitive by default: if operation A
is waiting for operation B, and operation B is canceled, then you regard operation A
as being canceled too.

 Of course, you don’t have to leave it that way. You could have caught the Operation-
CanceledException in the DelayFor30Seconds method and either continued to do
something else, or returned immediately, or even thrown a different exception. Again,

Listing 15.8 Cancellation of an async method via a canceled delay

Starts an 
asynchronous delay

B

Calls the async methodC

Requests 
delayed token 
cancellationD

Waits for 
completion 
(synchronously)E

Displays the 
task status

F

the async feature isn’t removing control; it’s just giving you useful default behavior.
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CAREFUL WHERE YOU RUN THIS! Listing 15.8 works fine in a console applica-
tion, or when called from a thread-pool thread, but if you execute it on a Win-
dows Forms UI thread (or any other single-thread synchronization context),
it will deadlock. Can you see why? Think about which thread the DelayFor-
30Seconds method will try to return to when the delayed task completes, and
then think about which thread the task.Wait() call is running on. This is a
relatively simple example, but the same type of mistake has caused problems
for several developers when they first started out with asynchronous code.
Fundamentally, the problem is in using the Wait() method call, or the
Result property, both of which will block until the relevant task completes.
I’m not saying you shouldn’t use them, but you should think very carefully
any time you do use them. You should usually be using await to asynchro-
nously wait for the results of tasks instead. 

That pretty much covers the behavior of asynchronous methods. It’s likely that most
of your use of the async feature in C# 5 will be via asynchronous methods, but they do
have a close sibling… 

15.4  Asynchronous anonymous functions 
I won’t spend much time on asynchronous anonymous functions. As you’d probably
expect, they’re a combination of two features: anonymous functions (lambda expres-
sions and anonymous methods) and asynchronous functions (code that can include
await expressions). Basically, they allow you to create delegates8 that represent asyn-
chronous operations. Everything you’ve learned so far about asynchronous methods
applies to asynchronous anonymous functions too.

 You create an asynchronous anonymous function just like any other anonymous
method or lambda expression, just with the async modifier at the start. Here’s an
example:

Func<Task> lambda = async () => await Task.Delay(1000);
Func<Task<int>> anonMethod = async delegate()
{

Console.WriteLine("Started");
await Task.Delay(1000);
Console.WriteLine("Finished");
return 10;

};

The delegate you create has to have a signature with a return type of void, Task, or
Task<T>, just as with an asynchronous method. You can capture variables, as with
other anonymous functions, and add parameters. Also, the asynchronous operation
doesn’t start until the delegate is invoked, and multiple invocations create multiple
operations. Delegate invocation really does start the operation though; just as before,
it’s not awaiting that starts an operation, and you don’t have to use await with the
result of an asynchronous anonymous function at all.
8 In case you were wondering, you can’t use asynchronous anonymous functions to create expression trees.
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 The following listing shows a slightly fuller (although still pointless) example.

Func<int, Task<int>> function = async x =>
{

Console.WriteLine("Starting... x={0}", x);
await Task.Delay(x * 1000);
Console.WriteLine("Finished... x={0}", x);
return x * 2;

};

Task<int> first = function(5);
Task<int> second = function(3);
Console.WriteLine("First result: {0}", first.Result);
Console.WriteLine("Second result: {0}", second.Result);

I’ve deliberately chosen the values here so that the second operation completes
quicker than the first. But because you wait for the first to finish before printing the
results (using the Result property, which blocks until the task has completed—again,
be careful where you run this!), the output looks like this:

Starting... x=5
Starting... x=3
Finished... x=3
Finished... x=5
First result: 10
Second result: 6

Again, this is exactly the same as if you’d put the asynchronous code into an asynchro-
nous method.

 I find it hard to get terribly excited about asynchronous anonymous functions, but
they have their uses. Although you can’t include them in LINQ query expressions,
there are still cases where you might want to perform data transformations asynchro-
nously. You just need to think about the whole process in a slightly different way. 

 We’ll come back to that idea when we discuss composition, but first I want to show
you one area where they really are very useful indeed. I promised earlier that I’d show
another way of performing eager argument validation at the start of an asynchronous
method. You’ll remember that we wanted to check a parameter value for nullity
before launching into the main operation. The following listing is a single method
that achieves the same result as the split implementation in listing 15.6.

static Task<int> ComputeLengthAsync(string text)
{

if (text == null)
{

throw new ArgumentNullException("text");
}

Listing 15.9 Creating and calling an asynchronous function using a lambda expression

Listing 15.10 Argument validation using an async anonymous function

Validates 
entirely 
synchronously

B

Func<Task<int>> func = async () => Creates an async functionC
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{
await Task.Delay(500);
return text.Length;

};
return func();

}

You’ll note that this isn’t an asynchronous method. If it were, the exception would be
wrapped up in a task instead of being thrown immediately. You still want to return a
task though, so after the validation B, you just wrap the work up in an asynchronous
anonymous function C, call the delegate D, and return the result.

 While this is still a little bit ugly, it’s cleaner than having to split the method in two.
There’s a performance penalty to be aware of though: this extra wrapping doesn’t
come for free. In most cases that’s fine, but if you’re writing a library that may be used
in performance-critical work, you should check the cost in your actual scenario before
deciding which approach to use.

VB SUPERIORITY? In version 11, Visual Basic finally gained the iterator block
support that C# has had since version 2. The delay has allowed the team to
reflect on C#’s shortcomings though—the Visual Basic implementation allows
anonymous iterator functions, permitting the same kind of in-method split
between eager and deferred execution. The feature hasn’t (yet) been added
to C#…

You’ve now seen pretty much all there is in terms of the async feature in C# 5. For the
remainder of the chapter, we’ll dig into some implementation details and then look at
how to get the most out of the feature. All of this will assume that you’re reasonably
comfortable with everything that’s gone before—if you haven’t tried any of the sample
code yet (or ideally your own experimental code), now would be a great time to do so.
Even if you think you understand the theory, it’s well worth playing with async and
await to really get the feeling of what it’s like to program asynchrony in a somewhat-
synchronous style. 

15.5 Implementation details: compiler transformation 
I vividly remember the evening of October 28, 2010. Anders Hejlsberg was presenting
async/await at PDC, and shortly before his talk started, an avalanche of downloadable
material was made available—including a draft of the changes to the C# specification,
a CTP (Community Technology Preview) of the C# 5 compiler, and the slides Anders
was presenting. At one point I was watching the talk live and skimming through the
slides while the CTP installed. By the time Anders had finished, I was writing async
code and trying things out.

 In the next few weeks, I started taking bits apart—looking at exactly what code the
compiler was generating, trying to write my own simplistic implementation of the
library that came with the CTP, and generally poking at it from every angle. As new
versions came out, I worked out what had changed and became more and more

Simulates real asynchronous work

Calls the async functionD



493Implementation details: compiler transformation

comfortable with what was going on behind the scenes. The more I saw, the more I
appreciated how much boilerplate code the compiler is happy to write on our behalf.
It’s like looking at a beautiful flower under a microscope: the beauty is still there to
be admired, but there’s so much more to it than can be seen at first glance.

 Not everyone is like me, of course. If you just want to rely on the behavior I’ve
already described, and simply trust that the compiler will do the right thing, that’s
absolutely fine. Alternatively, you won’t miss out on anything if you skip this section for
now and come back to it at a later date—none of the rest of the chapter relies on it.
It’s unlikely that you’ll ever have to debug your code down to the level that we’ll look
at here…but I believe this section will give you more insight into how the whole fea-
ture hangs together. The awaitable pattern certainly makes a lot more sense once
you’ve looked at the generated code, and you’ll see some of the types that the frame-
work provides to help the compiler. Some of the scariest details are only present due
to optimization; the design and implementation are very carefully tuned to avoid
unnecessary heap allocations and context switches, for example.

 As a rough approximation, we’ll pretend the C# compiler performs a transforma-
tion from “C# code using async/await” to “C# code without using async/await.” In
reality, the internals of the compiler aren’t available to us, and it’s more than likely
that this transformation occurs at a lower level than C#. Certainly the generated IL
can’t always be expressed in non-async C#, as C# has tighter restrictions around flow
control than IL does. But it’s simpler for us to think of it as C#, in terms of how the jig-
saw of code fits together.

 The generated code is somewhat like an onion, with layers of complexity. We’ll
start from the very outside, working our way in toward the tricky bit—await expres-
sions and the dance of awaiters and continuations.

15.5.1 Overview of the generated code

Still with me? Let’s get started. I won’t go into all the depth I could here—that could
fill hundreds of pages—but I’ll give you enough background to understand the over-
all structure, and then you can either read the various blog posts I’ve written over the
past couple of years for more intricate detail, or simply write some asynchronous code
and decompile it. Also, I’ll only cover asynchronous methods—that will include all the
interesting machinery, and you won’t need to deal with the extra layer of indirection
that asynchronous anonymous functions present.

WARNING, BRAVE TRAVELER—HERE BE IMPLEMENTATION DETAILS! This section
documents some aspects of the implementation found in the Microsoft C# 5
compiler, released with .NET 4.5. A few details changed pretty substantially
between CTP versions and in the beta, and they may well change again in the
future. But I think it unlikely that the fundamental ideas will change much
though. If you understand enough of this section to be comfortable that
there’s no magic involved, just really clever compiler-generated code, you

should be able to take any future changes to the details in your stride.
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As I’ve mentioned a couple of times, the implementation (both in this approximation
and in the code generated by the real compiler) is basically in the form of a state
machine. The compiler will generate a private nested struct to represent the asynchro-
nous method, and it must also include a method with the same signature as the one
you’ve declared. I call this the skeleton method—there’s not much to it, but everything
else hangs off it. 

 The skeleton method needs to create the state machine, make it perform a single
step (where a step is whatever code executes before the first genuinely waiting await
expression), and then return a task to represent the state machine’s progress. (Don’t
forget that until you hit the first await expression that actually needs to wait, execu-
tion is synchronous.) After that,
the method’s job is done—the
state machine looks after every-
thing else, and continuations
attached to other asynchronous
operations simply tell the state
machine to perform another
step. The state machine signals
when it’s reached the end by giv-
ing the appropriate result to the
task that was returned earlier.
Figure 15.4 shows a flow diagram
of this, as best I can represent it.

 Of course the “execute
method body” step only starts
from the beginning of the
method the first time it’s called,
from the skeleton method. After
that, each time you get to that
block, it’s via a continuation, at
which point execution effectively
continues from where it left off.

 We now have two things to
look at: the skeleton method and
the state machine. For most of
the remainder of this section, I’ll
use a single sample asynchro-
nous method, shown in the fol-
lowing listing.

Call first step...

Create state machine

Skeleton method State machine

Execute method body
until await, end of
method or exception

Attach
continuation

Set task
result

YesNo

Return

Return task to caller

(First time
only)

Continuation from
asynchronous operation

YesNo

Exiting for
await?

Figure 15.4 Flowchart 
of generated code
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static async Task<int> SumCharactersAsync(IEnumerable<char> text)
{

int total = 0;
foreach (char ch in text)
{

int unicode = ch;
await Task.Delay(unicode);
total += unicode;

}
await Task.Yield();
return total;

}

Listing 15.11 doesn’t do anything useful, but we’re really just interested in the control
flow. It’s worth noting a few points before we start:

 The method has a parameter (text).
 It contains a loop that you effectively need to jump back into when the continu-

ation executes.
 It has two await expressions of different types: Task.Delay returns a Task, but

Task.Yield() returns a YieldAwaitable.
 It has obvious local variables (total, ch, and unicode) that you’ll need to keep

track of across calls.
 It has an implicit local variable created by calling text.GetEnumerator().
 It returns a value at the end of the method.

The original version of this code had text as a string parameter, but the C# compiler
knows about iterating over strings in an efficient way, using the Length property and
the indexer, which made the decompiled code more complicated.

 I won’t present the complete decompiled code, although it’s in the downloadable
source. In the next few sections we’ll look at a few of the most important parts. You
won’t see exactly this code if you decompile the code yourself; I’ve renamed variables
and types so they’re rather more legible, but it’s effectively the same code.

 Let’s start off with the simplest bit—the skeleton method. 

15.5.2 Structure of the skeleton method

Although the code in the skeleton method is simple, it offers some hints about the
state machine’s responsibilities. The skeleton method generated for listing 15.11
looks like this:

[DebuggerStepThrough]
[AsyncStateMachine(typeof(DemoStateMachine))]
static Task<int> SumCharactersAsync(IEnumerable<char> text)
{

var machine = new DemoStateMachine();
machine.text = text;

Listing 15.11 Simple async method to demonstrate compiler transformations
machine.builder = AsyncTaskMethodBuilder<int>.Create();
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machine.state = -1;
machine.builder.Start(ref machine);
return machine.builder.Task;

}

The AsyncStateMachineAttribute type is just one of the new attributes introduced
for async. It’s really for the benefit of tools—you’re unlikely to ever need to consume
it yourself, and you shouldn’t start decorating your own methods with it.

 You can see three of the fields of the state machine already:

 One for the parameter (text). Obviously there are as many fields here as there
are parameters. 

 One for an AsyncTaskMethodBuilder<int>. This struct is effectively responsi-
ble for tying the state machine and the skeleton method together. There’s a
nongeneric equivalent for methods returning just Task and an AsyncVoid-
MethodBuilder structure for methods returning void. 

 One for state, starting off with a value of -1. The initial value is always -1, and
we’ll take a look at what various possible values mean later. 

Given that the state machine is a struct, and AsyncTaskMethodBuilder<int> is a
struct, you haven’t knowingly performed any heap allocation yet. It’s entirely possible
for the various calls you’re making to have done so for you, of course, but it’s worth
noting that the code tries to avoid them as far as possible. The nature of asynchrony
means that if any await expressions need to really wait, you’ll need a lot of these val-
ues on the heap, but the code makes sure that they’re only boxed when they need to
be. All of this is an implementation detail, just like the heap and the stack are imple-
mentation details, but in order for async to be practical in as many situations as possi-
ble, the teams involved in Microsoft have worked closely to reduce allocations to the
bare minimum.

 The machine.builder.Start(ref machine) call is an interesting one. The use of
pass-by-reference here allows you to avoid creating a copy of the state machine (and
thus a copy of the builder)—this is for both performance and correctness. The com-
piler would really like to treat both the state machine and the builder as classes, so ref
is used liberally throughout the code. In order to use interfaces, various methods take
the builder (or awaiter) as a parameter using a generic type parameter that’s
constrained to implement an interface (such as IAsyncStateMachine for the state
machine). That allows the members of the interface to be called without any boxing
being required. The action of the method is simple to describe—it makes the state
machine take the first step, synchronously, returning only when the method has either
completed or reached a point where it needs to wait for an asynchronous operation.

 Once that first step has completed, the skeleton method asks the builder for the
task to return. The state machine uses the builder to set results or exceptions when it
finishes. 
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15.5.3 Structure of the state machine

The overall structure of the state machine is pretty straightforward. It always imple-
ments the IAsyncStateMachine interface (introduced in .NET 4.5) using explicit
interface implementation. The two methods declared by that interface (MoveNext and
SetStateMachine) are the only two methods it contains. It also has a bunch of fields—
some private, some public. 

 For example, this is the collapsed declaration of the state machine for listing 15.11:

[CompilerGenerated]
private struct DemoStateMachine : IAsyncStateMachine
{

public IEnumerable<char> text;

public IEnumerator<char> iterator;
public char ch;
public int total;
public int unicode;

private TaskAwaiter taskAwaiter;
private YieldAwaitable.YieldAwaiter yieldAwaiter;
public int state;
public AsyncTaskMethodBuilder<int> builder;
private object stack;

void IAsyncStateMachine.MoveNext() { ... }

[DebuggerHidden]
void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine machine)
{ ... }

}

In this example I’ve split the fields up into various sections. You’ve already seen that
the text field B representing the original parameter is set by the skeleton method,
along with the builder and state fields, which are common infrastructure shared by
all state machines.

 Each local variable also has its own field C, as you need to preserve the values
across invocations of the MoveNext() method. Sometimes there are local variables that
are only ever used between two particular await expressions, and don’t really need to
be preserved in fields, but in my experience the current implementation always hoists
them up to be fields anyway. Aside from anything else, this improves the debugging
experience, as you wouldn’t generally expect local variables to lose their values, even
if there’s nothing in the code that uses them any further.

 There’s a single field for each type of awaiter used in the asynchronous method if
they’re value types, and one field for all awaiters that are reference types (in terms of
their compile-time type). In this case, you’ve got two await expressions that use two
different types of awaiter structures, so you’ve got two fields D. If the second await
expression had also used a TaskAwaiter, or if TaskAwaiter and YieldAwaiter were
both classes, you’d just have a single field. Only one awaiter can ever be live at a time,
so it doesn’t matter that you can only store one value at a time. You have to propagate

Fields for 
parameters

B

Fields for local 
variables

C

Fields for 
awaitersD

Common 
infrastructure

E
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awaiters across await expressions so that once the operation has finished, you can get
the result.

 Out of the common infrastructure fields E, you’ve already seen state and
builder. Just as a reminder, state is used to keep track of where you’ve got to, so the
continuation can get to the right point in the code. builder is used for various things,
including creating a Task or Task<T> for the skeleton method to return—a task that
will then be populated with the right result when the asynchronous method finishes.
The stack field is a little more arcane—it’s used when an await expression occurs as
part of a statement that needs to keep track of some extra state that isn’t represented
by normal local variables. You’ll see an example of that in section 15.5.6—it’s not used
in the state machine generated for listing 15.11.

 The MoveNext() method is where all the compiler smarts really come into play, but
before I describe that, we’ll take a very quick look at SetStateMachine. It has the same
implementation in every state machine, and it looks like this:

void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine machine)
{

builder.SetStateMachine(machine);
}

In brief, this method is used to allow a boxed copy of the state machine to have a ref-
erence to itself, within the builder. I won’t go into the details of how all the boxing is
managed—all you need to understand is that the state machine is boxed where neces-
sary, and the various aspects of the async machinery ensure that after boxing, the sin-
gle boxed copy is used consistently. This is really important, as we’re talking about a
mutable value type (shudder!). If some changes were applied to one copy of the state
machine, and some changes were applied to another copy, the whole thing would fall
apart very quickly.

 If you want to think of it another way—and this will be important if you ever start
really thinking about how the instance variables of the state machine are propagated—
the state machine is a struct to avoid unnecessary heap allocations early on, but most
of the code tries to act like it’s really a class. The reference juggling around Set-
StateMachine makes it all work.

 Right…now we’ve got everything in place except for the actual code that was in the
asynchronous method. Let’s dive into MoveNext(). 

15.5.4 One entry point to rule them all

If you ever decompile an async method—and I really hope you will—you’ll see that
the MoveNext() method in the state machine gets very long, very fast, mostly as a func-
tion of how many await expressions you have. It contains all the logic in the original
method, and the delicate ballet required to handle all the state transitions,9 and some
wrapper code to handle the overall result or exception.

9 It really does feel like a dance, with intricate steps that have to be performed at exactly the right time and

place.
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 When writing asynchronous code by hand, you’d typically put continuations into
separate methods: start in one method, then continue in another, and maybe finish in
a third. But that makes it hard to handle flow control, such as loops, and it’s unneces-
sary for the C# compiler. It’s not like the readability of the generated code matters.
The state machine has a single entry point, MoveNext(), which is used from the start
and for the continuations for all await expressions. Each time MoveNext() is called,
the state machine works out where in the method to get to via the state field. This is
either the logical starting point of the method or the end of an await expression,
when you’re ready to evaluate the result. Each state machine is executed only once.
Effectively there’s a switch statement based on state, with different cases corre-
sponding to goto statements with different labels.

 The MoveNext() method typically looks something like this:

void IStateMachine.MoveNext()
{

// For an asynchronous method declared to return Task<int>
int result;
try
{

bool doFinallyBodies = true;
switch (state)
{

// Code to jump to the right place...
}

// Main body of the method
}
catch (Exception e)
{

state = -2;
builder.SetException(e);
return;

}
state = -2;
builder.SetResult(result);

}

The initial state is always -1, and that’s also the state when the method is executing
your code (as opposed to being paused while awaiting). Any non-negative states indi-
cate the target of a continuation. The state machine ends up in state -2 when it’s
completed. In state machines created in debug configurations, you’ll see reference to
a state of -3—it’s never expected that you’ll actually end up in that state. It’s there to
avoid having a degenerate switch statement, which would result in a poorer debug-
ging experience. 

 The result variable is set during the course of the method, at the point where the
original async method had a return statement. This is then used in the builder
.SetResult() call, when you reach the logical end of the method. Even the nonge-
neric AsyncTaskMethodBuilder and AsyncVoidMethodBuilder types have Set-
Result() methods; the former communicates the fact that the method has completed
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to the task returned from the skeleton method, and the latter signals completion to
the original SynchronizationContext. (Exceptions are propagated to the original
SynchronizationContext in the same way. It’s a rather dirtier way of keeping track of
what’s going on, but it provides a solution for situations where you really must have
void methods.)

 The doFinallyBodies variable is used to work out whether any finally blocks in
the original code (including implicit ones from using or foreach statements) should
be executed when execution leaves the scope of a try block. Conceptually, you only
want to execute a finally block when you leave the try block in a normal way. If
you’re just returning from the method early having attached a continuation to an
awaiter, the method is logically “paused” so you don’t want to execute the finally
block. Any finally blocks would appear within the Main body of the method section
of code, along with the associated try block.

 Most of the body of the method is recognizable in terms of the original async
method. Admittedly, you need to get used to all the local variables now appearing as
instance variables in the state machine, but that’s not too hard. The tricky bits are all
around await expressions—as you might expect. 

15.5.5 Control around await expressions

Just as a reminder, any await expression represents a fork in terms of possible execu-
tion paths. First the awaiter is fetched for the asynchronous operation being awaited,
and then its IsCompleted property is checked. If that returns true, you can get the
results immediately and continue. Otherwise, you need to do the following:

 Remember the awaiter for later 
 Update the state to indicate where to continue from 
 Attach a continuation to the awaiter 
 Return from MoveNext(), ensuring that any finally blocks are not executed 

Then, when the continuation is called, you need to jump to the right point, retrieve
the awaiter, and reset your state before continuing.

 As an example, the first await expression in listing 15.11 looks like this:

await Task.Delay(unicode);

The generated code looks like this: 

TaskAwaiter localTaskAwaiter = Task.Delay(unicode).GetAwaiter();
if (localTaskAwaiter.IsCompleted)
{

goto DemoAwaitCompletion;
}
state = 0;
taskAwaiter = localTaskAwaiter;
builder.AwaitUnsafeOnCompleted(ref localTaskAwaiter, ref this);
doFinallyBodies = false;
return;

DemoAwaitContinuation:

localTaskAwaiter = taskAwaiter;
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taskAwaiter = default(TaskAwaiter);
state = -1;

DemoAwaitCompletion:
localTaskAwaiter.GetResult();
localTaskAwaiter = default(TaskAwaiter);

If you’d been awaiting an operation that returned a value—for example assigning
the result of await client.GetStringAsync(...) using an HttpClient—the Get-
Result() call near the end would be where you’d get the value.

 The AwaitUnsafeOnCompleted method attaches the continuation to the awaiter,
and the switch statement at the start of the MoveNext() method would ensure that
when MoveNext() executes again, control passes to DemoAwaitContinuation.

AWAITONCOMPLETED VS. AWAITUNSAFEONCOMPLETED Earlier, I showed you a
notional set of interfaces, where IAwaiter<T> extended INotifyCompletion
with its OnCompleted method. There’s also an ICriticalNotifyCompletion
interface, with an UnsafeOnCompleted method. The state machine calls
builder.AwaitUnsafeOnCompleted for awaiters that implement ICritical-
NotifyCompletion, or builder.AwaitOnCompleted for awaiters that only
implement INotifyCompletion. We’ll look at the differences between these
two calls in section 15.6.4 when we discuss how the awaitable pattern interacts
with contexts.

Note that the compiler wipes both the local and instance variables for the awaiter, so
that it can be garbage-collected where appropriate.

 Once you can identify a block like this as corresponding to a single await expres-
sion, the generated code really isn’t too bad to read in decompiled form. There may be
more goto statements (and corresponding labels) than you’d expect, due to CLR
restrictions, but getting your head round the await pattern is the biggest hump in
understanding, in my experience.

 There’s one thing I still need to explain—the mysterious stack variable in the state
machine… 

15.5.6 Keeping track of a stack

When you think of a stack frame, you probably think about the local variables you’ve
declared in the method. Sure, you may be aware of some hidden local variables like
the iterator for a foreach loop, but that’s not all that goes on the stack…at least logi-
cally.10 In various situations, there are intermediate expressions that can’t be used
until some other expressions are evaluated. The simplest examples of these are binary
operations like addition, and method invocations. 

 As a trivial example, consider this line:

var x = y * z;

10 As Eric Lippert is fond of saying, the stack is an implementation detail—some variables you might expect to go
on the stack actually end up on the heap, and some variables may end up only existing in registers. For the

purposes of this section, we’re just talking about what logically happens on the stack.
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In stack-based pseudocode, that’s something like this:

push y
push z
multiply
store x

Now suppose you have an await expression in there:

var x = y * await z;

You need to evaluate y and store it somewhere before you await z, but you might well
end up returning from the MoveNext() method immediately, so you need a logical
stack to store y on. When the continuation executes, you can restore the value and
perform the multiplication. In this case, the compiler can assign the value of y to the
stack instance variable. This does involve boxing, but it means you get to use a single
variable.

 That’s a simple example. Imagine you had something where multiple values
needed to be stored, like this:

Console.WriteLine("{0}: {1}", x, await task);

You need both the format string and the value of x on your logical stack. This time,
the compiler creates a Tuple<string, int> containing the two values, and stores that
reference in stack. Like the awaiter, you only ever need a single logical stack at a time,
so it’s fine to always use the same variable.11 In the continuation, the individual argu-
ments can be fetched from the tuple and used in the method call. The downloadable
source code contains a complete decompilation of this sample, with both of the pre-
ceding statements (LogicalStack.cs and LogicalStackDecompiled.cs). 

 The second statement ends up using code like this:

   string localArg0 = "{0} {1}";
   int localArg1 = x;
   localAwaiter = task.GetAwaiter();
   if (localAwaiter.IsCompleted)
   {
  goto SecondAwaitCompletion;
   }
   var localTuple = new Tuple<string, int>(localArg0, localArg1);

stack = localTuple;
state = 1;
awaiter = localAwaiter;
builder.AwaitUnsafeOnCompleted(ref awaiter, ref this);
doFinallyBodies = false;
return;

SecondAwaitContinuation:
localTuple = (Tuple<string, int>) stack; 

   localArg0 = localTuple.Item1; 
   localArg1 = localTuple.Item2; 
   stack = null;

11 Admittedly there are times when the compiler could be smarter about the type of the variable, or avoid includ-

ing one at all if it’s never needed, but all of that may be added in a later version, as a further optimization.
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localAwaiter = awaiter;
awaiter = default(TaskAwaiter<int>);
state = -1;

SecondAwaitCompletion:
int localArg2 = localAwaiter.GetResult();
Console.WriteLine(localArg0, localArg1, localArg2); // Bold

The bold lines here are the ones involving elements of the logical stack.
 At this point, we’ve probably gone as far as we need to—if you’ve made it this far

successfully, you know more about the details of what’s going on under the hood than
99 percent of developers are ever likely to. It’s fine if you didn’t quite follow every-
thing first time through—if your experience is anything like mine has been when
reading the code of these state machines, you’ll want to wait a little while, and then
come back to it. 

15.5.7 Finding out more

Want even more details? Crack out a decompiler. I’d urge you to use very small pro-
grams to investigate what the compiler does—it’s very easy to get lost in a maze of
twisty little continuations, all alike, if you write anything nontrivial. You may need to
reduce the level of optimization the decompiler performs in order to get it to show
you a fairly close-to-the-metal view of the code, rather than an interpretation. After all,
a perfect decompiler would just reproduce your async functions, which would defeat
the whole purpose of the exercise!

 The code that the compiler generates can’t always be decompiled into valid C#.
There’s always the problem of it deliberately using unspeakable names for both vari-
ables and types, but more important, there are some cases where valid IL has no direct
equivalent in C#. For example, in IL it’s legitimate to branch to an instruction that’s
within a loop—after all, IL doesn’t even have the concept of a loop, as such. In C#, you
can’t goto a label within a loop from outside the loop, so such an instruction can’t be
represented entirely correctly. Even the C# compiler can’t have it all its own way: IL
still has some restrictions on jump targets, so you’ll often find the compiler has to go
through a series of jumps to get to the right place.

 Similarly, I’ve seen some decompilers get a little confused as to the exact order-
ing of assignment statements around the logical stack, occasionally moving the assign-
ment of the temporary variables (localArg0 and localArg1, for example) to the
wrong side of the IsCompleted check. I believe this is due to the code not being quite
like the normal output of the C# compiler. It’s not too bad when you know what to look
for, but it does mean that occasionally you’ll probably end up dropping down to IL. 

15.6 Using async/await effectively
I’ve shown you how asynchronous functions behave, and what they look like behind

the scenes. You’re now an expert at asynchronous programming, right? Obviously
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not.12 Like many aspects of programming, there’s a lot to be said for experience…
and very few people have had a great deal of experience with asynchronous functions
so far. While I can’t give you experience, I can provide some hints and tips that should
make your life slightly easier.

 As I write this, the teams who know the most about asynchronous programming
using C# 5 are the ones within Microsoft, who have lived and breathed it during devel-
opment and received feedback from beta testers and the like. To that end, I thoroughly
recommend the Parallel Programming Team’s blog (http://blogs.msdn.com/b/
pfxteam/), which has a lot more advice than I have room to give here. 

 Of course, that doesn’t mean I don’t have some suggestions…

15.6.1 The task-based asynchronous pattern

One of the benefits of the asynchronous function feature in C# 5 is that it gives a con-
sistent approach to asynchrony. But that could easily be undermined if everyone came
up with their own ways of using it—how to name asynchronous methods, how excep-
tions should be raised, and the like. Microsoft has addressed this by publishing the
Task-based Asynchronous Pattern (TAP)—a set of conventions for everyone to follow. It’s
available as a standalone document (http://mng.bz/B68W) or on MSDN as separate
pages (http://mng.bz/4N39). 

 Of course, Microsoft has also been following this—.NET 4.5 contains a huge num-
ber of asynchronous APIs for all kinds of scenarios. Just like with normal .NET conven-
tions for naming, type design, and the like, if you follow the same conventions as the
rest of the framework, other developers will find your code much easier to work with.

 The TAP is very readable, and it’s only 38 pages long—I strongly advise you to read
the full document. In the rest of this section, I’ll cover what I consider to be the most
important parts.

 Asynchronous methods should end with the suffix Async—GetAuthentication-

TokenAsync, FetchUserPortfolioAsync, and so on. In the .NET Framework this has
already caused some collisions—WebClient already had methods such as Download-
StringAsync following the event-based asynchronous pattern, which is why the new
TAP-based methods have the slightly ugly names of DownloadStringTaskAsync,
UploadDataTaskAsync, and the like. TaskAsync is the recommended suffix if you have
your own naming collisions, too. Where the asynchrony is obvious, the suffix can be
dropped entirely—Task.Delay and Task.WhenAll are examples of this. As a general
rule, if the entire business of the method is asynchrony, rather than achieving some
business goal, it’s probably safe to drop the suffix.

TAP methods generally return Task or Task<T>—again, there are exceptions such
as Task.Yield, where the awaitable pattern comes in, but these should be few and far
between. Importantly, the task returned from a TAP method should be hot. In other
words, the operation it represents should already be in progress—the caller shouldn’t

12 Of course, you might be an expert at asynchronous programming, but just reading this chapter won’t have

done that for you.

http://blogs.msdn.com/b/pfxteam/
http://blogs.msdn.com/b/pfxteam/
http://mng.bz/B68W
http://mng.bz/4N39
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need to start it manually. For most developers, this probably sounds obvious, but there
are other platforms where the convention is to create a cold task that doesn’t start
until you explicitly ask it to—a little bit like an iterator block in C#. In particular, F#
follows this convention, and it’s also something you need to consider in Reactive
Extensions (Rx). 

 There are generally four overloads to consider providing when you create an asyn-
chronous method. All would take the same basic parameters, but they’d provide dif-
ferent options in terms of both progress reporting and cancellation. Suppose you
were considering developing an asynchronous method that would be logically equiva-
lent to a synchronous method like this:

Employee LoadEmployeeById(string id)

Following TAP conventions, you could provide any or all of these:

// NOTE TO PRODUCTION: Please consult with Jon on formatting.
Do not abbreviate!
Task<Employee> LoadEmployeeById(string id)
Task<Employee> LoadEmployeeById(string id, CancellationToken cancellationToken)
Task<Employee> LoadEmployeeById(string id, IProgress<int> progress)
Task<Employee> LoadEmployeeById(string id,

CancellationToken cancellationToken, IProgress<int> progress)

Here the IProgress<int> could be an IProgress<T> for any type T that’s appropriate
to use for progress reporting. For example, if your asynchronous method found a col-
lection of records and then processed them one by one, you could accept an
IProgress<Tuple<int, int>>, which could report both the number of reports pro-
cessed so far and the number of reports in total.

 I’d avoid trying to shoehorn progress reporting into operations where it really
doesn’t make sense. Cancellation is generally easier to support, because so many
framework methods support it. If your asynchronous method basically consists of
performing several other asynchronous operations (possibly with dependencies), you
may find it’s easier to just accept a cancellation token and pass it downstream.

 Asynchronous operations should check for usage errors—typically invalid argu-
ments—synchronously. This is slightly awkward, but it can be implemented either
using a split method, as shown in section 15.3.6, or with a single method using an
anonymous asynchronous function, as shown in section 15.4. Although it’s tempting
to validate arguments lazily, you’ll curse yourself when you’re trying to address a fail-
ure that’s harder to diagnose than it needs to be.

IO-based operations—where you’re handing off a job to either a disk or another
computer—are great candidates for asynchrony, with no obvious downside. CPU-
bound tasks are less so. It’s easy to offload some work onto the thread pool, and even
easier in .NET 4.5 than it was before, thanks to the Task.Run method, but doing so
within library code would be making assumptions on behalf of the caller. Different
callers may well have different requirements; if you just expose a synchronous

method, you give the caller the flexibility to work in the most appropriate fashion.
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They can either start a new task if they need to, or call it synchronously if they’re
happy for the current thread to be busy executing the method for some time.

 Tasks that are a mixture of waiting for results from other systems and then process-
ing them in a potentially time-consuming manner are trickier. Although I think hard-
and-fast guidelines are unlikely to be helpful, it’s important to document the behavior.
If you’re going to end up taking a lot of CPU in the caller’s context, you should make
that very clear.

 Another option is to avoid using the caller’s context, using the Task.Configure-
Await method. This method currently only has a single parameter, continueOn-
CapturedContext, although for clarity it’s worth using a named argument to specify it.
The method returns an implementation of the awaitable pattern. When the argument
is true, the awaitable behaves exactly as normal, so if the async method is called on a
UI thread, for example, the continuation after the await expression will still execute
on the UI thread. That’s handy if you want to access UI elements. If you don’t have any
special requirements, however, you can specify false for the argument, in which case
the continuation will usually execute in the same context that the original operation
completed.13

 For a mixed workload that fetches some data, processes it, and then saves it to a
database, you might have code like this:

public static async Task<int> ProcessRecords()
{

List<Record> records = await FetchRecordsAsync()
.ConfigureAwait(continueOnCapturedContext: false);

// ... record handling here ...
await SaveResultsAsync(results)

.ConfigureAwait(continueOnCapturedContext: false);

// Let the caller know how many records were processed
return records.Count;

}

Most of this method is likely to execute on a thread from the thread pool; this is
exactly what you want, as you’re not doing anything that requires execution in the
original thread. (The jargon for this is that the operation doesn’t have any thread affin-
ity.) This doesn’t affect the caller, however; if an async UI method awaits the result of
calling ProcessRecords, that async method will still continue on the UI thread. It’s
only the code within ProcessRecords that’s declaring that it doesn’t care about its
execution context.

 Arguably, you don’t really need to call ConfigureAwait on the second await
expression here, as there’s so little work remaining, but in general you should use it

13 Usually, but not always. The details aren’t explicitly documented, but there are times when you really don’t
want to execute in the same context. You should consider ConfigureAwait(false) to be saying, “I don’t

mind where the continuation executes,” rather than explicitly attaching it to a specific context.
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on every await expression, and it’s a good idea to get into the habit of doing so consis-
tently. If you want to give the caller flexibility about the context in which the method
executes, you could potentially make this a parameter to the asynchronous method.

 Note that ConfigureAwait only affects the synchronization part of the execution
context. Other aspects such as impersonation are propagated regardless, as you’ll see
in section 15.6.4.

TPL DATAFLOW Although TAP is just a set of conventions and some examples,
Microsoft has also made a separate library called “TPL Dataflow,” which is
available to provide higher-level building blocks for specific scenarios, partic-
ularly those that can be modeled using producer/consumer patterns. The
simplest way to get started is probably via the NuGet package (Microsoft
.Tpl.Dataflow). It’s free to use, and there’s lots of guidance around it. Even
if you don’t use it directly, it’s worth looking at, just to get more of a feeling
for how parallel programs can be designed.

Even without any extra libraries, you can still build elegant asynchronous code follow-
ing normal design principles, and one of the most important aspects of that is
composition. 

15.6.2 Composing async operations

One of the things I love most about the asynchrony in C# 5 is the way it composes so
naturally. This manifests itself in two different ways. Most obviously, asynchronous
methods return tasks and typically involve calling other methods that return tasks.
Those could be direct asynchronous operations (the bottom of the chain, so to speak)
or just more asynchronous methods. All the wrapping and unwrapping required to
turn results into tasks and vice versa is handled by the compiler.

 The other form of composition is the way that you can create operation-neutral
building blocks to govern how tasks are handled. These building blocks don’t need to
know anything about what the tasks are doing—they stay purely at the abstraction
level of Task<T>. They’re a little bit like the LINQ operators, but they work on tasks
instead of sequences. Some building blocks are built into the framework, but you can
write your own.

COLLECTING RESULTS IN A SINGLE CALL

As an example, let’s consider the task of fetching lots of URLs. In section 15.3.6 you
did this one at a time, stopping as soon as you were successful. Suppose this time you
want to launch the requests in parallel, and then log the result for each URL. Remem-
bering that asynchronous methods return already-running tasks, you can start a task
for each URL fairly easily:

var tasks = urls.Select(async url =>
{

using (var client = new HttpClient())

{



508 CHAPTER 15 Asynchrony with async/await

return await client.GetStringAsync(url);
}

}).ToList();

Note that the ToList() is required in order to materialize the LINQ query. This
ensures that you start each task once and only once—otherwise each time you iter-
ated over tasks, you’d start another set of fetches. (The code would be even simpler
if you didn’t care about disposing of the HttpClient, but even with that wrinkle, it’s
not too bad.)

 The TPL provides a method Task.WhenAll that combines the results of lots of
tasks, each providing a single result, into a single task with multiple results. The signa-
ture of the overload you’ll use looks like this:

static Task<TResult[]> WhenAll<TResult>(IEnumerable<Task<TResult>> tasks)

That’s a fearsome-looking declaration, but the purpose of the method is quite simple
when you start to use it. You’ve got a List<Task<string>>, so you can write this:

string[] results = await Task.WhenAll(tasks);

That will wait until all the tasks have finished and gather the results together into an
array. This is one of those occasions where if several tasks throw exceptions, only the
first will be thrown immediately, but you can always iterate over the tasks to work out
which ones have failed and why, or use the WithAggregatedExceptions extension
method shown in listing 15.2.

 If you only care about the first request to come back, there’s another method
called Task.WhenAny that doesn’t wait for the first successful task completion; it just
waits for the first task to reach a terminal state.

 In this case, you may want something a little different. It might be more useful to
report all the results as they come in. 

COLLECTING RESULTS AS THEY ARRIVE

Although Task.WhenAll was an example of a transformational building block that’s
built into .NET, the next example shows how you can build your own methods in a sim-
ilar way. The TAP documentation gives some very similar sample code, creating a
method called Interleaved, and we’ll look at a slightly alternative version. 

 The idea of listing 15.12 is to allow you to pass in a sequence of input tasks, and the
method will return a sequence of output tasks. The results of the tasks in the two
sequences will be the same, but with one crucial difference: the output tasks will com-
plete in the order they’re provided, so you can await them one at a time and know
you’ll get the results as soon as they’re available. Now, this may sound like magic—it
does to me—so let’s look at the code and see how it works.
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public static IEnumerable<Task<T>> InCompletionOrder<T>
    (this IEnumerable<Task<T>> source)
{

var inputs = source.ToList();
  var boxes = inputs.Select(x => new TaskCompletionSource<T>())

.ToList();

int currentIndex = -1;
foreach (var task in inputs)
{

task.ContinueWith(completed =>
{

var nextBox = boxes[Interlocked.Increment(ref currentIndex)];
PropagateResult(completed, nextBox);

}, TaskContinuationOptions.ExecuteSynchronously);
}
return boxes.Select(box => box.Task);

}

Listing 15.12 relies on a very important type in the TPL—TaskCompletionSource<T>.
This type allows you to create a Task with no result yet, and then provide a result (or
an exception) later on. This is built on the same underlying infrastructure that
AsyncTaskMethodBuilder<T> uses to provide a Task for an asynchronous method to
return, allowing the task to be populated with the result when the method body
completes.

 To explain the slightly curious variable names, I often think of tasks as being like
cardboard boxes, with the promise that at some point they’ll have a value inside (or a
fault). A TaskCompletionSource<T> is like a box with a hole in the back—you can give
it to someone and then sneakily poke the value through the hole later on.14 That’s
exactly what the PropagateResult method does—it’s not terribly interesting, so I’ve
omitted it here, but basically it propagates the result of a completed Task<T> into a
TaskCompletionSource<T>. If the original task completes normally, the return value is
copied into the task completion source. If the original task faults, the exception is cop-
ied into the task completion source. If the original task was canceled, the task comple-
tion source is canceled.

 The really clever part here (and I take no credit for this—the suggestion was
emailed to me) is that when this method runs, it doesn’t know which Task-
CompletionSource<T> will correspond with which input task. Instead, it simply
attaches the same continuation to each task, and that continuation says, “Find the
next TaskCompletionSource<T> (by atomically incrementing a counter) and propa-
gate the result.” In other words, the boxes are filled in the output order as the original
tasks complete. 

Listing 15.12 Transforming a task sequence into a new collection in completion order

14 Any resemblance to quantum physics is purely coincidental, and I won’t be held responsible for any experi-

ments involving Task<Cat>.
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Figure 15.5 shows three input tasks and the corresponding output tasks returned by
the method. The output tasks complete in the returned order, even though the input
tasks complete in a different order.

 With this wonderful extension method in place, you can then write the following
code, which takes a collection of URLs, launches requests for each of them in parallel,
writes out each page length as it completes, and returns the total length.

static async Task<int> ShowPageLengthsAsync(params string[] urls)
{

var tasks = urls.Select(async url =>

Listing 15.13 Displaying page lengths as the data is returned

Input tasks

Output tasks

Time 0: no results yet

5Input tasks

5Output tasks

Time 1: second input task completes

5 10Input tasks

5 10Output tasks

Time 2: third input task completes

!!! 5 10Input tasks

5 10 !!!Output tasks

Time 3: first input task is faulted

Figure 15.5 Visualization of ordering
{
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using (var client = new HttpClient())
{

return await client.GetStringAsync(url);
}

}).ToList();

int total = 0;
foreach (var task in tasks.InCompletionOrder())
{

string page = await task;
Console.WriteLine("Got page length {0}", page.Length);
total += page.Length;

}
return total;

}

There are two slight issues with listing15.13:

 As soon as one task fails, the whole asynchronous operation fails with no indica-
tion of the remaining results. That may be okay, or you may want to make sure
that you log every failure. (Unlike in .NET 4, letting task exceptions go unob-
served won’t bring down the process by default, but you should at least think
about what you want to happen to other tasks.) 

 You lose track of which page went with which URL. 

Both of these are reasonably easily fixed with a little bit more code, and they might
even suggest further reusable building blocks. The point of showing these examples
wasn’t to examine the individual requirements—it was to open your mind to the possi-
bilities provided by composition. 

Interleaved isn’t the only example in the TAP white paper—it’s got lots of ideas,
with sample code to help you. 

15.6.3 Unit testing asynchronous code

I’m slightly nervous about even starting to write this section. At the moment, I don’t
believe that the community has enough experience to come up with definitive
answers about how to test asynchronous code. I’m sure there will be some missteps
along the way, and no doubt several competing approaches will be explored. The
important point is that, just like synchronous code, if you design for testability from
the start, you can unit test asynchronous code effectively.

INJECTING ASYNCHRONY SAFELY

In this section I’ll present an approach for situations where you’re able to control the
asynchronous operations that your own asynchronous code depends on. It doesn’t try
to address the difficulties of testing code that uses HttpClient and similarly tricky-to-
fake types, but that’s nothing new—if you have dependencies that are hard to use in
tests, you’ll always face problems.

 Suppose you want to test the “magic ordering” code from the previous section. You
want to be able to create tasks that’ll complete in a specified order, and (in at least
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some tests) make sure you can perform assertions in between task completions. Addi-
tionally, you’d like to do all of this without any other threads getting involved—you
want as much control and predictability as possible. In essence, you want to be able to
control time.

 My solution to this is to essentially fake out time by using a TimeMachine class that
provides a way of advancing time programmatically with scheduled tasks that com-
plete in particular ways at specific times. Combine this with a Synchronization-
Context that’s effectively a manually pumped version of the familiar Windows Forms
message pump, and you get a pretty reasonable test harness. I won’t show all of the
framework code used to host this, as it’s a little too long and relatively dull, but it’s all
in the sample code. I’ll show a couple of tests though. 

 Let’s start off with the overall success case: if you program three tasks to complete
at times 1, 2, and 3, and call InCompletionOrder with those tasks in a different order,
you should still get the results in order:

[TestMethod]
public void TasksCompleteInOrder()
{

var tardis = new TimeMachine();
var task1 = tardis.ScheduleSuccess(1, "t1");
var task2 = tardis.ScheduleSuccess(2, "t2");
var task3 = tardis.ScheduleSuccess(3, "t3");

var tasksOutOfOrder = new[] { task2, task3, task1 };

tardis.ExecuteInContext(advancer =>
{

var inOrder = tasksOutOfOrder.InCompletionOrder().ToList();
advancer.AdvanceTo(3);
Assert.AreEqual("t1", inOrder[0].Result);
Assert.AreEqual("t2", inOrder[1].Result);
Assert.AreEqual("t3", inOrder[2].Result);

});
}

The ExecuteInContext method temporarily replaces the current thread’s
SynchronizationContext with a ManuallyPumpedSynchronizationContext (also in
the sample code) and then provides an advancer to the delegate specified by the
method argument. That advancer can be used to advance time by specific amounts,
with tasks completing (and executing continuations) at the appropriate times. In this
test you just fast-forward until they’ve all completed.

 Here’s a second test that demonstrates that you can control time in a more fine-
grained way:

// Omitted setup steps, which are the same as the previous test.
tardis.ExecuteInContext(advancer =>
{

var inOrder = tasksOutOfOrder.InCompletionOrder().ToList();

Assert.AreEqual(TaskStatus.WaitingForActivation, inOrder[0].Status);

Assert.AreEqual(TaskStatus.WaitingForActivation, inOrder[1].Status);
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Assert.AreEqual(TaskStatus.WaitingForActivation, inOrder[2].Status);

advancer.Advance();
Assert.AreEqual(TaskStatus.RanToCompletion, inOrder[0].Status);
Assert.AreEqual(TaskStatus.WaitingForActivation, inOrder[1].Status);
Assert.AreEqual(TaskStatus.WaitingForActivation, inOrder[2].Status);

advancer.Advance();
Assert.AreEqual(TaskStatus.RanToCompletion, inOrder[1].Status);
Assert.AreEqual(TaskStatus.WaitingForActivation, inOrder[2].Status);

advancer.Advance();
Assert.AreEqual(TaskStatus.RanToCompletion, inOrder[2].Status);

});

Here you can see the output tasks completing in the right order.
 You may be wondering why the times here are just integers—you may have

expected DateTime and TimeSpan to get involved. This is deliberate—the only time-
line you really have is the artificial one set up by the time machine, and the only inter-
esting points in time are the ones where tasks complete. 

 Of course, the method you’re testing is slightly unusual here in two ways:

 It’s not actually implemented with async. 
 It’s given tasks directly as arguments. 

If you were testing a more business-focused async method, you’d quite possibly sched-
ule all the results for your dependencies, advance time to complete them all, and then
check the result of the returned task. You’d have to be able to provide your produc-
tion code with fakes in the normal way—the only difference that asynchrony makes
here is that instead of using stubs or mocks to return the direct results of calls, you’d
ask them to return the tasks produced by the TimeMachine. All the normal benefits of
inversion of control still apply—you just need a way of creating appropriate tasks.

 This single idea clearly isn’t going to be a panacea, but I hope it’s at least per-
suaded you of the possibility of unit testing asynchronous code without arbitrary calls to
Thread.Sleep and the constant risk of test flakiness. 

RUNNING ASYNCHRONOUS TESTS

The tests in the previous section are entirely synchronous. You don’t use async or
await within the tests themselves at all. When you’re using the TimeMachine class for
all your tests, that’s fairly reasonable, but in other cases you may want to write test
methods decorated with async.

 You can do so easily:

[Test] // NUnit TestAttribute
public async void BadTestMethod()
{

// Code using await
}



514 CHAPTER 15 Asynchrony with async/await

This will compile against any normal test framework…but it may not do what you
expect. In particular, you may end up with all your tests being started in parallel, and
quite possibly “finishing” before they get around to asserting anything.

 As it happens, NUnit supports asynchronous tests as of version 2.6.2, and the pre-
ceding method would work due to some cleverness in the implementation, but if you
tried to run it against earlier versions, the test would start and then complete, as far as
the test runner was concerned, as soon as it hit the first “slow” await. Any failures later
in the method would end up being reported to the test’s SynchronizationContext,
which may not be expecting it.

 For test frameworks that support asynchronous tests, a much better approach is to
make those tests return Task, like this:

[Test]
public async Task GoodTestMethod()
{

// Code using await
}

Now it’s much easier for the test framework to know when your tests have completed,
and to check for failure. It has the additional benefit that test frameworks that don’t
support asynchronous tests may not even try to run them, instead reporting a warn-
ing, which is far better than running the tests incorrectly. As I write this, the latest ver-
sions of NUnit, xUnit, and Visual Studio Unit Testing Framework (also known
informally as MS Test) all support asynchronous tests—other frameworks may do so
too. Please check the specific framework and version you want to use before starting
to write such tests.

 You should also be careful of the possibility of deadlocks. Unlike with the time
machine tests in the previous section, you probably don’t want all the continuations
executing on a single thread, unless that thread is also pumping as a UI thread would.
Sometimes you control all the tasks involved and can reason your way into using a
single-threaded context…other times you need to be rather more careful and may
well want multiple threads able to fire continuations, as long as your test code doesn’t
execute in parallel with itself. I’d be nervous of this for unit tests, but if you’re using
the same sort of framework for functional tests, integration tests, or even production
probing, you’ll typically want your tests to be running against real tasks rather than the
fakes provided by the time machine.

 I’m confident that over time the community will develop some great tools to help
us test more and more of our code. I’m convinced that a significant proportion of
future code will be naturally asynchronous, and I’m utterly certain that I don’t want to
be writing such code without tests. We’re nearly finished with asynchrony now, but I
did promise earlier that I’d come back to that interesting AwaitUnsafeOnCompleted
method call in the generated code. 
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15.6.4 The awaitable pattern redux

In section 15.3.3 I showed some imaginary interfaces that give the right basic idea
about the awaitable pattern. Even when I explained that this wasn’t quite reality, I
fudged it a little bit. Unless you’re implementing the awaitable pattern itself or look-
ing closely at the decompiled code, you don’t really need to know about the fudging,
but if you’ve gotten this far, you probably want to know everything.

 The genuine interface I mentioned earlier was INotifyCompletion, which looks
like this:

public interface INotifyCompletion
{

void OnCompleted(Action continuation);
}

There’s another interface that extends this, however—still in the System.Runtime
.CompilerServices namespace:

public interface ICriticalNotifyCompletion : INotifyCompletion
{

void UnsafeOnCompleted(Action continuation);
}

All the reasoning behind these two interfaces has context at its heart. I’ve mentioned
SynchronizationContext a number of times already in this chapter, and you may well
have come across it before; it’s a synchronization context that allows calls to be
marshaled onto an appropriate thread, whether that’s a specific thread pool, or a sin-
gle UI thread, or whatever is required. It’s not the only context involved though. There
are plenty of them—SecurityContext, LogicalCallContext, and HostExecution-
Context, for example. The granddaddy of them all, however, is ExecutionContext. It
acts as a container for all the other contexts, and it’s what we’ll focus on in this section.

 It’s very important that the ExecutionContext flows across await points; you don’t
want to come back to your asynchronous method when a task has completed, only to
find that you’ve forgotten which user you’re impersonating, for example. In order to
flow the context, it needs to be captured when you attach the continuation, and then
restored when the continuation is executed. This is achieved through the Execution-
Context.Capture and ExecutionContext.Run methods, respectively.

 There are two pieces of code that can perform this capture/restore pair: the
awaiter, and the AsyncTaskMethodBuilder<T> class (along with its siblings). You
might expect that you could just decide one way or the other, and leave it at that. But
various other trade-offs come into play. It’s easy to forget to flow the execution context
in the awaiter, so it makes sense to implement it once in the method-builder code. On
the other hand, your awaiter will be directly accessible to any code using it, so you
wouldn’t want to expose a possible security flaw by relying on all callers using the
compiler-generated code…suggesting that it should be in the awaiter code. But
equally, you wouldn’t want to capture and restore the context twice, redundantly. How
can we resolve this dichotomy?
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 We’ve already seen the answer: use two different interfaces with subtly different
meanings. If you implement the awaitable pattern, your OnCompleted method (which
is mandatory) should flow the execution context. If you choose to implement
ICriticalNotifyCompletion, your UnsafeOnCompleted method should not flow the
execution context…and should be decorated with the [SecurityCritical] attribute
to prevent untrusted code from calling it. The method builders are trusted, of course,
and they flow the context, so all is well—partially trusted callers can still use your
awaiter efficiently, but would-be attackers won’t be able to sidestep context flow.

 I’ve deliberately kept this section fairly brief; I find the whole topic of contexts
somewhat confusing, and there are even more complexities I haven’t touched on. If
you’re implementing your own awaiter without delegating to an existing one (and you
probably won’t need to), you should definitely read Stephen Toub’s “ExecutionContext
vs SynchronizationContext” blog post (http://mng.bz/Ye65) for more details. 

15.6.5 Asynchronous operations in WinRT

Windows 8 has introduced the Windows Store to the application ecosystem—and
alongside it, WinRT. I go into a little more detail about WinRT in appendix C, but it’s
designed to be a modern, object-oriented, unmanaged environment. In many ways,
it’s the new Win32. Some of the familiar .NET types aren’t available in WinRT, and
even those that are available have mostly been stripped of blocking calls related to IO.

 Types that still live in the CLR generally expose asynchronous operations via
Task<T> as you’ve already seen, but that type doesn’t exist within WinRT itself.
Instead, there are a bunch of interfaces, all of which extend one core IAsyncInfo
interface:

 IAsyncAction

 IAsyncActionWithProgress<TProgress>

 IAsyncOperation<TResult>

 IAsyncOperationWithProgress<TResult, TProgress>

You can think of the difference between the Action types and the Operation types as
being similar to the difference between Task and Task<T>, or between Action and
Func: an Action has no return value, whereas an Operation does. The WithProgress
versions build progress reporting into the single type, rather than requiring method
overloads with IProgress<T> as per the TAP.

 The details of these interfaces are beyond the scope of this book, but there are
plenty of resources available explaining them. I suggest you start with Stephen Toub’s
Windows 8 “Diving deep with WinRT and await” blog post (http://mng.bz/F1TF).

http://mng.bz/Ye65
http://mng.bz/F1TF
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 In terms of handling these interfaces from C# 5, there are a few important points:

 The GetAwaiter extension methods allow you to await actions and operations
directly. 

 The AsTask extension methods allow you to view an action or operation as a
task, with support for cancellation tokens and progress reporting via
IProgress<T>.

 The AsAsyncOperation and AsAsyncAction extension methods go in the oppo-
site direction, taking a task and returning a WinRT-friendly wrapper. 

All of these are provided by the System.WindowsRuntimeSystemExtensions class, in
the System.Runtime.WindowsRuntime.dll assembly.

 Once again you’ve seen the value of the awaitable pattern. The C# compiler really
doesn’t care that it’s calling an extension method in order to await the asynchronous
operation. It’s just another awaitable type. Most of the time you’re likely to be able to
leave an asynchronous operation in its native type and await it as normal. It’s nice to
have the flexibility to treat a WinRT asynchronous operation as a more familiar
Task<T> for more complex scenarios though.

 Another option for running code in the WinRT model of asynchrony is to use the
Run method in the System.Runtime.InteropServices.WindowsRuntime.AsyncInfo
class. Using this is cleaner than calling Task.Run(...).AsAsyncOperation if you need
to hand an IAsyncOperation (or IAsyncAction) to some other code.

 Asynchrony really isn’t optional when writing WinRT applications. A lot of the
time, the platform won’t give you the option of writing synchronous code for IO. Of
course, you can do all the work yourself, but using the features of C# 5 makes WinRT
significantly simpler to use. I’m sure it’s no coincidence that the language gained
asynchrony at roughly the same time WinRT was released. Microsoft isn’t just dipping
its toe in the water here; this is how you will write Windows Store applications in C#. 

15.7 Summary
I hope that the more complicated, deep-dive sections of this chapter haven’t obscured
the elegance of the asynchronous features of C# 5. The ability to write efficient asyn-
chronous code in a more familiar execution model is a huge step forward, and I
believe it will be transformative—once it’s well understood. It’s been my experience
when giving presentations about async that many developers get easily confused by
the feature the first time they see and use it. That’s entirely understandable, but
please don’t let that put you off. Hopefully this chapter will help to answer at least
some of your questions as you go along, but there’s a wealth of documentation out
there, and plenty of people ready to help on Stack Overflow, of course.

 Speaking of other resources, I should emphasize that I’ve mostly tried to cover the
language aspects of asynchrony here, in keeping with the rest of the book. There’s

much more to asynchronous development than just knowing those language features,
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though, and I urge you to read everything you can about TPL. Even if you can’t use
C# 5 yet, if you’re using .NET 4 you can start using Task<T> as a clean model for asyn-
chronous operations. Whenever you’re tempted to reach for a raw Thread method,
think about whether TPL might provide a higher abstraction to let you achieve the
same goal more simply.

 To sum up: async functions in C# 5 rock. That’s not quite all there is to look at
though. There are a couple of tiny features that I really ought to cover before wrap-
ping up this edition…



C# 5 bonus features
and closing thoughts
C# 2 had a bunch of small but disparate features, along with the major ones. C# 3
had several minor features building up to LINQ. Even C# 4 had relatively small fea-
tures worth going into some detail about.

 C# 5 has almost no features beyond asynchrony. It has just two little extras, both
tiny. The C# design team always weighs the cost of a feature (in terms of design,
implementation, testing, documentation, and developer education) against its ben-
efits. I’m sure there are plenty of outstanding feature requests the team would like
to satisfy, so presumably the costs of these bite-sized features were just small enough
to allow them to make the cut.

 The first change isn’t so much a feature as a correction to an earlier mistake in
the language design…

This chapter covers
 Changes to captured variables 

 Caller information attributes 

 Closing thoughts
519
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16.1 Changes to captured variables in foreach loops
Back in section 5.5.5 I gave a warning about code that used an anonymous function
(typically a lambda expression) within a foreach loop, capturing the loop variable.
The following listing shows a simple example of such code, which looks as if it will out-
put x, then y, and then z.  

string[] values = { "x", "y", "z" };
var actions = new List<Action>();

foreach (string value in values)
{

actions.Add(() => Console.WriteLine(value));
}

foreach (Action action in actions)
{

action();
}

In C# 3 and C# 4, this would actually print z three times—the loop variable (value)
would be captured by the lambda expression, and there was notionally just one vari-
able “instance” that changed value on each iteration of the loop. All three delegates
would refer to the same variable, and by the time they were executed at the end, the
value of that variable would be z. This wasn’t an implementation mistake in the com-
piler; it was how the language was specified to behave.

 In C# 5, the language works as you’d probably have expected it to in the first place:
each iteration of the loop effectively introduces a separate variable. Each of the dele-
gates will refer to a different variable, with the value from that iteration of the loop.

 There’s not a lot more to say about this feature—it’s really just correcting an area
of the language that caused problems for a lot of developers. (You’d probably be
amazed at how many Stack Overflow questions this caused.)

 I want to give one word of warning, though: if you’re in the fairly unusual position
of writing code that needs to be compiled with various different versions of the C#
compiler, you need to be aware that the behavior will vary. The code from listing 16.1
doesn’t produce any warnings in any versions of C#—the behavior just changes silently for
C# 5. Be careful, and make sure you have unit tests to fall back on!

 On to the final feature…

16.2 Caller information attributes
Some features are very general—lambda expressions, implicitly typed local variables,
generics, and the like. Others are more specific—LINQ is really meant to be about
querying data of some form or other, even though it’s aimed to generalize over many
different data sources. The final C# 5 feature is extremely targeted: there are two sig-
nificant use cases (one obvious, one slightly less so), and I really don’t expect it to be

Listing 16.1 Using captured iteration variables
used much outside those situations.
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16.2.1 Basic behavior

.NET 4.5 introduces three new attributes: CallerFilePathAttribute, CallerLine-
NumberAttribute, and CallerMemberNameAttribute, all in the System.Runtime
.CompilerServices namespace. Just as with other attributes, when you apply any of
these, you can omit the Attribute suffix, and as that’s the most common way of using
attributes, I’ll abbreviate the names appropriately for the rest of the book.

 All three attributes can only be applied to parameters, and they’re only useful
when they’re applied to optional parameters. The idea is simple: if the call site doesn’t
provide the argument, the compiler will use the current file, line number, or member
name to fill in the argument, instead of taking the normal default value. If the caller
does supply an argument, the compiler will leave it alone.

 The following listing shows an example of both cases.

static void ShowInfo([CallerFilePath] string file = null,
[CallerLineNumber] int line = 0,
[CallerMemberName] string member = null)

{
Console.WriteLine("{0}:{1} - {2}", file, line, member);

}
...

ShowInfo();

ShowInfo("LiesAndDamnedLies.java", -10);

The output from listing 16.2 would be something like this:

c:\Users\Jon\Code\Chapter16\CallerInfoDemo.cs:21 - Main
LiesAndDamnedLies.java:-10 - Main

Of course, you wouldn’t usually give a fake value for any of these arguments, but it’s
useful to be able to pass the value explicitly, particularly if you want to log the current
method’s caller, using the same attributes.

 The member name works for all members, normally in the obvious way, with the
following reasonably predictable special names:

  Static constructor: .cctor
  Constructor: .ctor
  Finalizer: Finalize

The name used as part of a method call during a field initializer is the name of the
field.

 There are two situations in which caller member information isn’t populated. The
first is attribute initialization; listing 16.3 provides an example of an attribute that you
might expect to be given the name of the member it was applied to, but unfortunately
the compiler doesn’t fill anything in automatically in this case.

Listing 16.2 Using caller information attributes properly, and abusing them

Compiler fills 
in everything

Compiler only 
fills in name
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[AttributeUsage(AttributeTargets.All)]
public class MemberDescriptionAttribute : Attribute
{
   public MemberDescriptionAttribute([CallerMemberName] string member = null)

{
Member = member;
}

public string Member { get; set; }
}

This could definitely be useful. I’ve seen situations where developers have found attri-
butes via reflection, but had to populate their own data structure to maintain a map-
ping between the member name and the attribute, which could be done automatically
by the compiler. 

 The dynamic typing omission is more easily forgivable. The following listing dem-
onstrates the kind of usage that unfortunately doesn’t work.

class TypeUsedDynamically
{

internal void ShowCaller([CallerMemberName] string caller = "Unknown")
{

Console.WriteLine("Called by: {0}", caller);
}

}
...
dynamic x = new TypeUsedDynamically();
x.ShowCaller();

Listing 16.3 just prints Called by: Unknown as if the attribute weren’t present.
Although this may seem disappointing, consider the alternative: in order to work, the
compiler would need to embed the member name, filename, and line number into
every dynamic call that could possibly end up requiring the information. Overall, I
think the costs would outweigh the benefits for most developers. 

16.2.2 Logging

The most obvious case where caller information is useful is when writing to a log file.
Previously when logging, you would usually construct a stack trace (using System
.Diagnostics.StackTrace, for example) to find out where the log information came
from. This is normally hidden from view in logging frameworks, but it’s still there—
and ugly. It’s potentially an issue in terms of performance, and it’s brittle in the face of
JIT compiler inlining.

 It’s easy to see how a logging framework could make use of the new feature to

Listing 16.3 Attempting to use caller information attributes in an attribute declaration

Listing 16.4 Attempting to use caller information attributes with dynamic invocation
allow caller-only information to be logged very cheaply, even preserving line numbers
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and member names in the face of a build that had debug information stripped, and
even after obfuscation. This doesn’t help in cases where you want to log a full stack
trace, of course, but it doesn’t take away your ability to do that either.

 As I write, I’m not aware of any logging frameworks that have taken advantage of
this; it would require a build specifically targeting .NET 4.5, to start with, or a frame-
work with the attributes declared explicitly, as you’ll see in section 16.2.4. But it should
be easy to write your own wrapper classes that make use of whichever logging frame-
work you prefer and provide caller information. Over time, I’m sure the frameworks
will catch up and provide this functionality out of the box. 

16.2.3 Implementing INotifyPropertyChanged

The less obvious use of just one of these attributes, [CallerMemberName], may be very
obvious to you if you happen to implement INotifyPropertyChanged frequently. 

 The interface is very simple—it’s a single event of type PropertyChangedEvent-
Handler. This is a delegate type with the following signature:

public delegate void PropertyChangedEventHandler(Object sender,
                     PropertyChangedEventArgs e)

PropertyChangedEventArgs, in turn, has a single constructor: 

public PropertyChangedEventArgs(string propertyName)

A typical implementation of INotifyPropertyChanged before C# 5 might look some-
thing like the following.

class OldPropertyNotifier : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

private int firstValue;
public int FirstValue
{

get { return firstValue; }
set
{

if (value != firstValue)
{

firstValue = value;
NotifyPropertyChanged("FirstValue");

}
}

}

// Other properties with the same pattern

private void NotifyPropertyChanged(string propertyName)
{

PropertyChangedEventHandler handler = PropertyChanged;

Listing 16.5 Implementing INotifyPropertyChanged the old way
if (handler != null)
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{
handler(this, new PropertyChangedEventArgs(propertyName));

}
}

}

The purpose of the helper method is to avoid having to put the nullity check in each
property. You could easily make it an extension method to avoid repeating it on each
implementation, of course.

 This isn’t just long-winded (which hasn’t changed)—it’s brittle. The problem is
that the name of the property (FirstValue) is specified as a string literal, and if you
refactor the property name to something else, you could easily forget to change the
string literal. If you’re lucky, your tools and tests will help you spot the mistake, but it’s
still very ugly.

 With C# 5, the majority of the code stays the same, but you can make the compiler
fill in the property name by using CallerMemberName in the helper method, as follows.

// Within the setter
if (value != firstValue)
{

firstValue = value;
NotifyPropertyChanged();

}

...

void NotifyPropertyChanged([CallerMemberName] string propertyName = null)
{

// Exactly the same code as before
}

I’ve only shown the sections of the code that have changed—it’s that simple. Now
when you change the name of the property, the compiler will use the new name
instead. It’s not an earth-shattering improvement, but it’s nicer nonetheless. 

16.2.4 Using caller information attributes without .NET 4.5

Like extension methods, caller information attributes just let you ask the compiler to
mess with your code very slightly during the compilation process. They don’t use any
information you couldn’t provide yourself—you’d just need to be careful as you did
so. Just like extension methods, it’s possible to use them when targeting an earlier ver-
sion of .NET than the one that really contains the attributes—you just have to declare
the attributes yourself. This is as simple as copying the declaration from MSDN. The
attributes themselves don’t have any parameters, so you just need to provide an empty
body for the class declaration, which still has to be in the System.Runtime.Compiler-
Services namespace.

 The C# compiler will treat your user-provided attributes in exactly the same way as
it would treat the real ones in .NET 4.5. The downside of this approach is that you’ll

Listing 16.6 Implementing INotifyPropertyChanged using caller information
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run into problems if you ever build the same code against .NET 4.5. You’ll need to
remove your hand-crafted attributes at that point, to avoid confusing the compiler.

 If you’re using .NET 4, Silverlight 4 or 5, or Windows Phone 7.5, another option is
to use the Microsoft.Bcl NuGet package. This provides these attributes along with
several other handy types you might otherwise be pining for.

 And that’s it—C# 5 all wrapped up. 

16.3 Closing thoughts
The first two editions of C# in Depth closed with a chapter dedicated to the future as I
perceived it at the time of writing. If you own either (or both!) of those editions, you
may want to look back and have a quiet chuckle to yourself. I don’t think I said any-
thing outrageously wrong, but I clearly had little idea of how much things could
change in just a couple of years.

 I’d also like to point out that I had no clue what would be coming in either C# 4 or
C# 5 until they were announced by Microsoft. Both dynamic typing and asynchronous
functions came as big surprises to me. I had the good fortune of presenting my ideas
for C# 5 at a conference, with a few members of the C# team in attendance, and I’m
hugely pleased that they went their own way instead. In case I haven’t made myself
clear yet, async/await rocks as a feature, and it’s far beyond anything I could have come
up with.

 What’s in store for the industry? More mobile, more touch input, more distributed
cloud services, possibly augmented reality—these are all reasonably safe bets by now.
But if those are the most disruptive forces in the industry by the end of 2014, I’ll be
very disappointed. The best things in computing seem to come out of nowhere—after
many years of hard effort by the people involved, of course—and surprise everyone.

 The same sort of thing can be said for C#. I still have my wish-list of minor features,
and maybe C# 6 will be a tidy-up release, with many minor features instead of the
huge ones we’ve seen in the past. Maybe the language will be expanded in an extend-
able way, allowing other developers to create those minor features themselves. Or
maybe the new killer feature will be something that I didn’t even know I needed—yet
again.

 The C# and .NET teams have certainly not been idle. Even leaving aside C# 5 and
all the work required integrating .NET into the Windows 8 UI, we do know one project
they’ve been working hard on: Roslyn. Named as a pun on the orientation of Eric Lip-
pert’s office when he worked on the project, Roslyn is another name for the “compiler
as a service” idea that’s been talked about for so long. Roslyn will provide an API that
developers can use to analyze C# (or VB) code, modify it programmatically, compile it
into IL, and so on. I suspect relatively few developers will have any need for this, but
those who do will be immensely glad of it, and they’ll create wonderful things for the
rest of us. Imagine being able to write your own refactoring tools, more sophisticated
code convention analysis, code generation, and more—all with an API designed to be

powerful and performant enough to be the engine for future releases of Visual
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Studio. Perhaps more important for most of us, Roslyn gives the C# team a play-
ground in which it’s relatively easy to implement new features. Maybe they’ll become
even more adventurous and ambitious in the future!

 I can state one thing with a fair degree of certainty, though: I’ll continue to enjoy
writing about, talking about, and using C# for quite some time, whether or not the
language evolves any further. I find it hard to believe that programming will become
less interesting in the next decade.

 As in previous editions, I urge you to do awesome things. Write fabulously clear
code that your colleagues will love to work with. Develop the Next Big Thing in the
open source world. Help other developers on Stack Overflow. Talk to user groups,
conferences, friends, and anyone who will listen about whatever your passion may be.
I wish you the very best of luck in however many of these you undertake, and I hope
this book has provided some small measure of help in achieving your ambitions.



appendix A
LINQ standard
query operators

There are many standard query operators in LINQ, only some of which are sup-
ported directly in C# query expressions—the others have to be called manually as
normal methods. Some of the standard query operators are demonstrated in the
main text of the book, but they’re all listed in this appendix. 

 Most of the examples use the following two sample sequences:

string[] words = {"zero", "one", "two", "three", "four"};
int[] numbers = {0, 1, 2, 3, 4};

For completeness, I’ve included the operators we’ve already looked at, although in
most cases chapter 11 contains more detail on them than I’ve provided here. 

 The behavior specified here is that of LINQ to Objects; other providers may
work differently. For each operator, I’ve specified whether it uses deferred or
immediate execution. If an operator uses deferred execution, I’ve also indicated
whether it streams or buffers its data.

 A while ago, I reimplemented LINQ to Objects from scratch in a project called
Edulinq, blogging details about every single operator and considering possibilities
for optimization, lazy evaluation, and so on. For more detail than you’re ever likely
to want to know about LINQ to Objects, visit the Edulinq project home page at
http://edulinq.googlecode.com.

A.1 Aggregation
The aggregation operators (see table A.1) all result in a single value rather than a
sequence. Average and Sum operate either on a sequence of numbers (any of the
built-in numeric types) or on a sequence of elements with a delegate to convert
from each element to one of the built-in numeric types. Min and Max have overloads
for numeric types but can also operate on any sequence either using the default
comparer for the element type or using a conversion delegate. Count and Long-
Count are equivalent to each other, just with different return types. Both of these
have two overloads—one that just counts the length of the sequence, and one that
takes a predicate, and only elements matching the predicate are counted.
527
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The most generalized aggregation operator (shown in the bottom row of table A.1) is
just called Aggregate. All the other aggregation operators could be expressed as calls
to Aggregate, although it’d be relatively painful to do so. The basic idea is that there’s
always a “result so far,” starting with an initial seed. An aggregation delegate is applied
for each element of the input sequence; the delegate takes the result so far and the
input element, and produces the next result. As a final optional step, a conversion is
applied from the aggregation result to the return value of the method. This conver-
sion may result in a different type, if necessary. It’s not quite as complicated as it
sounds, but still you’re unlikely to use it often.

 All of the aggregation operators use immediate execution. The overload for Count
that doesn’t use a predicate is optimized for implementations of ICollection and
ICollection<T>; in that situation, it’ll use the Count property of the collection with-
out reading any data.1

A.2 Concatenation
There’s a single concatenation operator: Concat (see table A.2). As you might expect,
this operates on two sequences and returns a single sequence consisting of all the ele-
ments of the first sequence followed by all the elements of the second. The two input
sequences must be of the same type, execution is deferred, and all data is streamed.

Table A.1 Examples of aggregation operators

Expression Result

numbers.Sum() 10

numbers.Count() 5

numbers.Average() 2

numbers.LongCount(x => x % 2 == 0) 3 (as a long; there are three even numbers)

words.Min(word => word.Length) 3 ("one" and "two")

words.Max(word => word.Length) 5 ("three")

numbers.Aggregate("seed",
(current, item) => current + item,
result=> result.ToUpper())

"SEED01234"

Table A.2 Concat example

Expression Result

numbers.Concat(new[] {2, 3, 4, 5, 6}) 0, 1, 2, 3, 4, 2, 3, 4, 5, 6
1 There’s no such shortcut for LongCount. I’ve personally never seen this method used in LINQ to Objects.
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A.3 Conversion
The conversion operators cover a fair range of uses, but they all come in pairs.

 The examples in table A.3 use two additional sequences to demonstrate Cast and
OfType:

object[] allStrings = {"These", "are", "all", "strings"};
object[] notAllStrings = {"Number", "at", "the", "end", 5};

ToArray and ToList are fairly self-explanatory: they read the whole sequence into
memory, returning it either as an array or as a List<T>. Both use immediate execution.

Cast and OfType convert an untyped sequence into a typed one, either throwing an
exception (for Cast) or ignoring (for OfType) elements of the input sequence that
aren’t implicitly convertible to the output sequence element type using an unboxing
or reference conversion. This may also be used to convert typed sequences into more
specifically typed sequences, such as converting IEnumerable<object> to IEnumerable
<string>. These use deferred execution and stream their input data.

Table A.3 Conversion examples

Expression Result

allStrings.Cast<string>() "These", "are", "all", "strings"
(as IEnumerable<string>)

allStrings.OfType<string>() "These", "are", "all", "strings"
(as IEnumerable<string>)

notAllStrings.Cast<string>() Exception is thrown while iterating, at point of fail-
ing conversion

notAllStrings.OfType<string>() "Number", "at", "the", "end"
(as IEnumerable<string>)

numbers.ToArray() 0, 1, 2, 3, 4 (as int[])

numbers.ToList() 0, 1, 2, 3, 4 (as List<int>)

words.ToDictionary(w => w.Substring(0, 2)) Dictionary contents:
  "ze": "zero"
  "on": "one"
  "tw": "two"
  "th": "three"
  "fo": "four"

// Key is first character of word
words.ToLookup(word => word[0])

Lookup contents:
  'z': "zero"
  'o': "one"
  't': "two", "three"
  'f': "four"

words.ToDictionary(word => word[0]) Exception: can only have one entry per key, so 
fails on 't'
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ToDictionary and ToLookup both take delegates to obtain the key for any particu-
lar element. ToDictionary returns a dictionary mapping the key to the element type,
whereas ToLookup returns an appropriately typed ILookup<,>. A lookup is like a dic-
tionary where the value associated with a key isn’t one element but a sequence of ele-
ments. Lookups are generally used when duplicate keys are expected as part of
normal operation, whereas a duplicate key will cause ToDictionary to throw an
exception. More complicated overloads of both methods allow a custom IEquality-
Comparer<T> to be used to compare keys, and a conversion delegate to be applied to
each element before it’s put into the dictionary or lookup. Both of these methods use
immediate execution.

 There are two additional operators that I haven’t provided examples for:
AsEnumerable and AsQueryable. They don’t affect the results in an immediately obvi-
ous way, so they can’t really be demonstrated here. Instead, they affect the manner in
which the query is executed. Queryable.AsQueryable is an extension method on
IEnumerable that returns an IQueryable (both types being generic or nongeneric,
depending on which overload you pick). If the IEnumerable you call it on is already
an IQueryable, it returns the same reference; otherwise it creates a wrapper around
the original sequence. The wrapper allows you to use all the normal Queryable exten-
sion methods, passing in expression trees, but when the query is executed the expres-
sion tree is compiled into normal IL and executed directly, using the
LambdaExpression.Compile method shown in section 9.3.2.

Enumerable.AsEnumerable is an extension method on IEnumerable<T> and has a
trivial implementation, simply returning the reference it was called on. No wrappers
are involved—it just returns the same reference. This forces the Enumerable extension
methods to be used in subsequent LINQ operators. Consider the following query
expressions:

// Filter the users in the database with LIKE
from user in context.Users
where user.Name.StartsWith("Tim")
select user;

// Filter the users in memory
from user in context.Users.AsEnumerable()
where user.Name.StartsWith("Tim")
select user;

The second query expression forces the compile-time type of the source to be
IEnumerable<User> instead of IQueryable<User>, so all the processing is done in
memory instead of at the database. The compiler will use the Enumerable extension
methods (taking delegate parameters) instead of the Queryable extension methods
(taking expression tree parameters). Normally you want to do as much processing as
possible in SQL, but when there are transformations that require local code, you
sometimes have to force LINQ to use the appropriate Enumerable extension methods.
Of course, this isn’t specific to databases; the theme of forcing the tail of a query to
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use Enumerable is applicable for other providers too, if they’re based on IQueryable
or something similar. 

A.4 Element operators
This is another selection of query operators that are grouped in pairs (see table A.4).
This time, the pairs all work the same way. There’s a simple version that picks a single
element if it can or throws an exception if the specified element doesn’t exist, and a
version with OrDefault at the end of the name. All of these operators use immediate
execution.

The operator names are easily understood: First and Last return the first and last
elements of the sequence, respectively, throwing an InvalidOperationException if
the sequence is empty. Single returns the only element in a sequence, throwing an
exception if the sequence is empty or has more than one element. ElementAt returns
a specific element by index—the fifth element, for example. An ArgumentOutOf-
RangeException is thrown if the index is negative or too large for the actual number
of elements in the collection. In addition, there’s an overload for all of the operators
other than ElementAt to filter the sequence first—for example, First can return the
first element that matches a given condition.

 The OrDefault versions of these methods suppress the exceptions I’ve just
described (returning the default value for the element type instead) except in one

Table A.4 Single element selection examples

Expression Result

words.ElementAt(2) "two"

words.ElementAtOrDefault(10) null

words.First() "zero"

words.First(w => w.Length == 3) "one"

words.First(w => w.Length == 10) Exception: no matching elements

words.FirstOrDefault
(w =>w.Length == 10)

null

words.Last() "four"

words.Single() Exception: more than one element

words.SingleOrDefault() Exception: more than one element

words.Single(word => word.Length == 5) "three"

words.Single(word => word.Length == 10) Exception: no matching elements

words.SingleOrDefault
(w =>w.Length == 10)

null
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case: SingleOrDefault will return a default value if the sequence is empty, but if
there’s more than one element, it’ll still throw an exception, just like Single. This is
designed for situations where if everything’s correct, the sequence will have zero or
one element. If you want to cope with sequences that may have more elements, use
FirstOrDefault instead.

 All of the overloads that don’t have a predicate parameter are optimized for
instances of IList<T>, as they can access the correct element without iterating.
There’s no optimization when a predicate is involved—it wouldn’t make sense for
most calls, although it could make a big difference when finding the last matching ele-
ment in a list, by moving backward from the end. At the time of writing, that case isn’t
optimized, but it could change in a future version. 

A.5 Equality
There’s only one standard equality operator: SequenceEqual (see table A.5). This just
compares two sequences for element-by-element equality, including order. For
instance, the sequence 0, 1, 2, 3, 4 isn’t equal to 4, 3, 2, 1, 0. An overload allows a spe-
cific IEqualityComparer<T> to be used when comparing elements. The return value
is a Boolean, and it’s computed with immediate execution.

Again, LINQ to Objects misses a trick here in terms of optimization: if both sequences
have an efficient way of retrieving their counts, it would make sense to check whether
those are equal before comparing the elements themselves. As it is, the implementa-
tion just walks through both sequences until it reaches the end or finds an inequality. 

A.6 Generation
Of all the generation operators (see table A.6), only one acts on an existing sequence:
DefaultIfEmpty. This returns either the original sequence if it’s not empty, or a
sequence with a single element otherwise. The element is normally the default value
for the sequence type, but an overload allows you to specify which value to use.

Table A.5 Sequence equality examples

Expression Result

words.SequenceEqual
(new[]{"zero","one","two","three","four"})

True

words.SequenceEqual
(new[]{"ZERO","ONE","TWO","THREE","FOUR"})

False

words.SequenceEqual
(new[]{"ZERO","ONE","TWO","THREE","FOUR"},
StringComparer.OrdinalIgnoreCase)

True
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 There are three other generation operators that are just static methods in
Enumerable:

 Range generates a sequence of integers, with the parameters specifying the first
value and how many values to generate.

 Repeat generates a sequence of any type by repeating a specified single value
for a specified number of times.

 Empty generates an empty sequence of any type.

All of the generation operators use deferred execution and stream their output—in
other words, they don’t just prepopulate a collection and return that. The exception is
Empty, which returns an empty array of the correct type. An empty array is completely
immutable, so the same array can be returned for every call for the same element type.

A.7 Grouping
There are two grouping operators, but one of them is ToLookup, which you’ve already
seen in section A.3 as a conversion operator. That just leaves GroupBy, which we exam-
ined in section 11.6.1 in the form of the group … by clause in query expressions. It
uses deferred execution but buffers its results: when you start iterating over the result-
ing sequence of groups, the whole of the input is consumed.

 The result of GroupBy is a sequence of appropriately typed IGrouping<,> ele-
ments. Each element has a key and a sequence of elements that match that key. In
many ways, this is just a different way of looking at a lookup—instead of having ran-
dom access to the groups by key, the groups are enumerated in turn. The order in
which the groups are returned is the order in which their respective keys are discov-
ered. Within a group, the order is the same as in the original sequence.

GroupBy has a daunting number of overloads, allowing you to specify not only how
a key is derived from an element (which is always required) but also optionally the
following:

 How to compare keys.

Table A.6 Generation examples

Expression Result

numbers.DefaultIfEmpty() 0, 1, 2, 3, 4

new int[0].DefaultIfEmpty() 0 (within an IEnumerable<int>)

new int[0].DefaultIfEmpty(10) 10 (within an IEnumerable<int>)

Enumerable.Range(15, 2) 15, 16

Enumerable.Repeat(25, 2) 25, 25

Enumerable.Empty<int>() An empty IEnumerable<int>
 A projection from an original element to the element within a group.
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 A projection that takes both a key and a sequence of matching elements. 
The overall result in this case is a sequence of elements of the result type of
the projection.

Table A.7 contains examples of the second and third options, as well as the simplest
form. Custom key comparisons are slightly more long-winded to demonstrate, but
they work in the obvious way.

The option specified by the last bullet point is rarely used, in my experience. 

A.8 Joins
Two operators are specified as join operators, Join and GroupJoin, both of which you
saw in section 11.5 using the join and join … into query expression clauses, respec-
tively. Each method takes several parameters: two sequences, a key selector for each
sequence, a projection to apply to each matching pair of elements, and optionally a
key comparison.

 For Join the projection takes one element from each sequence and produces a
result; for GroupJoin the projection takes an element from the left sequence and a
sequence of matching elements from the right sequence. Both use deferred execution
and stream the left sequence but read the right sequence in its entirety when the first
result is requested.

 For the join examples in table A.8, we’ll match a sequence of names (Robin, Ruth,
Bob, Emma) against a sequence of colors (Red, Blue, Beige, Green) by looking at the
first character of both the name and the color, so Robin will join with Red and Bob
will join with both Blue and Beige, for example.

 Note that Emma doesn’t match any of the colors—the name doesn’t appear at all
in the results of the first example, but it does appear in the second, with an empty
sequence of colors. 

Table A.7 GroupBy examples

Expression Result

words.GroupBy(word => word.Length) Key: 4; Sequence: "zero", "four"
Key: 3; Sequence: "one", "two"
Key: 5; Sequence: "three"

words.GroupBy
(word => word.Length, // Key
word => word.ToUpper() // Group element

)

Key: 4; Sequence: "zero", "four"
Key: 3; Sequence: "one", "two"
Key: 5; Sequence: "three"

// Project each (key, group) pair to string
words.GroupBy

(word => word.Length,
(key, g) => key + ": " + g.Count())

"4: 2", "3: 2", "5: 1"
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A.9 Partitioning
The partitioning operators either skip an initial part of the sequence, returning only
the rest, or take only the initial part of a sequence, ignoring the rest. In each case, you
can either specify how many elements are in the first part of the sequence or specify a
condition—the first part of the sequence continues until the condition fails. After the
condition fails for the first time, it isn’t tested again—it doesn’t matter whether later
elements in the sequence match. All of the partitioning operators use deferred execu-
tion and stream their data.

 Partitioning effectively divides the sequence into two distinct parts, either by posi-
tion or by predicate. In each case, if you concatenate the results of Take or TakeWhile
with the results of the corresponding Skip or SkipWhile, providing the same argu-
ment to both calls, you’ll end up with the original sequence: each element will occur
exactly once, in the original order. This is demonstrated by the calls in table A.9.

Table A.8 Join examples

Expression Result

names.Join // Left sequence
(colors, // Right sequence
name => name[0], // Left key selector
color=> color[0], // Right key selector
// Projection for result pairs
(name, color) => name + " - " + color

)

"Robin - Red",
"Ruth - Red",
"Bob - Blue",
"Bob - Beige"

names.GroupJoin
(colors,
name => name[0],
color => color[0],
// Projection for key/sequence pairs
(name, matches) => name + ": " +

string.Join("/", matches.ToArray())
)

"Robin: Red",
"Ruth: Red",
"Bob: Blue/Beige",
"Emma: "

Table A.9 Partitioning examples

Expression Result

words.Take(2) "zero", "one"

words.Skip(2) "two", "three", "four"

words.TakeWhile(word => word.Length <= 4) "zero", "one", "two"

words.SkipWhile(word => word.Length <= 4) "three", "four"
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A.10 Projection
You’ve seen two projection operators (Select and SelectMany) in chapter 11. Select
is a simple one-to-one projection from a source element to a result element. Select-
Many is used when there are multiple from clauses in a query expression; each element
in the original sequence is used to generate a new sequence. Both projection opera-
tors (see table A.10) use deferred execution.

There are additional overloads you didn’t see in chapter 11. Both methods have over-
loads that allow the index within the original sequence to be used in the projection,
and SelectMany either flattens all of the generated sequences into a single sequence
without including the original element at all, or it uses a projection to generate a
result element for each pair of elements. Multiple from clauses always use the over-
load that takes a projection. (Examples of this are long-winded and not included here.
See chapter 11 for more details.)

 .NET 4 introduced a new operator called Zip. This isn’t officially a standard query
operator according to MSDN, but it’s worth knowing about anyway. It takes two
sequences and applies the specified projection to each pair: the first element from
each sequence, then the second element from each sequence, and so on. The result-
ing sequence finishes when either of the source sequences does. Table A.11 shows two
examples of Zip, using the names and colors from section A.8. Zip uses deferred exe-
cution and streams its data.

Table A.10 Projection examples

Expression Result

words.Select(word => word.Length) 4, 3, 3, 5, 4

words.Select
((word, index) =>
index.ToString() + ": " +word)

"0: zero", "1: one", "2: two",
"3: three", "4: four"

words.SelectMany
(word => word.ToCharArray())

'z', 'e', 'r', 'o', 'o', 'n', 'e', 't',
'w', 'o', 't', 'h', 'r', 'e', 'e', 'f',
'o', 'u', 'r'

words.SelectMany
((word, index) =>
Enumerable.Repeat(word, index))

"one", "two", "two",
"three", "three", "three",
"four", "four", "four", "four"

Table A.11 Zip examples

Expression Result

names.Zip(colors, (x, y) => x + "-" + y) "Robin-Red",
"Ruth-Blue",
"Bob-Beige",
"Emma-Green"
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A.11 Quantifiers
The quantifier operators shown in table A.12 all return a Boolean value, using imme-
diate execution:

 All checks whether all the elements in the sequence satisfy the given predicate.
 Any checks whether any of the elements in the sequence satisfy the given predi-

cate, or whether there are any elements at all for the parameterless overload.
 Contains checks whether the sequence contains a particular element, option-

ally specifying a comparison to use.

Any is a particularly useful operator that’s often forgotten. If you’re trying to find out
whether a sequence contains any items (or any items matching a predicate), it’s much
better to use source.Any(...) than source.Count(...) > 0. They should give the
same results, but Any can stop as soon as it’s found the first item, whereas Count has to
count all the items, even though you only need to know whether the result is nonzero.

 The overload for Contains that doesn’t specify a custom comparison is optimized
if the source implements ICollection<T> by delegating to the interface implementa-
tion. This means Enumerable.Contains() will still be fast when called on a Hash-
Set<T>, for example. 

// Second sequence stops early
names.Zip(colors.Take(3),

(x, y) => x + "-" + y)

"Robin-Red",
"Ruth-Blue",
"Bob-Beige"

Table A.12 Quantifier examples

Expression Result

words.All(word => word.Length > 3) false ("one" and "two" have exactly three 
letters)

words.All(word => word.Length > 2) true

words.Any() true (the sequence isn’t empty)

words.Any(word => word.Length == 6) false (no six-letter words)

words.Any(word => word.Length == 5) true ("three" satisfies the condition)

words.Contains("FOUR") false

words.Contains("FOUR",
StringComparer.OrdinalIgnoreCase)

true

Table A.11 Zip examples (continued)

Expression Result
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A.12 Filtering
The two filtering operators are OfType and Where. For details and examples of the
OfType operator, see section A.3. The Where operator returns a sequence containing
all the elements matching the given predicate. It has an overload to allow the predi-
cate to take account of the element’s index. It’s unusual to require the index, and the
where clause in query expressions doesn’t use this overload. Where always uses
deferred execution and streams its data. Table A.13 demonstrates both overloads.

A.13 Set-based operators
It’s natural to be able to consider two sequences as sets of elements. The four set-
based operators all have two overloads, one using the default equality comparison for
the element type, and one where the comparison is specified in an extra parameter.
All of them use deferred execution.

 The Distinct operator is the simplest—it acts on a single sequence and just returns
a new sequence of all the distinct elements, discarding duplicates. The other operators
also make sure they only return distinct values, but they act on two sequences:

 Intersect returns elements that appear in both sequences.
 Union returns the elements that are in either sequence.
 Except returns elements that are in the first sequence but not in the second.

(Elements that are in the second sequence but not the first are not returned.)

The examples of these operators in table A.14 use two new sequences: abbc ("a",
"b", "b", "c") and cd ("c", "d").

Table A.13 Filtering examples

Expression Result

words.Where(word => word.Length > 3) "zero", "three", "four"

words.Where
((word, index) => index < word.Length)

"zero", // index=0, length=4
"one", // index=1, length=3
"two", // index=2, length=2
"three", // index=3, length=5
// Not "four", index=4, length=4

Table A.14 Set-based examples

Expression Result

abbc.Distinct() "a", "b", "c"

abbc.Intersect(cd) "c"

abbc.Union(cd) "a", "b", "c", "d"

abbc.Except(cd) "a", "b"
cd.Except(abbc) "d"
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All of these operators use deferred execution, but the buffering/streaming distinction
is slightly more complicated. Distinct and Union both stream their input sequences,
whereas Intersect and Except read the whole of the right input sequence to start
with, but then stream the left input sequence in a way similar to the join operators. All
these operators keep a set of the elements they’ve already returned so as not to return
duplicates. This means that even Distinct and Union are unsuitable for sequences
that are too large to fit into memory, unless you know that there will be a limited set of
distinct elements. 

A.14 Sorting
You’ve seen all the sorting operators before: OrderBy and OrderByDescending provide
a primary ordering, whereas ThenBy and ThenByDescending provide subsequent
orderings for elements that aren’t differentiated by the primary one. In each case a
projection is specified from an element to its sorting key, and a comparison (between
keys) can also be specified. Unlike some other sorting algorithms in the framework
(such as List<T>.Sort), the LINQ orderings are stable—in other words, if two ele-
ments are regarded as equal in terms of their sorting key, they’ll be returned in the
order they appeared in the original sequence.

 The final sorting operator is Reverse, which simply reverses the order of the
sequence. All of the sorting operators (see table A.15) use deferred execution, but
buffer their data.

Table A.15 Sorting examples

Expression Result

words.OrderBy(word => word) "four", "one", "three",
"two", "zero"

// Order words by second character
words.OrderBy(word => word[1])

"zero", "three", "one",
"four", "two"

// Order words by length;
// equal lengths returned in original
// order
words.OrderBy(word => word.Length)

"one", "two", "zero",
"four", "three"

words.OrderByDescending
(word => word.Length)

"three", "zero",s
"four", "one", "two"

// Order words by length and then
// alphabetically
words.OrderBy(word => word.Length)

.ThenBy(word => word)

"one", "two", "four",
"zero", "three"

// Order words by length and then
// alphabetically backwards
words.OrderBy(word => word.Length)
 .ThenByDescending(word => word)

"two", "one", "zero",
"four", "three"

words.Reverse() "four", "three", "two",

"one", "zero"



 appendix B
Generic collections

in .NET
There are many generic collections in .NET, and the list has grown over time. This
appendix covers the most important generic collection interfaces and classes you
need to know about. There are additional nongeneric collections in System
.Collections, System.Collections.Specialized and System.ComponentModel,
but I won’t cover those here. Likewise, I won’t mention the LINQ interfaces, such as
ILookup<TKey, TValue>. This appendix is more reference than guidance—think
of it as an alternative to navigating around MSDN while you’re coding. Obviously
MSDN will provide more details in most cases, but the aim here is to allow you to
quickly skim over the various interfaces and implementations available when
choosing a particular collection to use in your code.

 I haven’t indicated the thread-safety of each collection, but MSDN can provide
more details. None of the normal collections support multiple concurrent writers;
some support a single writer with concurrent readers. Section B.6 lists the concur-
rent collections that were added to .NET 4. Additionally, section B.7 discusses the
read-only collection interfaces introduced in .NET 4.5.

B.1 Interfaces
Almost all the interfaces you need to know about are in the System.Collections
.Generic namespace. Figure B.1 shows how the major interfaces prior to .NET 4.5
are related; I’ve included the nongeneric IEnumerable as the interface root as well.
This doesn’t include the read-only interfaces in .NET 4.5, as the diagram would have
been too complicated to be useful.

 As you’ve already seen several times, the most fundamental generic collection
interface is IEnumerable<T>, representing a sequence of items that can be iterated
over. IEnumerable<T> allows you to ask for an iterator of type IEnumerator<T>. The
separation between the iterable sequence and the iterator enables multiple itera-
tors to run independently over the same sequence at the same time. If you want to
think in database terms, a table is an IEnumerable<T>, whereas a cursor is an
IEnumerator<T>. These are the only variant collection interfaces covered in this
540
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541APPENDIX B Generic collections in .NET

the other interfaces involve values of the element type going both in and out of mem-
bers, so they have to be invariant.

 Next comes ICollection<T>—this extends IEnumerable<T> but adds two proper-
ties (Count and IsReadOnly), mutation methods (Add, Remove, and Clear), CopyTo
(which copies the contents to an array), and Contains (which determines if the col-
lection contains a particular element). All the standard generic collection implemen-
tations implement this interface.

IList<T> is all about positioning: it provides an indexer, InsertAt and RemoveAt
(to match Add/Remove but with positions), and IndexOf (to determine the position of
an element within the collection). Iterating over an IList<T> will generally return the
item at index 0, then index 1, and so on. This isn’t thoroughly documented, but it’s a
reasonable assumption to make. Likewise, it’s usually expected that random access to
an IList<T> by index is efficient.

IDictionary<TKey, TValue> represents a mapping from a unique key to a value for
that key. The values don’t have to be unique, and may be null; keys can’t be null. Dic-
tionaries can be regarded as collections of key/value pairs, which is why IDictionary
<TKey, TValue> extends ICollection<KeyValuePair<TKey, TValue>>. Values can be
retrieved with the indexer or TryGetValue; unlike the nongeneric IDictionary type, if
you attempt to fetch the value for a missing key, the indexer of IDictionary<TKey,
TValue> throws a KeyNotFoundException. The purpose of TryGetValue is to allow you

Figure B.1 Interfaces in System.Collections.Generic, up to .NET 4
to detect missing keys in situations where it’s expected in normal operation.
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ISet<T> is a new interface in .NET 4, representing a distinct set of values. It’s been
retroactively applied to HashSet<T> from .NET 3.5, and .NET 4 introduces a new
implementation—SortedSet<T>.

 Usually it’s fairly clear which interface (and even implementation) you want to use
when implementing functionality. It can be significantly harder to decide how to expose
that collection as part of an API; the more specific you are in what you return, the more
your callers will be able to rely on additional functionality specified by those types. This
may make the caller’s life easier, at the expense of future flexibility within your imple-
mentation. I usually prefer to use interfaces for the return types of methods and prop-
erties, rather than guaranteeing a particular implementation class. You should also
think carefully before exposing a mutable collection in an API, particularly if that col-
lection represents part of the state of the object or type. Returning either a copy or a
read-only wrapper around the collection is usually preferable, unless the whole pur-
pose of the method is to allow mutation via the returned collection. 

B.2 Lists
In many ways, lists are the simplest and most natural type of collection. There are
many implementations in the framework, with different abilities and performance
characteristics. A few big-hitters are used all over the place, and some more esoteric
ones are used for specialist situations.

B.2.1 List<T>

List<T> is the default choice for lists in most cases. It implements IList<T> and
therefore ICollection<T>, IEnumerable<T>, and IEnumerable. Additionally, it imple-
ments the nongeneric ICollection and IList interfaces, boxing and unboxing as
required, and performing execution-time type checks to make sure that new elements
are always of a type that’s compatible with T.

 Internally List<T> stores an array, and it keeps track of both the logical size of the
list and the size of the backing array. Adding an element is either a simple case of set-
ting the next value in the array, or (if the array is already full) copying the existing
contents into a new, bigger array and then setting the value. This means the operation
has complexity of O(1) or O(n) depending on whether the values need to be copied.
The expansion strategy isn’t documented—and therefore isn’t guaranteed—but in
practice the approach has always been to expand to double the newly required size.
This results in an amortized complexity of O(1) for appending an item to the end of the
list; sometimes it’ll be more, but that becomes increasingly rare as the list grows larger.

 You can explicitly manage the size of the backing array by getting and setting the
Capacity property; the TrimExcess method has the effect of making the capacity
exactly equal to the current size. In practice, this is rarely necessary, but if you already
know the eventual size of the list when you create it, you can pass an initial capacity
into the constructor, avoiding unnecessary copying.
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 Removing an element from a List<T> requires all the later elements to be copied
down, so its complexity is O(n – k) where k is the index of the element you’re remov-
ing; trimming the tail of a list is cheaper than removing the head. On the other hand,
if you’re trying to remove an element by value instead of by index (Remove rather than
RemoveAt), you’ll effectively end up with an O(n) operation wherever the element is:
each element has to be either checked for equality or shuffled down.

 Various methods on List<T> act as a sort of precursor to LINQ. ConvertAll proj-
ects one list into another; FindAll filters the original list into a new list containing
only the values that match the specified predicate. Sort performs a sort using either
the default equality comparer for the type or one specified as an argument. There’s a
big difference between Sort and the OrderBy of LINQ, though: Sort modifies the con-
tents of the original list, rather than yielding an ordered copy. Also, Sort is unstable,
whereas OrderBy is stable; equal elements in the original list may be reordered when
using Sort. One aspect of List<T> that isn’t supported by LINQ is binary search: if you
have a list that’s already sorted in the right way for the value you’re looking for, the
BinarySearch method is more efficient than using the linear IndexOf search.1

 One somewhat controversial aspect of List<T> is the ForEach method. This does
exactly what it sounds like—it iterates over the list and executes a delegate (specified
as an argument to the method) for each value. Many developers have requested that
this be added as an extension method for IEnumerable<T>, but this suggestion has
been resisted so far; Eric Lippert makes the case for it being philosophically troubling
on his blog (see http://mng.bz/Rur2). Calling ForEach using a lambda expression
seems overkill to me; on the other hand, if you already have a delegate you want to
execute on each element on the list, you might as well get ForEach to do that for you,
as it’s already there. 

B.2.2 Arrays

Arrays are in some senses the lowest level of collection in .NET. All arrays derive
directly from System.Array, and they’re the only collections with direct support in the
CLR. Single-dimensional arrays implement IList<T> (and the interfaces it extends)
and the nongeneric IList and ICollection interfaces; rectangular arrays only sup-
port the nongeneric interfaces. Arrays are always mutable in terms of their elements,
but always fixed in terms of their size. All the mutating methods of the collection
interfaces (such as Add and Remove) are explicitly implemented and throw Not-
SupportedException.

 Arrays of reference types are always covariant; there’s an implicit conversion from
a Stream[] reference to Object[], for example, and an explicit conversion the other
way around.2 This means that changes to the array have to be verified at execution
time—the array itself knows what type it is, so if you try to store a non-Stream

1 Binary search is O(log n) complexity; a linear search is O(n).
2 Somewhat confusingly, this also means there’s an implicit conversion from Stream[] to IList<Object>,
even though IList<T> itself is invariant.

http://mng.bz/Rur2
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reference in a Stream[] by converting the array reference to an Object[] first, an
ArrayTypeMismatchException will be thrown.

 There are two different flavors of array as far as the CLR is concerned. A vector is a
single-dimensional array with a lower bound of 0; anything else counts as an array. Vec-
tors perform better and are what you almost always use in C#. An array of the form
T[][] is still a vector, but with an element type of T[]; only rectangular arrays in C#,
such as new string[10, 20], end up as arrays in CLR terminology. You can’t create an
array with a nonzero lower bound directly in C#—you have to use Array.Create-
Instance, which allows you to specify lower bounds, lengths, and the element type
individually. If you create a single-dimensional array with a nonzero lower bound, you
can’t then successfully cast it to T[]—the compiler will allow the cast, but it will fail at
execution time.

 The C# compiler has built-in support for arrays in a number of ways. Not only does
it know about how to create and index them, but it also supports them directly in
foreach loops; if you iterate using an expression that’s known to be an array at com-
pile time, that iteration will use the Length property and the array indexer, rather
than creating an iterator object. This is more efficient, but the performance differ-
ence is usually negligible.

 Like List<T>, arrays support methods such as ConvertAll, FindAll, and Binary-
Search, although in the case of arrays, these are static methods of the Array class, tak-
ing the array as the first parameter.

 To come back to my first point, arrays are pretty low-level data structures. They’re
important as the building blocks for many other collections, and they’re efficient in
appropriate situations, but you should think twice before using them too heavily.
Again, Eric has blogged on this topic, labeling them “somewhat harmful” (see http://
mng.bz/3jd5). I don’t want to overstate this point, but it’s worth being aware of the
shortcomings of arrays when choosing a collection type. 

B.2.3 LinkedList<T>

When is a list not a list? When it’s a linked list. LinkedList<T> is a list in many ways—
in particular, it’s a collection that maintains the order in which you add items—but it
doesn’t implement IList<T>. This is because it doesn’t obey the implied contract of
efficient access by index. It’s a classical computer science doubly linked list: it main-
tains a head node and a tail node, and each node has a reference to the next and pre-
vious node within the list. Each node is exposed as a LinkedListNode<T>, which is
handy if you want to maintain an insertion/removal point somewhere in the middle of
the list. The list explicitly maintains a size, so accessing the Count property is efficient.

 Linked lists are inefficient in terms of space compared with array-backed lists, and
they don’t support indexed operations, but they’re fast at inserting or removing ele-
ments at arbitrary points in the list, as long as you have a reference to the node at the
relevant point. These operations have O(1) complexity, as all that’s required is fixing

up the next/previous references in the surrounding nodes. Inserting or removing

http://mng.bz/3jd5
http://mng.bz/3jd5
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from the head or tail of the list is just a special case of this, where there’s always imme-
diate access to the node you need to change. Iterating (either forward or backward) is
also efficient, as it’s just a matter of following the chain of references.

 Although LinkedList<T> implements the standard methods, such as Add (which
adds to the tail of the list), I’d suggest using the explicit AddFirst and AddLast meth-
ods to make it clear exactly what’s going on. There are matching RemoveFirst and
RemoveLast methods, and First and Last properties. All of these return the nodes
within the list rather than the values of those nodes; the properties return a null refer-
ence if the list is empty. 

B.2.4 Collection<T>, BindingList<T>, ObservableCollection<T>, 
and KeyedCollection<TKey, TItem>

Collection<T> is a member of the System.Collections.ObjectModel namespace, as
are all the remaining lists we’ll look at. Like List<T>, it implements both the generic
and nongeneric collection interfaces.

 Though you can use Collection<T> on its own, it’s more commonly used as a base
class. It always acts as a wrapper to another list: you either specify one in the construc-
tor, or a new List<T> will be created behind the scenes. All mutating actions on the
collection go through protected virtual methods (InsertItem, SetItem, RemoveItem,
and ClearItems); derived classes can intercept these methods, raising events or pro-
viding other custom behavior. The wrapped list is accessible to derived classes via the
Items property. If this list is read-only, the public mutating methods throw an excep-
tion rather than calling the virtual methods; you don’t need to recheck this when you
override them.

BindingList<T> and ObservableCollection<T> derive from Collection<T> in
order to provide binding capabilities. BindingList<T> has been available since
.NET 2.0, but ObservableCollection<T> was introduced with Windows Presentation
Foundation (WPF). Of course, you don’t have to use them for data binding in user
interfaces—you may have your own reasons to be interested in changes to a list. In
that case, you should see which collection provides notifications in a more useful form
when you’re deciding which to use. Note that you’ll only be notified of changes that
occur through the wrapper; if the underlying list is shared with other code that may
modify it on its own, that won’t raise any events in the wrapper.

KeyedCollection<TKey, TItem> is a sort of hybrid between a list and a dictionary,
allowing an item to be fetched by key as well as by index. Unlike normal dictionaries,
the key should be effectively embedded within the item, rather than being indepen-
dent. In many cases this is natural; for example, you might have a Customer type with
a CustomerID property. KeyedCollection<,> is an abstract class; derived classes imple-
ment the GetKeyForItem method to provide a way of extracting a key from any item
added to the collection. In our customer scenario, the GetKeyForItem method would
just return the ID for the given customer. Just like a dictionary, the key must be unique
within the collection—attempting to add another item with the same key will fail with
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an exception. Although null keys aren’t permitted, GetKeyForItem can return null (if
the key type is a reference type), in which case the key will be ignored (and the item
won’t be fetchable by its key). 

B.2.5 ReadOnlyCollection<T> and ReadOnlyObservableCollection<T>

Our final two lists are more wrappers, providing read-only access even when the
underlying list is mutable. Again, both generic and nongeneric collection interfaces
are implemented. A mixture of explicit and implicit interface implementation is used
so that callers using a compile-time expression of the concrete type will be discour-
aged from using mutating operations that will fail.

ReadOnlyObservableCollection<T> derives from ReadOnlyCollection<T> and
implements the same INotifyCollectionChanged and INotifyPropertyChanged
interfaces as ObservableCollection<T>. A ReadOnlyObservableCollection<T>

instance can only be constructed with an ObservableCollection<T> backing list.
Even though the collection is still read-only for callers, they can observe changes
made elsewhere to the backing list.

 Though usually I’d advise using an interface when deciding the return type of
methods in an API, it can be useful to deliberately expose ReadOnlyCollection<T> to
provide a clear indication to callers that they won’t be able to modify the returned col-
lection. But you’ll still need to document whether the underlying collection could be
changed elsewhere, or whether it’s effectively constant. 

B.3 Dictionaries
The choices for dictionaries in the framework are much more limited than those of lists.
There are only three mainstream nonconcurrent implementations of IDictionary
<TKey, TValue>, although it’s also implemented by ExpandoObject (as you saw in
chapter 14), ConcurrentDictionary (which we’ll look at along with the other concur-
rent collections), and RouteValueDictionary (used for routing web requests, particu-
larly in ASP.NET MVC).  

 Just as a reminder, the primary purpose of a dictionary is to provide an efficient
lookup from a key to a value.

B.3.1 Dictionary<TKey, TValue>

Unless you have specialist requirements, Dictionary<TKey, TValue> is the default
choice of dictionary in much the same way that List<T> is the default list implementa-
tion. It uses a hash table to implement an efficient lookup, although this means that
the efficiency of the dictionary depends on how good your hashing function is. You
can either use the default hashing and equality functions (calls to Equals and Get-
HashCode within the key objects themselves) or specify an IEqualityComparer<TKey>
as a constructor argument. 

 The simplest use case is to implement a dictionary with string keys, which uses the

keys in a case-insensitive way, as shown in the following code:



547APPENDIX B Generic collections in .NET

var comparer = StringComparer.OrdinalIgnoreCase;
var dict = new Dictionary<String, int>(comparer);
dict["TEST"] = 10;
Console.WriteLine(dict["test"]);

Although the keys within a dictionary have to be unique, the hash codes don’t. It’s
perfectly acceptable for two unequal keys to have the same hash; this is known as a
hash collision, and although it reduces the efficiency of the dictionary slightly, it’ll still
function correctly. The dictionary will fail if the keys are mutable and change their
hash codes after they’ve been inserted into the dictionary. Mutable dictionary keys are
almost always a bad idea, but if you absolutely have to use them, make sure you don’t
change them after insertion.

 The exact details of the implementation of the hash table are unspecified and may
change over time, but one important aspect can cause confusion: there’s no ordering
guarantee within Dictionary<TKey, TValue>, even though it might appear that way. If you
add items to a dictionary and then iterate over it, you may see the items come out in
the insertion order, but please don’t rely on it. It’s somewhat unfortunate that as a quirk
of the implementation, simply adding entries without ever deleting any tends to pre-
serve order—an implementation that happened to scramble the order naturally
would probably cause less confusion.

 Like List<T>, Dictionary<TKey, TValue> keeps its entries in an array and
expands this when it needs to, leading to amortized O(1) expansion. Access by key is
also O(1) assuming a reasonable hash; if all the keys have the same hash code, you’ll
end up with O(n) access because the dictionary has to check each key in turn for
equality. In most practical scenarios, this isn’t an issue. 

B.3.2 SortedList<TKey, TValue> and SortedDictionary<TKey, TValue>

A casual observer might imagine that a class named SortedList<,> would be a list…
but no. Both of these types are actually dictionaries, and neither implements
IList<T> at all. It might be more informative for them to be named ListBacked-
SortedDictionary and TreeBackedSortedDictionary, but it’s too late to change now.

 There’s a lot of commonality between these two classes: both use an IComparer
<TKey> instead of an IEqualityComparer<TKey> to compare keys, and both maintain
the keys in a sorted fashion, based on that comparison. Both have O(log n) perfor-
mance when finding values, effectively performing a binary search. But their internal
data structures are very different: SortedList<,> maintains an array of entries that’s
kept sorted, whereas SortedDictionary<,> uses a red-black tree structure (see the
Wikipedia entry at http://mng.bz/K1S4). This leads to significant differences in
insertion and removal times as well as memory efficiency. If you’re creating a diction-
ary from mostly sorted data, a SortedList<,> will populate efficiently; if you imagine
the steps involved in keeping a List<T> sorted, you can see that adding a single item
to the end of the list is cheap (O(1) if you ignore expansion), whereas adding items
randomly is expensive, because it involves copying existing items (O(n) in the worst

Outputs 10
case). Adding items to the balanced tree in a SortedDictionary<,> is always fairly

http://mng.bz/K1S4
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cheap (O(log n) complexity), but it involves a separate tree node on the heap for
each entry, leading to more overhead and memory fragmentation than the array of
key/value entry structures in a SortedList<,>.

 Both collections expose their keys and values as separate collections, and in both
cases the returned collection is live in that it’ll change as the underlying dictionary
changes. But the collections exposed by a SortedList<,> implement IList<T>, so
you can effectively access entries by sorted key index if you really want to.

 I don’t want to put you off too much with all this talk of complexity. Unless you
have a very large amount of data, you probably don’t need to worry much about which
implementation you use. If you are likely to have vast numbers of entries in your dic-
tionary, you should carefully analyze the performance characteristics of both collec-
tions to work out which one to use. 

B.3.3 ReadOnlyDictionary<TKey, TValue>

Once you’re familiar with ReadOnlyCollection<T>, which we discussed in section
B.2.5, ReadOnlyDictionary<TKey, TValue> should hold no surprises for you. Again,
it’s simply a wrapper around an existing collection (an IDictionary<TKey, TValue>
this time) that hides all mutating operations behind explicit interface implementa-
tion and throws a NotSupportedException if they’re called anyway. 

 As with the read-only lists, this really is just a wrapper; if the underlying collection
(the one passed to the constructor) is modified, those modifications will be visible
through the wrapper. 

B.4 Sets
Prior to .NET 3.5, there was no public set collection in the framework at all. When
developers needed something to represent a set in .NET 2.0, they’d typically use a
Dictionary<,>, using the set items as keys and providing dummy values. This situation
was improved somewhat with HashSet<T> in .NET 3.5, and now .NET 4 has added a
SortedSet<T> and a common ISet<T> interface. Although logically a set interface
could consist merely of Add/Remove/Contains operations, ISet<T> specifies a number
of other operations to manipulate the set (ExceptWith, IntersectWith, Symmetric-
ExceptWith, and UnionWith) and to test for various more complex conditions (Set-
Equals, Overlaps, IsSubsetOf, IsSupersetOf, IsProperSubsetOf, and IsProper-
SupersetOf). The parameters for all of these methods are expressed in terms of
IEnumerable<T> rather than ISet<T>, which is initially surprising, but it means that
sets interact with LINQ in a natural way.

B.4.1 HashSet<T>

A HashSet<T> is effectively a Dictionary<,> without the values. It has the same per-
formance characteristics, and again you can specify an IEqualityComparer<T> to cus-
tomize how items are compared. Again, you must not rely on a HashSet<T>

maintaining the order in which you add values.
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 One additional feature supported by HashSet<T> is the RemoveWhere method,
which removes any entry that matches a given predicate. This allows you to prune a set
without worrying about the normal prohibition against modifying a collection while
you iterate over it. 

B.4.2 SortedSet<T> (.NET 4)

Just like the previous HashSet<T> comparison with Dictionary<,>, a SortedSet<T> is
like a valueless SortedDictionary<,>. It maintains a red-black tree of values, provid-
ing O(log n) complexity for addition, removal, and containment checking. When you
iterate over the set, the values will be yielded in a sorted order.

 It provides the same RemoveWhere method as HashSet<T> (despite this not being in
the interface) and additionally provides properties (Min and Max) to return the mini-
mum and maximum values. A more intriguing method is GetViewBetween, which
returns another SortedSet<T> offering a view on the original set between a lower and
upper bound, both of which are inclusive. This is a mutable, live view—changes to the
view are reflected in the original set, and vice versa. The following example demon-
strates this:

var baseSet = new SortedSet<int> { 1, 5, 12, 20, 25 };
var view = baseSet.GetViewBetween(10, 20);
view.Add(14);
Console.WriteLine(baseSet.Count);
foreach (int value in view)
{

Console.WriteLine(value);
}

Although GetViewBetween is convenient, it’s not entirely free: operations on the view
may be more expensive than expected, in order to keep internal consistency. In par-
ticular, accessing the Count property of a view is an O(n) operation if the underlying
set has changed since the last tree walk. Like all powerful tools, this should be used
with care.

 One final feature of SortedSet<T>: it exposes a Reverse() method that allows you
to iterate over it in reverse order. This isn’t used by Enumerable.Reverse(), which
buffers the contents of the sequence it’s called on. If you know you’ll want to access a
sorted set in reverse order, it may be useful to keep an expression of type Sorted-
Set<T> instead of using a more general interface type, so that you can access this
more efficient implementation. 

B.5 Queue<T> and Stack<T>
Queues and stacks are staples of every computer science course. They’re sometimes
referred to as FIFO (first in, first out) and LIFO (last in, first out) structures, respec-
tively. The basic idea is the same for both data structures: you add items to the collec-
tion, and at some other point you remove them. The difference is the order in which

Outputs 6

Outputs 12, 14, 20
they’re removed: a queue acts like a queue in a shop, where the first person to join the
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queue is the first to be served; a stack acts like a stack of plates where the last plate
placed on the top is the first to be taken off it. One common use for queues and stacks
is to maintain a list of work items still to be processed.

 Just as with LinkedList<T>, although you can use the normal collection interface
methods to access queues and stacks, I recommend using the class-specific ones to
make your code clearer.

B.5.1 Queue<T>

Queue<T> is implemented with a circular buffer: essentially it maintains an array, with
an index remembering the next slot to add an item into, and another index remem-
bering the next slot to take an item from. If the add index catches up with the remove
index, the contents are copied into a larger array.

Queue<T> provides the Enqueue and Dequeue methods to add and remove items; a
Peek method allows you to see what item will be dequeued next, without actually
removing it. Both Dequeue and Peek throw InvalidOperationException if they’re
called on an empty queue. Iterating over the queue yields values in the order they’d
be dequeued. 

B.5.2 Stack<T>

The Stack<T> implementation is even simpler than Queue<T>—you can think of it as
being just like a List<T>, but with a Push method to add a new item to the end of the
list, Pop to remove the final item, and Peek to look at the final item without removing
it. Again, Pop and Peek throw InvalidOperationException when called on an empty
stack. Iterating over the stack yields values in the order they’d be popped—so the
most recently added value is yielded first. 

B.6 Concurrent collections (.NET 4)
As part of Parallel Extensions in .NET 4, there are several new collections in a new
System.Collections.Concurrent namespace. These are designed to be safe in the
face of concurrent operations from multiple threads, with relatively little locking. The
namespace also contains three classes that are used for partitioning collections for
parallel operations, but we won’t be looking at those here.

B.6.1 IProducerConsumerCollection<T> and BlockingCollection<T>

Three of the new collections implement the new IProducerConsumerCollection<T>
interface, which is designed to be used with BlockingCollection<T>. When describ-
ing queues and stacks, I mentioned that they’re often used to store work items for
later processing; the producer/consumer pattern is a way of executing these work
items concurrently. Sometimes there’s a single producer thread creating work and
multiple consumer threads executing the work items. In other cases, the consumers
can also be producers; for example, a web crawler may process a web page and dis-

cover more links to be crawled later.
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IProducerConsumerCollection<T> acts as an abstraction for the data storage of
the producer/consumer pattern, and BlockingCollection<T> wraps this in an easy-
to-use form and also provides the ability to limit how many items can be buffered at
any one time. BlockingCollection<T> assumes that nothing else will be adding to
the wrapped collection directly; all the interested parties should use the wrapper for
both adding and removing work items. The constructor overloads that don’t take an
IProducerConsumerCollection<T> parameter use a ConcurrentQueue<T> for back-
ing storage.

 The IProducerConsumerCollection<T> only provides three particularly interest-
ing methods: ToArray, TryAdd, and TryTake. ToArray copies the current contents of
the collection to a new array; this is a snapshot of the collection at the point when the
method is called. TryAdd and TryTake both follow the normal TryXXX pattern, return-
ing a Boolean value to indicate success or failure, and they do what you’d expect:
attempt to add an item to the collection, or attempt to remove one from the collec-
tion. Allowing an efficient failure mode reduces the need for locking. In a Queue<T>,
for example, you’d want to hold a lock in order to combine the operations of “test
whether there are any items in the queue” and “dequeue an item if there is one”—
otherwise Dequeue could throw an exception.

BlockingCollection<T> layers blocking behavior on top of these nonblocking
methods, with a host of overloads to allow timeouts and cancellation tokens to be
specified. Usually you won’t need to use BlockingCollection<T> or IProducer-
ConsumerCollection<T> directly; you’ll call other parts of Parallel Extensions that’ll
use them for you. It’s worth knowing they’re there, though, in case you need your own
custom behavior. 

B.6.2 ConcurrentBag<T>, ConcurrentQueue<T>, 
and ConcurrentStack<T>

The framework comes with three implementations of IProducerConsumer-

Collection<T>. Essentially, they differ in terms of the order in which items are
retrieved; the queue and stack act as you’d expect them to from their nonconcurrent
equivalents, whereas ConcurrentBag<T> doesn’t guarantee any ordering.

 All three implement IEnumerable<T> in a thread-safe way. The iterator returned
by GetEnumerator() will iterate over a snapshot of the collection; you can modify the
collection while you’re iterating, and the changes won’t be seen within the iterator. All
three also offer a TryPeek method that’s similar to TryTake, but that doesn’t remove a
value from the collection. Unlike TryTake, this method isn’t specified in IProducer-
ConsumerCollection<T>. 

B.6.3 ConcurrentDictionary<TKey, TValue>

ConcurrentDictionary<TKey, TValue> implements the standard IDictionary

<TKey, TValue> interface (whereas none of the concurrent collections implements
IList<T>) and is essentially a thread-safe hash-based dictionary. It supports multiple
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threads reading and writing concurrently, and also allows thread-safe iteration,
although unlike the three collections from the previous section, modifications made
to the dictionary while iterating may or may not be reflected in the iterator.

 There’s more to it than just thread-safe access. Whereas normal dictionary imple-
mentations basically offer add-or-update via the indexer, and add-or-throw via the Add
method, ConcurrentDictionary<TKey, TValue> offers a veritable smorgasbord of
options. You can update the value associated with a key based on its previous value, get
a value based on a key or add it if the key wasn’t present beforehand, conditionally
update a value only if it was what you expected it to be before, and many other possi-
bilities, all of which act atomically. It’s all bewildering to start with, but Stephen Toub
of the Parallel Extensions team has a blog post giving details of when you should use
which method (see http://mng.bz/WMdW). 

B.7 Read-only interfaces (.NET 4.5)
.NET 4.5 introduced three new collection interfaces: IReadOnlyCollection<T>, IRead-
OnlyList<T>, and IReadOnlyDictionary<TKey, TValue>. As I write this, they’re not
widely used—but it’s worth being aware of them, mostly so you know what they’re not.
Figure B.2 shows how they relate to each other and to the IEnumerable interfaces. 

 If you thought that ReadOnlyCollection<T> was stretching the truth with its name,
these interfaces are even more sneaky. They don’t just allow for mutations to be made

Figure B.2 Read-only interfaces in .NET 4.5
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by other code; they even allow mutations through the very same object, if that hap-
pens to be a mutable collection. For example, List<T> implements IRead-

OnlyList<T> even though it’s clearly not a read-only collection.
 That’s not to say the interfaces aren’t useful, of course. In particular, both IRead-

OnlyCollection<T> and IReadOnlyList<T> are covariant in T, just like IEnumerable
<T> but exposing more operations. Unfortunately IReadOnlyDictionary<TKey,
TValue> is invariant in both type parameters, partly due to it implementing
IEnumerable<KeyValuePair<TKey, TValue>>—which is invariant because KeyValue-
Pair<TKey, TValue> is a struct, which is therefore invariant in itself. Additionally, the
covariance of IReadOnlyList<T> means that it can’t expose any methods accepting a
T, such as Contains and IndexOf. The big benefit is that it does expose an indexer to
fetch items by index.

 I can’t see myself using these interfaces much right now, but in the future I think
they’ll be very important. In late 2012, Microsoft released their first preview of a
NuGet package of immutable collections, called Microsoft.Bcl.Immutable. A BCL
team blog post (http://mng.bz/Xlqd) gives more details, but fundamentally it does
what it says on the tin: fully immutable collections, along with freezable (mutable until
they’re frozen) collections. Of course, if the element type is mutable (such as String-
Builder), then this only gets you so far, but I’m still excited about it, for all the normal
reasons that immutability is helpful. 

B.8 Summary
The .NET Framework contains a rich set of collections (although not a particularly
rich collection of sets). These have been gradually growing, along with the rest of the
framework, although the most commonly used collections are likely to be List<T>
and Dictionary<TKey, TValue> for some time to come. 

 There are certainly data structures that could be added in the future, but the ben-
efit always has to be weighed against the cost of adding something to the core frame-
work. Maybe we’ll see explicitly tree-based APIs in the future, rather than them being
an implementation detail of existing collections. Maybe we’ll see Fibonacci heaps,
weak-reference caches, and the like—but as you’ve seen, there’s already a lot for devel-
opers to take in, and there’s a risk of information overload. 

 If there’s a particular data structure you need for your project, it’s worth looking
online for an open source implementation; Wintellect’s Power Collections have a
particularly strong history as an alternative to the built-in collections (http://
powercollections.codeplex.com). But in most cases, the framework is likely to be ade-
quate for your needs. Hopefully this appendix has expanded your horizons slightly in
terms of what’s available out of the box.

http://mng.bz/Xlqd
http://powercollections.codeplex.com
http://powercollections.codeplex.com


appendix C
Version summaries

The version numbers in .NET can be confusing sometimes. The framework, run-
time, Visual Studio, and C# are all numbered separately. This appendix is a quick
guide to how they fit together and the major features in each release. In each case,
I’ve described the features from releases 2.0 and upward; listing all the features of
.NET 1.0 and 1.1 would be fairly pointless.

C.1 Desktop framework major releases
When developers refer to releases of .NET, they usually mean the major releases of
the desktop framework. In most cases, a framework release has been accompanied
by a release of Visual Studio (or Visual Studio .NET, as it was named for the 2002
and 2003 releases). The exception to this was .NET 3.0, which was essentially only a
set of libraries (although those libraries were pretty significant). A set of Visual Stu-
dio 2005 extensions was made available for the new features, but Visual Studio 2008
contained more support. Table C.1 shows which version of which aspect of the
framework was released when.

 When .NET 3.5 was released, .NET 2.0 SP1 and .NET 3.0 SP1 were also released;
these contained the 2.0 SP1 CLR and BCL. Similarly, .NET 3.5 SP1’s release coin-
cided with .NET 2.0 SP2 and .NET 3.0 SP2.

Table C.1 Desktop framework releases and their components

Date Framework Visual Studio C# CLR

February 2002 1.0 2002 1.0 1.0

April 2003 1.1 2003 1.2 1.1

November 2005 2.0 2005 2.0 2.0

November 2006 3.0 (Extensions to 2005) n/a 2.0

November 2007 3.5 2008 3.0 2.0 SP1

April 2010 4 2010 4.0 4.0 (there was no ver-
sion 3.0)

August 2012 4.5 2012 5.0 4.0 or 4.5a

a. This depends on your point of view. You’ll find out more later.
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Visual Studio 2008 was the first release to support multitargeting, allowing you to
choose which version of the framework you want to build for. In many cases, you can
use new features of C# while targeting an earlier release—this is basically the case if
the feature is implemented solely by compiler magic, without any support from the
CLR or libraries. More information on how to do this is available on the book’s website
(see http://mng.bz/YpRB)—in some cases there are workarounds if a feature doesn’t
quite work out of the box. It’s worth noting that if you target .NET 2.0 (you can’t target
1.0 or 1.1) from Visual Studio 2008 or 2010, you’ll actually be targeting the relevant
service pack (2.0 SP1 or 2.0 SP2); this means it’s possible to build code that uses new
features from a service pack (one notable introduction was System.DateTimeOffset
in 2.0 SP1) and then find it fails if you try to run it on a machine that genuinely has the
original release of .NET 2.0. Personally, I’d try to update machines to at least run the
latest service pack, and ideally a more recent full framework release. 

C.2 C# language features
If you’ve read the whole book, you should be able to write this section yourself. (It’s
tempting to leave a bunch of blank lines for you to fill in, but I’m not quite that lazy.)
One trivial fact: the version number of 1.2 in table C.1 isn’t a typo; looking at the spec-
ifications, Microsoft really did skip 1.1 in order to release a C# 1.2 compiler with
.NET 1.1. The changes in version 1.2 were mostly minor, but there was one significant
change in the long term: it’s only from C# 1.2 and onward that the translated code for
a foreach loop tests whether the iterator implements IDisposable and disposes of it
accordingly. As you’ve seen, this change is crucial for iterator blocks that have
resources to clean up.

 Anyway, for the sake of completeness, here are the language features, along with
the chapter references for more details.

C.2.1 C# 2.0

The major features of C# 2 were generics (see chapter 3), nullable types (chapter 4),
anonymous methods and other delegate-related enhancements (chapter 5), and itera-
tor blocks (chapter 6). Additionally, several smaller features were introduced: partial
types, static classes, properties with different access modifiers for getters and setters,
namespace aliases, pragma directives, and fixed-sized buffers. See chapter 7 for more
details. 

C.2.2 C# 3.0

C# 3 primarily built toward LINQ, although many features are useful elsewhere. Auto-
matic properties, implicit typing of arrays and local variables, object and collection ini-
tializers, and anonymous types are all covered in chapter 8. Lambda expressions and
expression trees (chapter 9) extended the delegate-related progress made in version
2.0, and extension methods (chapter 10) provided the last ingredient for query
expressions (chapter 11). Partial methods were only added in C# 3, but are covered

with the inclusion of partial types in chapter 7. 

http://mng.bz/YpRB
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C.2.3 C# 4.0

C# 4.0 has some features aimed at interoperability but doesn’t have the same single-
mindedness of C# 3.0. Again, there’s a reasonably clear divide between the small fea-
tures shown in chapter 13 (named arguments, optional parameters, better COM
interop, generic variance) and the huge feature of dynamic typing (chapter 14). 

C.2.4 C# 5.0

C# 5.0 is all about the asynchrony we saw in chapter 15, with two other very small fea-
tures (changes to foreach variable capture, and caller info attributes) sneaking into
chapter 16. Even though asynchrony only introduces a single new kind of expression
(await, within an async function), it changes the execution model enormously. I’d
argue that even if the C# team had been ready to deliver other large new language fea-
tures (and for all I know, they were), holding them back for a while would be a sensi-
ble option. It’s important that the C# community really looks at async/await carefully,
and that will take time. 

C.3 Framework library features
It’d be impossible to list all of the new features in the framework in a sensible fashion
here. In particular, each area of the framework (Windows Forms, ASP.NET, and so on)
gets extra features in each release—not just the core base class library. I’ve included
the features I believe are the most important highlights. MSDN has a far more compre-
hensive list at http://mng.bz/6tiZ.

C.3.1 .NET 2.0

The biggest features in the 2.0 libraries supported features of the CLR and languages:
generics and nullable types. Whereas nullable types didn’t require many changes, sev-
eral of the generic collections you’re used to now have been present since .NET 2.0,
and the reflection API had to be updated accordingly.

 Many areas received relatively minor updates, such as support for compression,
multiple active result sets (MARS) over a single connection to SQL Server, and many
static helper I/O methods such as File.ReadAllText. It’s probably fair to say that
these weren’t as significant as the changes to user interface frameworks.

ASP.NET gained master pages, precompilation abilities, and various new controls.
Windows Forms took a big leap in terms of layout abilities with TableLayoutPanel and
similar classes, as well as gaining better support for performance enhancements such
as double buffering, a new data binding model, and ClickOnce deployment. Back-
groundWorker was introduced in .NET 2.0 to make it easier to update a UI safely in
multithreaded applications; it’s not strictly part of Windows Forms, although that was
its primary use case until Windows Presentation Foundation arrived in .NET 3.0.
Speaking of which… 

http://mng.bz/6tiZ
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C.3.2 .NET 3.0

.NET 3.0 was somewhat curious as a major release with no CLR changes, no language
changes, and no changes to existing libraries. Instead, it consisted of four new libraries:

 Windows Presentation Foundation (WPF) is the next-generation user interface
framework; this was a revolution rather than an evolution of Windows Forms,
although the two can live side by side. It has a very different model from Win-
dows Forms, being much more compositional in nature. Silverlight’s user inter-
face is based on WPF.

 Windows Communication Foundation (WCF) is an architecture for building
service-oriented applications; it’s extensible rather than being limited to a sin-
gle protocol and aims to unify the existing RPC-like communication channels,
such as remoting.

 Windows Workflow Foundation (WF) is a system for building workflow applica-
tions.

 Windows CardSpace is a secure identity system.

Of these four areas, WPF and WCF have flourished, whereas WF and CardSpace appear
not to have taken off so well. That’s not to say that the latter technologies aren’t being
used, or that they won’t become more important in the future, but they’re not nearly
as widespread as I write this. 

C.3.3 .NET 3.5

The big new feature in .NET 3.5 was LINQ, supported by C# 3.0 and VB 9. This
included LINQ to Objects, LINQ to SQL, LINQ to XML, and expression tree support
underlying it.

 Other areas also gained important features: it became a lot easier to use AJAX in
ASP.NET, WCF and WPF each gained a whole host of improvements, an add-in frame-
work (System.AddIn) was introduced, various new cryptography algorithms were
included, and much more. As a developer interested in both concurrency and time-
related APIs, I feel obliged to draw your attention to the introduction of Reader-
WriterLockSlim and the much-needed TimeZoneInfo and DateTimeOffset types. If
you’re using .NET 3.5 or higher but are still relying on DateTime everywhere, you
should be aware that there are better options available.1

 .NET 3.5 SP1’s most notable library features were the Entity Framework and related
ADO.NET technologies, but other technologies had minor improvements as well. Also
importantly, .NET 3.5 SP1 introduced the Client Profile—a smaller version of the desk-
top .NET Framework that doesn’t include a lot of the libraries aimed at server-side
development. This allows a smaller deployment footprint for client-only applications. 

1 My personal feeling is that this still isn’t enough support for the complex and intriguing world of dates and
times, which is why I started the Noda Time project (see https://code.google.com/p/noda-time/), but at

least with TimeZoneInfo there’s finally a clean way of representing a time zone other than the local one.

https://code.google.com/p/noda-time/


558 APPENDIX C Version summaries

C.3.4 .NET 4

A lot of work went into the .NET 4 libraries for a long time, in various guises. The DLR
is a huge addition, and you’ve also seen (very briefly) Parallel Extensions in other
chapters. As usual, the user interface technologies have a raft of improvements,
although notably the focus for rich client changes is WPF rather than Windows Forms.
A lot of tweaks have been made to existing core APIs to make them that much easier to
use, such as String.Join accepting an IEnumerable<T> instead of insisting on a string
array. These aren’t earth-shattering improvements, but if they make every developer’s
life just a little bit simpler, that can have a large cumulative impact. You’ve already
seen how some of the existing generic interfaces and delegates have become covariant
or contravariant (IEnumerable<T> becoming IEnumerable<out T> and Action<T>
becoming Action<in T>, for example) but there are new types to explore as well.

 There’s a new namespace for numerical calculations, System.Numeric. At the time
of this writing, it only contains the BigInteger and Complex types, but I wouldn’t be
surprised to see BigDecimal join them in the future. There are other new types within
the System namespace, such as Lazy<T> for lazily initialized values and a Tuple family
of generic classes that provide the same sort of functionality as the Pair<T1, T2> class
from chapter 3, but for up to eight type parameters. Tuple also supports structural com-
parisons, as represented by the new IStructuralEquatable and IStructural-
Comparable interfaces in the System.Collections namespace. Although the full
Reactive Extensions classes you saw in chapter 12 aren’t in .NET 4, the core interfaces
IObserver<T> and IObservable<T> are in the System namespace. I’ve brought up
these specific items because although new areas like the Managed Extensibility Frame-
work (MEF) get a lot of attention, it’s easy to overlook simple types like these. It’s good
to see that time is being spent on the whole framework, not just on shiny new cool stuff. 

C.3.5 .NET 4.5

Again, the biggest driver in .NET 4.5’s changes is almost certainly asynchrony. There
are asynchronous versions of just about every API you could want one for: if it could
take a while, you should be able to do it asynchronously. The Task Parallel Library
from .NET 4 has been expanded (and optimized) to help with this too.

 There are lots of other changes within .NET 4.5, and it would be foolish to try to
describe all of them. Even the MSDN page listing the highlights (http://mng.bz/6tiZ)
is longer than I’d want to include here. But most of those changes will depend on the
project you’re building, whereas the sweep of asynchrony across the whole platform is
likely to impact everyone, over time. 

C.4 Runtime (CLR) features
CLR changes are often less visible to many developers than new library and language
features. Obviously there are some particularly shiny features such as generics that’ll
catch everyone’s attention, but others are less obvious. The CLR has also changed less
frequently than either the language or the framework libraries, at least in terms of

major releases.

http://mng.bz/6tiZ
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C.4.1 CLR 2.0

In addition to generics, the CLR required one extra change to support the new lan-
guage features of C# 2: the behavior of boxing and unboxing nullable value types that
we explored in chapter 4.

CLR 2.0 had other major changes. The most significant ones were support for 64-
bit processors (both x64 and IA64) and the ability to host the CLR within SQL Server
2005. The SQL Server integration required new hosting APIs to be designed, so that
the host could have a lot more control over the CLR, including how it allocates mem-
ory and threads. This allows a diligent host to make sure that code running in the CLR
won’t compromise other aspects of a critical process, such as a database.

 .NET 3.5 included CLR 2.0 SP1, and .NET 3.5 SP1 included CLR 2.0 SP2; these had
relatively minor changes, such as tweaks to the access that code in a DynamicMethod
has to private members of another type. The CLR team is always looking for ways to
improve performance as well, with improvements in garbage collection, the JIT,
startup times, and so on. 

C.4.2 CLR 4.0

Although the CLR didn’t need to change in order to accommodate the DLR, the team
has still been hard at work. These are some of the highlights:

 Interop marshaling performance and consistency improvements with IL stubs
everywhere (see this .NET Framework Blog post for details: http://mng.bz/
56H6)

 A background garbage collector to replace the concurrent collector in CLR 2.0
 An improved security model based on the concept of transparency, which is the

successor to Code Access Security (CAS)
 Type equivalence, used to support the embedded PIA feature of C# 4
 Side-by-side execution of different CLRs within the same process

The CLR in .NET 4.5 includes a number of improvements, mostly around garbage col-
lection. You can think of it as a minor release, effectively. Alongside pure performance
benefits, the 64-bit CLR also supports the <gcAllowVeryLargeObjects> configuration
option, which allows for the creation of enormous arrays, even when the elements are
large structures…assuming you have the memory, of course. In terms of the version
number, the picture is slightly complicated. In documentation, you may well see this
version of the CLR referred to as CLR 4.5. However, it still advertises itself as 4.0 if you
consult the Environment.Version property. For example, at the time of writing the
CLR I’m running reports version 4.0.30319.18033. The build and revision numbers
may potentially change over time due to service packs.

 More details of all of the new features are available on the .NET Framework Blog
(http://blogs.msdn.com/b/dotnet). 

http://mng.bz/56H6
http://mng.bz/56H6
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C.5 Related frameworks
It’s rare for anything in computing to do well with a one-size-fits-all model, and .NET is
no exception. Even the desktop framework isn’t really a single version: there’s the cli-
ent profile, the 32-bit and 64-bit JITs, and the server and workstation CLRs tuned for
different tasks. Beyond that, there are separate frameworks that have their own ver-
sion histories, tailored to different environments.

C.5.1 Compact Framework

The Compact Framework was originally aimed at mobile devices running Windows
Mobile. Since then, it’s been retargeted for Xbox 360, Windows Phone 7, and Sym-
bian S60.

 The Compact Framework major release schedule has traditionally mirrored that of
the desktop framework, although there’s no release corresponding to .NET 3.0. Just to
keep things interesting, the most up-to-date release (used by some Windows Mobile
devices and WP7) is version 3.7.

 Early versions of the Compact Framework were missing some fairly core function-
ality, which was largely filled by community efforts; later releases have plugged many
of the more significant gaps, although obviously it’s still a subset of the desktop frame-
work. The GUI layer depends on the exact platform; for example, on the Xbox 360
you’d use XNA, Windows Mobile supports Windows Forms, and WP7 supports both
XNA and Silverlight. Code running on the Compact Framework is JIT-compiled and
garbage-collected, although the Compact Framework collector isn’t generational like
the ones in the desktop framework. 

C.5.2 Silverlight

Silverlight (http://silverlight.net/) is aimed at running applications either within
browsers, or (as of Silverlight 3) in a sandboxed environment, usually originally
installed from a browser. As such, it’s a natural competitor to Flash; it has the obvious
advantage of allowing C# developers to write applications in a familiar language
against a familiar library. Silverlight installs a streamlined CLR (called CoreCLR—see
http://mng.bz/G32M) and class library—for example, the nongeneric collections
aren’t supported, and neither is Windows Forms. The presentation layer of Silverlight
is based on WPF, but they’re not identical. It has particularly strong support for media,
with features such as deep zoom and adaptive video streaming.

 Silverlight 1 was released in September 2007, although it was restricted to a mix-
ture of XAML to construct the UI and JavaScript for logic. It wasn’t until Silverlight 2
was released in October 2008 that the full experience of delivering Silverlight applica-
tions built with C# became a reality. Some of the features from CoreCLR (side-by-side
CLR hosting within a single process, and the declarative transparency security model)
are now features in the desktop CLR for version 4.0. It also included an early version of
the Dynamic Language Runtime.

http://silverlight.net/
http://mng.bz/G32M
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 Progress continued unabated, with Silverlight 3 being released in July 2009 with
more controls, more video codecs, as well as offline and out-of-browser applications.
The Silverlight team repeated the nine-month release cycle, releasing Silverlight 4 in
the same week as .NET 4 with another long list of new features. Windows Phone 7 sup-
ported Silverlight 3 and some features of Silverlight 4, and then when the Windows
Phone 7.1 SDK was released (to support the phone with a consumer-branded version
of 7.5, just to add confusion), that supported more of Silverlight 4 again. Both Win-
dows Phone 7.x versions used an evolution of the Compact Framework CLR.

 Windows Phone 8 supports the Silverlight API for backward compatibility, but also
supports the new Windows Phone Runtime API which is closer to the WinRT API used
for Windows Store applications. Additionally, Windows Phone 8 uses a version of
CoreCLR rather than the one from the Compact Framework.

 Silverlight itself is now dead in terms of further development. While I’m sure many
developers are still using it, there will be no new versions released. However, WinRT
should feel very familiar to Silverlight developers. Microsoft has attempted to make
the transition from Silverlight applications to Windows Store applications pretty
smooth. 

C.5.3 Micro Framework

The Micro Framework (see http://mng.bz/D9qy) is a tiny implementation of .NET,
designed to run on very constrained devices. It doesn’t support generics, it’s inter-
preted rather than JIT-compiled, and it ships with a limited set of classes, but it does
include a presentation layer, built around WPF. In order to save space, you only need
to deploy the parts of the framework you actually need—at its smallest, it can take up
a mere 390 KB. Obviously, this is a somewhat niche area, but the ability to write man-
aged code for embedded devices has great appeal. It won’t be suitable for all situa-
tions—it’s not a real-time system, for example—but where it’s applicable, it’s likely to
dramatically improve developer productivity.

 The release history hasn’t followed that of the desktop framework at all: it was first
seen in the SPOT watch in 2004, but version 1.0 was released in 2006. Since then it has
iterated several times in rapid succession. Version 4.0 of the Micro Framework
shipped on November 19, 2009—and in a move that still delights and surprises me,
the majority of this version was released open source under the Apache 2.0 license.
Some libraries, such as the TCP/IP stack and cryptography implementations, are still
closed for various reasons; these companion libraries can be downloaded in binary
form for specific architectures. 

C.5.4 Windows Runtime (WinRT)

WinRT isn’t another version of .NET—it’s a whole new Windows platform, introduced
in Windows 8. It aims to provide a sandboxed environment on both x86 and ARM pro-
cessor architectures, and supports multiple languages—primarily C# and VB via .NET,

C++/CX (a new flavor of C++ specifically targeting WinRT), and JavaScript. It’s an

http://mng.bz/D9qy
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unmanaged API, but it’s designed to integrate very closely with .NET, so that C# and
VB.NET developers can really use the same APIs as C++/CX and JavaScript developers.
There’s no need for a wrapper API to be built around it, as was the case for Win32 with
Windows Forms. The API has been designed with asynchrony in mind right from the
start; using asynchrony is the natural way of developing apps targeting WinRT.

 As Windows 8 is a young operating system, we have yet to see how well this will pan
out in the long run, and developers wanting to create apps to run on Windows 8 can
still target the traditional desktop, but it’s clear that Microsoft believes that WinRT is
an important way forward for client-side development. In particular, the Windows
Phone API and the Windows Store API are likely to converge more and more closely in
the future. 

C.6 Summary
With so many versions of so many different components, it’s easy to get confused—
and even easier to confuse someone else. As a final piece of advice (and I mean
final—it’s hard to sneak anything deep and meaningful into an index), I recommend
that you try to be as clear as possible on this topic when communicating with others. If
you’re using anything other than the desktop framework, say so. If you’re going to
quote a version number, specify exactly what you mean—“3.0” could mean using C#
2.0 and .NET 3.0, or it could mean using C# 3.0 and .NET 3.5. Aside from anything
else, after you’ve read this book, you have absolutely no excuse for claiming you’re using
“C# 3.5” or “C# 4.5” unless you’re deliberately trying to wind me up.
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